1
|
Liu M, Feng Q, Zhang H, Guo Y, Fan H. Progress in ultrasmall ferrite nanoparticles enhanced T1 magnetic resonance angiography. J Mater Chem B 2024; 12:6521-6531. [PMID: 38860874 DOI: 10.1039/d4tb00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Contrast-enhanced magnetic resonance angiography (CE-MRA) plays a critical role in diagnosing and monitoring various vascular diseases. Achieving high-sensitivity detection of vascular abnormalities in CE-MRA depends on the properties of contrast agents. In contrast to clinically used gadolinium-based contrast agents (GBCAs), the new generation of ultrasmall ferrite nanoparticles-based contrast agents have high relaxivity, long blood circulation time, easy surface functionalization, and high biocompatibility, hence showing promising prospects in CE-MRA. This review aims to comprehensively summarize the advancements in ultrasmall ferrite nanoparticles-enhanced MRA for detecting vascular diseases. Additionally, this review also discusses the future clinical translational potential of ultrasmall ferrite nanoparticles-based contrast agents for vascular imaging. By investigating the current status of research and clinical applications, this review attempts to outline the progress, challenges, and future directions of using ultrasmall ferrite nanoparticles to drive the field of CE-MRA into a new frontier of accuracy and diagnostic efficacy.
Collapse
Affiliation(s)
- Minrui Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 614001, China
| | - Quanqing Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 614001, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 614001, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
- Center for Nanomedicine and Engineering, School of Medicine, Northwest University, Xi'an, Shaanxi, 710127, China.
| |
Collapse
|
2
|
Lee S, Byun A, Jo J, Suh JM, Yoo J, Lim MH, Kim JW, Shin TH, Choi JS. Ultrasmall Mn-doped iron oxide nanoparticles with dual hepatobiliary and renal clearances for T1 MR liver imaging. NANOSCALE ADVANCES 2024; 6:2177-2184. [PMID: 38633040 PMCID: PMC11019488 DOI: 10.1039/d3na00933e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Although magnetic nanoparticles demonstrate significant potential as magnetic resonance imaging (MRI) contrast agents, their negative contrasts, liver accumulation, and limited excretion hinder their application. Herein, we developed ultrasmall Mn-doped iron oxide nanoparticles (UMIOs) with distinct advantages as T1 MRI contrast agents. Exceptionally small particle sizes (ca. 2 nm) and magnetization values (5 emu gMn+Fe-1) of UMIOs provided optimal T1 contrast effects with an ideally low r2/r1 value of ∼1. Furthermore, the use of Mn as a dopant facilitated hepatocyte uptake of the particles, allowing liver imaging. In animal studies, UMIOs exhibited significantly enhanced contrasts for sequential T1 imaging of blood vessels and the liver, distinguishing them from conventional magnetic nanoparticles. UMIOs were systematically cleared via dual hepatobiliary and renal excretion pathways, highlighting their safety profile. These characteristics imply substantial potential of UMIOs as T1 contrast agents for the accurate diagnosis of liver diseases.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Arim Byun
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Juhee Jo
- Inventera Inc. Seoul 06588 Republic of Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Ji-Wook Kim
- Inventera Inc. Seoul 06588 Republic of Korea
| | | | - Jin-Sil Choi
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| |
Collapse
|
3
|
Narnaware PK, Ravikumar C. Influence of solvents, reaction temperature, and aging time on the morphology of iron oxide nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Prashil K. Narnaware
- Department of Chemical Engineering, Colloids and Nanomaterials Laboratory, Visvesvaraya National Institute of Technology, Nagpur, India
| | - C. Ravikumar
- Department of Chemical Engineering, Colloids and Nanomaterials Laboratory, Visvesvaraya National Institute of Technology, Nagpur, India
| |
Collapse
|
4
|
Lu C, Xu X, Zhang T, Wang Z, Chai Y. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance T1 contrast agents for magnetic resonance imaging. J Mater Chem B 2022; 10:1623-1633. [DOI: 10.1039/d1tb02572d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-sized iron oxide nanoparticles (IONPs) are excellent alternative to clinical gadolinium-based contrast agents (GBCAs) in T1-weighted magnetic resonance imaging (MRI) due to their biosafety. However, the relaxation efficiency and contrast...
