1
|
Nagy D, Reinholdt P, Jensen PWK, Kjellgren ER, Ziems KM, Fitzpatrick A, Knecht S, Kongsted J, Coriani S, Sauer SPA. Electric Field Gradient Calculations for Ice VIII and IX Using Polarizable Embedding: A Comparative Study on Classical Computers and Quantum Simulators. J Phys Chem A 2024; 128:6305-6315. [PMID: 39020525 DOI: 10.1021/acs.jpca.4c02697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
We test the performance of the polarizable embedding variational quantum eigensolver self-consistent field (PE-VQE-SCF) model for computing electric field gradients with comparisons to conventional complete active space self-consistent-field (CASSCF) calculations and experimental results. We compute quadrupole coupling constants for ice VIII and ice IX. We find close agreement of the quantum-computing PE-VQE-SCF results with the results from the classical PE-CASSCF calculations and with experiment. Furthermore, we observe that the inclusion of the environment is crucial for obtaining results that match the experimental data. The calculations for ice VIII are within the experimental uncertainty for both CASSCF and VQE-SCF for oxygen and lie close to the experimental value for ice IX as well. With the VQE-SCF, which is based on an adaptive derivative-assembled problem-tailored (ADAPT) ansatz, we find that the inclusion of the environment and the size of the different basis sets do not directly affect the gate counts. However, by including an explicit environment, the wavefunction and therefore the optimization problem become more complicated, which usually results in the need to include more operators from the operator pool, thereby increasing the depth of the circuit.
Collapse
Affiliation(s)
- Dániel Nagy
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Phillip W K Jensen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Karl Michael Ziems
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | | | - Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
- Department of Chemistry and Applied Life Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Aucar JJ, Melo JI, Maldonado AF. Electric Field Gradient in Chiral and Tetrahedral Molecules within High-Order LRESC Formalism. J Phys Chem A 2024; 128:5089-5099. [PMID: 38725128 DOI: 10.1021/acs.jpca.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In this work, we present the electric field gradient (EFG) given by the linear response elimination of the small component (LRESC) scheme up to the 1/c4 order (c is the speed of light in vacuum) in CHFClX (X = Br, I, At) chiral molecules, together with CHF2Br and CH2FX (X = Br, I, At) tetrahedral systems. The former could be good candidates for further parity violation studies, especially when heavy atoms are surrounding. In this context, the LRESC scheme demonstrates effective applicability to large tetrahedral and chiral molecules that incorporate heavy elements, with relativistic effects playing a crucial role. The LRESC results of EFG exhibit an excellent agreement with those calculated at the four-component level, giving differences of only hundredths order in a.u. (atomic units) for the bromine nucleus and less than 0.1 a.u. for the iodine nucleus. Regarding the other nuclei, for the chiral molecules, there is a heavy atom effect on the light atom (HALA) for chlorine and fluorine atoms as the substituent halogen atom becomes heavier. Furthermore, the electronic part of the EFG for the central carbon and the fluorine nuclei presents an important dependence with the environment in the molecules under study. With accurate calculations of the EFG and tabulated nuclear quadrupole moment, the nuclear quadrupole coupling constant is obtained within the LRESC scheme, including for the first time correlation effects on the spin-dependent corrections with this methodology, providing results close to the experimental ones for Cl, Br, and I atoms. At the Hartree-Fock level, the differences are around 6% for Br and I nuclei, and at the density functional theory level with the LDA and PBE0 functionals, the differences are no more than 2%.
Collapse
Affiliation(s)
- Juan J Aucar
- Physics Department, Natural and Exact Science Faculty, National Northeastern University of Argentina, Avda Libertad 5460, W3404AAS Corrientes, Argentina
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad 5460, W3404AAS Corrientes, Argentina
| | - Juan I Melo
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), C1428EGA Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, C1428EGA Buenos Aires, Argentina
| | - Alejandro F Maldonado
- Institute for Modelling and Innovative Technology, IMIT (CONICET-UNNE), Avda Libertad 5460, W3404AAS Corrientes, Argentina
| |
Collapse
|
3
|
Li W, Filatov M, Zou W. Calculation of electric field gradients with the exact two-component (X2C) quasi-relativistic method and its local approximations. Phys Chem Chem Phys 2024; 26:18333-18342. [PMID: 38912554 DOI: 10.1039/d4cp01567c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
When calculating electric field gradients (EFGs), relativistic and electron correlation effects are crucial for obtaining accurate results, and the commonly used density functional methods produce unsatisfactory results, especially for heavy elements and/or strongly correlated systems. In this work, a stand-alone program is presented, which enables calculation of EFGs from the molecular orbitals supplied by an external high accuracy quantum chemical calculation and includes relativistic effects through the exact two-component (X2C) formalism and efficient local approximations to it. Application to BiN and BiP molecules shows that a high precision can be achieved in the calculation of nuclear quadrupole coupling constants of 209Bi by combining advanced ab initio methods with the X2C approach. For seventeen iron compounds, the Mössbauer nuclear quadrupole splittings (NQS) of 57Fe calculated using a double-hybrid functional method are in very good agreement with the experimental values. It is shown that, for strongly correlated molecules, the double-hybrid functionals are much more accurate than the commonly used hybrid functionals. The computer program developed in this study furnishes a useful utility for obtaining EFGs and related nuclear properties with high accuracy.
Collapse
Affiliation(s)
- Wenxin Li
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, P. R. China.
| | - Michael Filatov
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, P. R. China.
| |
Collapse
|
4
|
Florez E, Zapata-Escobar AD, Ferraro F, Ibargüen Becerra C, Chamorro Y, Maldonado AF. Coordination of Mercury(II) in Water Promoted over Hydrolysis in Solvated Clusters [Hg(H 2O) 1-6] (aq)2+: Insights from Relativistic Effects and Free Energy Analysis. J Phys Chem A 2023; 127:8032-8049. [PMID: 37672217 DOI: 10.1021/acs.jpca.3c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Understanding the nature of the interaction between mercury(II) ions, Hg2+, and water molecules is crucial to describe the stability and chemical behavior of structures formed during solvation, as well as the conditions that favor the Hg2+ coordination or inducing water hydrolysis. In our study, we explored exhaustively the potential energy surface of Hg2+ with up to six water molecules. We analyzed electronic and Gibbs free energies, binding, and nuclear magnetic resonance parameters. We used the zeroth-order regular approximation Hamiltonian, including scalar and spin-orbit relativistic corrections for free energy calculations and geometry optimizations to explore the interplay between electron correlation and relativistic effects. We analyzed intermolecular interactions with energy decomposition analysis, quantum theory of atoms in molecules, and natural bond orbital. Additionally, we used the four-component Dirac Hamiltonian to compute solvent effect on the magnetic shielding and J-coupling constants. Our results revealed that the water hydrolysis by Hg2+ requires a minimum of three water molecules. We found that the interaction between Hg2+ and water molecules is an orbital interaction due to relativistic effects and the most stable structures are opened-shape clusters, reducing the number of oxygen-mercury contacts and maximizing the formation of hydrogen bonds among water molecules. In these types of clusters, Hg2+ promotes the water hydrolysis over coordination with oxygen atoms. However, when we considered the change associated with the transfer of a cluster from the ideal gas to a solvated system, our solvation free energy analysis revealed that closed-shape clusters are more favorable, maximizing the number of oxygen-mercury contacts and reducing the formation of hydrogen bonds among water molecules. This finding suggests that, under room conditions, the coordination of Hg2+ is more favorable than hydrolysis. Our results have significant implications for understanding Hg2+ behavior in water, helping to develop targeted strategies for mercury remediation and management, and contributing to advancements in the broader field of environmental chemistry.