Collapse
|
5
|
Zhang T, Wang Z, Xiang H, Xu X, Zou J, Lu C. Biocompatible Superparamagnetic Europium-Doped Iron Oxide Nanoparticle Clusters as Multifunctional Nanoprobes for Multimodal In Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33850-33861. [PMID: 34282885 DOI: 10.1021/acsami.1c07739] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic nanoparticle clusters composed of primary magnetic nanoparticles can not only significantly enhance the magnetic properties of the assembly but also retain the superparamagnetic properties of the individual primary nanoparticle, which is of great significance for promoting the development of multifunctional advanced materials. Herein, water-soluble biocompatible and superparamagnetic europium-doped iron oxide nanoparticle clusters (EuIO NCs) were directly synthesized by a simple one-pot method. The obtained EuIO NCs have excellent water solubility, colloidal stability, and biocompatibility. Europium doping significantly improved the contrast enhancement effect of EuIO NCs in T1-weighted MR imaging. In addition, EuIO NCs can be functionalized by active molecules, and the rhodamine123-functionalized EuIO NCs have long circulation time and excellent fluorescence imaging performance in vivo. This study provides a simple strategy for the design and construction of a novel multifunctional magnetic nanoplatform and provides solutions for the development of multimodal imaging probes and the diagnosis of disease.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Zhijie Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Huijing Xiang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Xue Xu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Jing Zou
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Chichong Lu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
6
|
Besenhard MO, Panariello L, Kiefer C, LaGrow AP, Storozhuk L, Perton F, Begin S, Mertz D, Thanh NTK, Gavriilidis A. Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor. NANOSCALE 2021; 13:8795-8805. [PMID: 34014243 DOI: 10.1039/d1nr00877c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Small iron oxide nanoparticles (IONPs) were synthesised in water via co-precipitation by quenching particle growth after the desired magnetic iron oxide phase formed. This was achieved in a millifluidic multistage flow reactor by precisely timed addition of an acidic solution. IONPs (≤5 nm), a suitable size for positive T1 magnetic resonance imaging (MRI) contrast agents, were obtained and stabilised continuously. This novel flow chemistry approach facilitates a reproducible and scalable production, which is a crucial paradigm shift to utilise IONPs as contrast agents and replace currently used Gd complexes. Acid addition had to be timed carefully, as the inverse spinel structure formed within seconds after initiating the co-precipitation. Late quenching allowed IONPs to grow larger than 5 nm, whereas premature acid addition yielded undesired oxide phases. Use of a flow reactor was not only essential for scalability, but also to synthesise monodisperse and non-agglomerated small IONPs as (i) co-precipitation and acid addition occurred at homogenous environment due to accurate temperature control and rapid mixing and (ii) quenching of particle growth was possible at the optimum time, i.e., a few seconds after initiating co-precipitation. In addition to the timing of growth quenching, the effect of temperature and dextran present during co-precipitation on the final particle size was investigated. This approach differs from small IONP syntheses in batch utilising either growth inhibitors (which likely leads to impurities) or high temperature methods in organic solvents. Furthermore, this continuous synthesis enables the low-cost (<£10 per g) and large-scale production of highly stable small IONPs without the use of toxic reagents. The flow-synthesised small IONPs showed high T1 contrast enhancement, with transversal relaxivity (r2) reduced to 20.5 mM-1 s-1 and longitudinal relaxivity (r1) higher than 10 mM-1 s-1, which is among the highest values reported for water-based IONP synthesis.
Collapse
Affiliation(s)
| | - Luca Panariello
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Céline Kiefer
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Liudmyla Storozhuk
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Francis Perton
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Sylvie Begin
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Nguyen Thi Kim Thanh
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK. and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
7
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
8
|
Mondal DK, Jonak S, Paul N, Borah JP. Dextran mediated MnFe 2O 4/ZnS magnetic fluorescence nanocomposites for controlled self-heating properties. RSC Adv 2021; 11:12507-12519. [PMID: 35423807 PMCID: PMC8696989 DOI: 10.1039/d0ra09745d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Dextran mediated MnFe2O4/ZnS opto-magnetic nanocomposites with different concentrations of ZnS were competently synthesized adopting the co-precipitation method. The structural, morphological, magnetic, and optical properties of the nanocomposites were exhaustively characterized by XRD, HRTEM, FTIR, VSM techniques, and PL spectroscopy. XRD spectra demonstrate the existence of the cubic spinel phase of MnFe2O4 and the cubic zinc blend phase of ZnS in the nanocomposites. HRTEM images show the average crystallite size ranges of 15-21 nm for MnFe2O4 and 14-45 nm for ZnS. Investigation of the FTIR spectra reveals the incorporation of ZnS nanoparticles on the surface of MnFe2O4 nanoparticles by dint of biocompatible surfactant dextran. The nanocomposites exhibit both magnetic and photoluminescence properties. Photoluminescence analysis confirmed the redshift of the emission peaks owing to the trap states in the ZnS nanocrystals. The room temperature VSM analysis shows that the saturation magnetization and coercivity of MnFe2O4 nanoparticles initially increase then decrease with the increasing concentration of ZnS in the nanocomposite. The induction heating analysis shows that the presence of dextran enhances the self heating properties of the MnFe2O4/ZnS nanocomposites which can also be controlled by tailoring the concentration of the ZnS nanoparticles. These suggest that MnFe2O4/Dex/ZnS is a decent candidate for hyperthermia applications.