Collapse
Affiliation(s)
- Edison Florez
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University, 0632 Auckland, New Zealand
| | - Andy D Zapata-Escobar
- Institute for Modeling and Innovative Technology (IMIT), CONICET-UNNE, W3404AAS Corrientes, Argentina
- Physics Department, Natural and Exact Science Faculty, Northeastern University, W3404AAS Corrientes, Argentina
| | - Franklin Ferraro
- Departamento de Ciencias Básicas, Universidad Católica Luis Amigó, 050034 Medellín, Colombia
| | - César Ibargüen Becerra
- Institute of Chemistry, University of Antioquia, 050010 Medellín, Colombia
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia (IUCMA), 050034 Medellín, Colombia
| | - Yuly Chamorro
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Alejandro F Maldonado
- Institute for Modeling and Innovative Technology (IMIT), CONICET-UNNE, W3404AAS Corrientes, Argentina
| |
Collapse
|
5
|
Aucar JJ, Maldonado AF, Melo JI. High order relativistic corrections on the electric field gradient within the LRESC formalism. J Chem Phys 2022; 157:244105. [PMID: 36586974 DOI: 10.1063/5.0124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this work, we present relativistic corrections to the electric field gradient (EFG) given by the Linear Response Elimination of the Small Component (LRESC) scheme at 1/c2 order and including for the first time spin-dependent (SD) corrections at 1/c4 order. We show that these new terms improve the performance of LRESC as results with this methodology are very close to those calculated at the four-component Dirac-Hartree-Fock (4c-DHF) level. We assess the new corrections in BrY and AtY di-halogen (Y = F, Cl, Br, I, and At) and XZY bi-linear molecules (Z = Zn, Cd, and Hg; X, Y = F, Cl, Br, I, and At). At the 4c-DHF level, we analyze the contributions coming from the large and small components of the relativistic 4c wave function to the electronic part of EFG and compare them with the LRESC corrections to find their electronic origin. For the HgX2 (X = Cl, Br, and I) subset, when the SD correcting terms are included, LRESC calculations match very well with 4c-DHF ones and those from the literature, with differences less than 1% for molecules containing up to three heavy atoms. We show that LRESC gives accurate values of EFG, allowing the analysis of the electronic origin of relativistic effects in terms of well-known nonrelativistic operators.
Collapse
Affiliation(s)
- Juan J Aucar
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad, 5460 Corrientes, Argentina
| | - Alejandro F Maldonado
- Instituto de Modelado e Innovación Tecnológica (UNNE-CONICET), Corrientes, Argentina
| | - Juan I Melo
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Instituto de Física de Buenos Aires (IFIBA-UBA-CONICET), Universidad de Buenos Aires (UBA), C1428EGA Buenos Aires, Argentina
| |
Collapse
|
6
|
Liu J, Cheng L. Relativistic coupled‐cluster and equation‐of‐motion coupled‐cluster methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Junzi Liu
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| | - Lan Cheng
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
7
|
Haas H, Röder J, Correia JG, Schell J, Fenta AS, Vianden R, Larsen EMH, Aggelund PA, Fromsejer R, Hemmingsen LBS, Sauer SPA, Lupascu DC, Amaral VS. Free Molecule Studies by Perturbed γ-γ Angular Correlation: A New Path to Accurate Nuclear Quadrupole Moments. PHYSICAL REVIEW LETTERS 2021; 126:103001. [PMID: 33784142 DOI: 10.1103/physrevlett.126.103001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Accurate nuclear quadrupole moment values are essential as benchmarks for nuclear structure models and for the interpretation of experimentally determined nuclear quadrupole interactions in terms of electronic and molecular structure. Here, we present a novel route to such data by combining perturbed γ-γ angular correlation measurements on free small linear molecules, realized for the first time within this work, with state-of-the-art ab initio electronic structure calculations of the electric field gradient at the probe site. This approach, also feasible for a series of other cases, is applied to Hg and Cd halides, resulting in Q(^{199}Hg,5/2^{-})=+0.674(17) b and Q(^{111}Cd,5/2^{+})=+0.664(7) b.