Collapse
Affiliation(s)
- D K Mondal
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - Sarodi Jonak
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - N Paul
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - J P Borah
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| |
Collapse
|
9
|
Li X, Sun Y, Ma L, Liu G, Wang Z. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020; 25:E5072. [PMID: 33139643 PMCID: PMC7662352 DOI: 10.3390/molecules25215072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The advancements of magnetic resonance imaging contrast agents (MRCAs) are continuously driven by the critical needs for early detection and diagnosis of diseases, especially for cancer, because MRCAs improve diagnostic accuracy significantly. Although hydrophilic gadolinium (III) (Gd3+) complex-based MRCAs have achieved great success in clinical practice, the Gd3+-complexes have several inherent drawbacks including Gd3+ leakage and short blood circulation time, resulting in the potential long-term toxicity and narrow imaging time window, respectively. Nanotechnology offers the possibility for the development of nontoxic MRCAs with an enhanced sensitivity and advanced functionalities, such as magnetic resonance imaging (MRI)-guided synergistic therapy. Herein, we provide an overview of recent successes in the development of renal clearable MRCAs, especially nanodots (NDs, also known as ultrasmall nanoparticles (NPs)) by unique advantages such as high relaxivity, long blood circulation time, good biosafety, and multiple functionalities. It is hoped that this review can provide relatively comprehensive information on the construction of novel MRCAs with promising clinical translation.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| |
Collapse
|
10
|
Abstract
The presented paper is a review article discussing existing synthesis methods and different applications of nanosized magnetic nanoparticles. It was shown that, in addition to the spectrum of properties typical for nanomaterials (primarily a large specific surface area and a high fraction of surface atoms), magnetic nanoparticles also possess superparamagnetic properties that contribute to their formation of an important class of biomedical functional nanomaterials. This primarily concerns iron oxides magnetite and maghemite, for which in vitro and in vivo studies have shown low toxicity and high biocompatibility in comparison with other magnetic nanomaterials. Due to their exceptional chemical, biological, and physical properties, they are widely used in various areas, such as magnetic hyperthermia, targeted drug delivery, tissue engineering, magnetic separation of biological objects (cells, bacteria, viruses, DNA, and proteins), and magnetic diagnostics (they are used as agents for MRS and immunoassay). In addition to discussing the main problems and prospects of using nanoparticles of magnetic iron oxides for advanced biomedical applications, information is also reflected on their structure, production methods, and properties.
Collapse
|
11
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
12
|
Zhou H, Qiu X, Shen Z. [T 1-weighted magnetic resonance imaging contrast agents and their theranostic nanoprobes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:427-444. [PMID: 32376585 DOI: 10.12122/j.issn.1673-4254.2020.03.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) is an important imaging modality for clinical disease diagnosis, and nearly 50% of clinical MRI examinations require contrast agents to enhance the diagnostic sensitivity. This review provides a summary of the major MRI contrast agents and their classification, and the advantages and limits of the commercially available MRI contrast agents, and elaborates on the exceedingly small magnetic iron oxide nanoparticles (ES-MIONs), dotted core-shell iron and gadolinium hybrid nanoparticles (FeGd-HN) and exceedingly small gadolinium oxide nanoparticles (ES-GON). These nanoparticles can greatly improve the efficiency of T1-weighted MRI due to their high r1 value and low r2/r1 ratio, and are expected to be translated into clinical contrast agents for T1-weighted MRI. The authors also review the diagnostic and therapeutic integration system that combines MRI contrast agents with various tumor therapies, such as MRI-guided ferroptosis therapy, radiosensitization therapy, and photothermal therapy, which allow efficient treatment as well as real-time monitoring of tumors and serve as potential cancer therapy strategies. The possible future research directions in the field of MRI-based multifunctional diagnostic and therapeutic formulations are also discussed.
Collapse
Affiliation(s)
- Huimin Zhou
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhong Qiu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zheyu Shen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Du C, Liu X, Hu H, Li H, Yu L, Geng D, Chen Y, Zhang J. Dual-targeting and excretable ultrasmall SPIONs for T1-weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein. J Mater Chem B 2020; 8:2296-2306. [PMID: 32100784 DOI: 10.1039/c9tb02391g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A multifunctional targeted nanoprobe composed of ultrasmall superparamagnetic iron oxide nanoparticles with surface-conjugated Angiopep-2 was successfully constructed for targeted MR imaging of intracranial glioblastoma.