Collapse
Affiliation(s)
- Heinz Haas
- Department of Physics and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
- EP Division CERN, 1211 Geneve-23, Switzerland
| | - Jens Röder
- Department of Physics and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
- EP Division CERN, 1211 Geneve-23, Switzerland
| | - Joao G Correia
- EP Division CERN, 1211 Geneve-23, Switzerland
- C2TN, DECN, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - J Schell
- EP Division CERN, 1211 Geneve-23, Switzerland
- Institute for Materials Science and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Abel S Fenta
- Department of Physics and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Reiner Vianden
- Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, Bonn, Germany
| | - Emil M H Larsen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Patrick A Aggelund
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rasmus Fromsejer
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Vitor S Amaral
- Department of Physics and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Gaul K, Berger R. Quasi-relativistic study of nuclear electric quadrupole coupling constants in chiral molecules containing heavy elements. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1797199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Konstantin Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
9
|
Lino JBDR, Sauer SPA, Ramalho TC. Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation. J Phys Chem A 2020; 124:4946-4955. [PMID: 32463687 DOI: 10.1021/acs.jpca.0c01607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Assembled together with the most common qubits used in nuclear resonance magnetic (NMR) quantum computation experiments, spin-1/2 nuclei, such as 113Cd, 199Hg, 125Te, and 77Se, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR quantum information processing (QIP) implementations. A computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP is reported. Chemical shifts and spin-spin coupling constants (SSCCs) in five MRE complexes were examined using the spin-orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach. In particular, the influence of different conformers, basis sets, exchange-correlation functionals, and methods to treat the relativistic as well as solvent effects were studied. The differences in the chemical shifts and SSCCs between different low energy conformers of the studied complexes were found to be very small. The TZ2P basis set was found to be the optimum choice for the studied chemical shifts, while the TZ2P-J basis set was the best for the couplings studied in this work. The PBE0 exchange-correlation functional exhibited the best performance for the studied MRE complexes. The addition of solvent effects has not improved on the gas phase results in comparison to the experiment, with the exception of the phosphorus chemical shift. The use of MRE complexes as qubit molecules for NMR QIP could face the challenges in single qubit control and multiqubit operations. They exhibit chemical shifts appropriately dispersed, allowing qubit addressability and exceptionally large spin-spin couplings, which could reduce the time of quantum gate operations and likely preserve the coherence.
Collapse
Affiliation(s)
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Teodorico Castro Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil.,Center for Basic and Applied Research, Faculty of Informatics and Management, University Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Haase PAB, Eliav E, Iliaš M, Borschevsky A. Hyperfine Structure Constants on the Relativistic Coupled Cluster Level with Associated Uncertainties. J Phys Chem A 2020; 124:3157-3169. [PMID: 32202783 PMCID: PMC7184561 DOI: 10.1021/acs.jpca.0c00877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Indexed: 11/29/2022]
Abstract
Accurate predictions of hyperfine structure (HFS) constants are important in many areas of chemistry and physics, from the determination of nuclear electric and magnetic moments to benchmarking of new theoretical methods. We present a detailed investigation of the performance of the relativistic coupled cluster method for calculating HFS constants within the finite-field scheme. The two selected test systems are 133Cs and 137BaF. Special attention has been paid to construct a theoretical uncertainty estimate based on investigations on basis set, electron correlation and relativistic effects. The largest contribution to the uncertainty estimate comes from higher order correlation contributions. Our conservative uncertainty estimate for the calculated HFS constants is ∼5.5%, while the actual deviation of our results from experimental values is <1% in all cases.
Collapse
Affiliation(s)
- Pi A. B. Haase
- Van
Swinderen Institute, University of Groningen, 9747 Groningen, The Netherlands
| | - Ephraim Eliav
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Miroslav Iliaš
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovskèho 40, SK-97400 Banska Bystrica, Slovakia
| | | |
Collapse
|
11
|
Liu J, Shen Y, Asthana A, Cheng L. Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals. J Chem Phys 2018; 148:034106. [DOI: 10.1063/1.5009177] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yue Shen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ayush Asthana
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
Baya M, Pérez-Bitrián A, Martínez-Salvador S, Martín A, Casas JM, Menjón B, Orduna J. Gold(II) Trihalide Complexes from Organogold(III) Precursors. Chemistry 2018; 24:1514-1517. [DOI: 10.1002/chem.201705509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH); CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Alberto Pérez-Bitrián
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH); CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Sonia Martínez-Salvador
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH); CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH); CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - José M. Casas
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH); CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH); CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Jesús Orduna
- Instituto de Ciencia de Materiales de Aragón (ICMA); CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
13
|
Cheng L. Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and scalar-relativistic coupled-cluster methods. J Chem Phys 2015; 143:064301. [DOI: 10.1063/1.4928054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lan Cheng
- Department of Chemistry, Institute for Theoretical Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
Cheng L, Gauss J. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory. J Chem Phys 2014; 141:164107. [DOI: 10.1063/1.4897254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lan Cheng
- Institute for Theoretical Chemistry, Department of Chemistry
and Biochemistry, The University of Texas at Austin, Austin,
Texas 78712, USA
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
15
|
Cremer D, Zou W, Filatov M. Dirac‐exact relativistic methods: the normalized elimination of the small component method. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1181] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of ChemistrySouthern Methodist UniversityDallasTXUSA
| | - Wenli Zou
- Computational and Theoretical Chemistry Group (CATCO), Department of ChemistrySouthern Methodist UniversityDallasTXUSA
| | - Michael Filatov
- Computational and Theoretical Chemistry Group (CATCO), Department of ChemistrySouthern Methodist UniversityDallasTXUSA
| |
Collapse
|
16
|
Rusakov YY, Krivdin LB, Østerstrøm FF, Sauer SPA, Potapov VA, Amosova SV. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium: tellurophene and divinyl telluride. Phys Chem Chem Phys 2014; 15:13101-13107. [PMID: 23824065 DOI: 10.1039/c3cp51462e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.
Collapse
Affiliation(s)
- Yury Yu Rusakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Russian Academy of Sciences, Siberian Branch, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Russian Academy of Sciences, Siberian Branch, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Freja F Østerstrøm
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Vladimir A Potapov
- A.E. Favorsky Irkutsk Institute of Chemistry, Russian Academy of Sciences, Siberian Branch, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Svetlana V Amosova
- A.E. Favorsky Irkutsk Institute of Chemistry, Russian Academy of Sciences, Siberian Branch, 1 Favorsky St., 664033 Irkutsk, Russia.
| |
Collapse
|
17
|
|
18
|
Wang F, Steimle TC, Adam AG, Cheng L, Stanton JF. The pure rotational spectrum of ruthenium monocarbide, RuC, and relativisticab initiopredictions. J Chem Phys 2013; 139:174318. [DOI: 10.1063/1.4828458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Aidas K, Ågren H, Kongsted J, Laaksonen A, Mocci F. A quantum mechanics/molecular dynamics study of electric field gradient fluctuations in the liquid phase. The case of Na+in aqueous solution. Phys Chem Chem Phys 2013; 15:1621-31. [DOI: 10.1039/c2cp41993a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Cheng L, Stopkowicz S, Stanton JF, Gauss J. The route to high accuracy inab initiocalculations of Cu quadrupole-coupling constants. J Chem Phys 2012; 137:224302. [DOI: 10.1063/1.4767767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Filatov M, Zou W, Cremer D. Relativistically corrected electric field gradients calculated with the normalized elimination of the small component formalism. J Chem Phys 2012; 137:054113. [DOI: 10.1063/1.4742175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Vibenholt J, Schau-Magnussen M, Stachura M, Bjerrum MJ, Thulstrup PW, Arcisauskaite V, Hemmingsen L. Application of 204mPb Perturbed Angular Correlation of γ-rays Spectroscopy in Coordination Chemistry. Inorg Chem 2012; 51:1992-4. [DOI: 10.1021/ic202614j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johan Vibenholt
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, DK-2100 København Ø, Denmark
| | - Magnus Schau-Magnussen
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, DK-2100 København Ø, Denmark
| | - Monika Stachura
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, DK-2100 København Ø, Denmark
| | - Morten J. Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, DK-2100 København Ø, Denmark
| | - Peter W. Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, DK-2100 København Ø, Denmark
| | - Vaida Arcisauskaite
- Department of Basic
Sciences and Environment, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg
C, Denmark
| | - Lars Hemmingsen
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, DK-2100 København Ø, Denmark
- Department of Basic
Sciences and Environment, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg
C, Denmark
| |
Collapse
|
23
|
Arcisauskaite V, Knecht S, Sauer SPA, Hemmingsen L. Electric field gradients in Hg compounds: Molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods. Phys Chem Chem Phys 2012; 14:16070-9. [DOI: 10.1039/c2cp42291c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|