Collapse
Affiliation(s)
- Chengjuan Du
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Xianping Liu
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Hui Hu
- Department of Radiology
- The Affiliated Renmin Hospital of Jiangsu University
- Zhenjiang
- China
| | - Huiming Li
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Luodan Yu
- State Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Daoying Geng
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Jun Zhang
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| |
Collapse
|
14
|
Xiang H, Dong P, Pi L, Wang Z, Zhang T, Zhang S, Lu C, Pan Y, Yuan H, Liang H. One-pot synthesis of water-soluble and biocompatible superparamagnetic gadolinium-doped iron oxide nanoclusters. J Mater Chem B 2020; 8:1432-1444. [DOI: 10.1039/c9tb02212k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis of superparamagnetic nanoclusters is critical for ultra-sensitive magnetic resonance imaging (MRI).
Collapse
|
15
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
16
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
17
|
Lv YB, Chandrasekharan P, Li Y, Liu XL, P Avila J, Yang Y, Chuang KH, Liang XJ, Ding J. Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T 1-enhanced contrast. J Mater Chem B 2018; 6:1470-1478. [PMID: 32254211 DOI: 10.1039/c7tb03129g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic iron oxide nanoparticles have been used for various applications such as in the treatment of iron deficiency, as theranostic agents, and as drug carriers. The effective delivery of magnetic iron oxide nanoparticles into the lesion and iron quantification are vital for in vivo theranostic application. To determine the feasibility of using T1 contrast to non-invasively quantify and monitor the IONPs in vivo, monodispersed Gd-doped iron oxide nanoparticles (GdIONPs) with 4 nm core size were fabricated and were used as T1-weighted contrast agents to quantify iron contents based on MRI longitudinal relaxation times (T1). Signal enhancement in positive T1 contrast caused by GdIONPs was observed in this work. The in vivo T1 relaxivity of GdIONPs in a tumor matched well with both in vitro T1 relaxivity and ICP-MS results, demonstrating that the concentration of iron at the tumor site can be directly read from real-time in vivo MRI T1 relaxivity. Hence, by using this strategy, the Fe content in the lesion can be accurately monitored based on MRI longitudinal relaxation times, and this may shed light on effective magnetic hyperthermia cancer therapy in future.
Collapse
Affiliation(s)
- Y B Lv
- Department of Materials Science & Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, 117574, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Garcia J, Liu SZ, Louie AY. Biological effects of MRI contrast agents: gadolinium retention, potential mechanisms and a role for phosphorus. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0180. [PMID: 29038383 PMCID: PMC5647271 DOI: 10.1098/rsta.2017.0180] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 05/06/2023]
Abstract
No discussion of challenges for chemistry in molecular imaging would be complete without addressing the elephant in the room-which is that the purest of chemical compounds needs to interact with a biological system in a manner that does not perturb normal biology while still providing efficacious feedback to assist in diagnosis of disease. In the past decade, magnetic resonance imaging (MRI) agents long considered inert have produced adverse effects in certain patient populations under certain treatment regimens. More recently, inert blood pool agents have been found to deposit in the brain. Release of free metal is often suspected as the culprit but that hypothesis has yet to be validated. In addition, even innocuous agents can cause painful side effects during injection in some patients. In this brief review, we summarize known biological effects for gadolinium- and iron-based MRI contrast agents, and discuss some of the potential mechanisms for the observed biological effects, including the potential role of phosphorus imbalance, related to kidney disease or cancer, in destabilizing gadolinium-based chelates and precipitating free gadolinium.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Joel Garcia
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Stephen Z Liu
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Angelique Y Louie
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Wang L, Wang Y, Wang X. Synthesis and In Vitro Characterization of Fe 3+-Doped Layered Double Hydroxide Nanorings as a Potential Imageable Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1140. [PMID: 28953249 PMCID: PMC5666946 DOI: 10.3390/ma10101140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022]
Abstract
Highly dispersed Fe3+-doped layered double hydroxide (LDH-Fe) nanorings were obtained by a simple coprecipitation-acid etching approach. The morphology, structure, magnetic resonance imaging (MRI) performance in vitro, drug loading and releasing, Fe3+ leakage, and cytotoxicity of the as-prepared LDH-Fe nanorings were characterized. The LDH-Fe nanorings showed good water dispersity and a well-crystallized structure. The DLS average size of nanoparticles was measured to be 94.5 nm. Moreover, the MRI tests showed a favourable T₁-weighted MRI performance of the LDH-Fe nanoring with r₁ values of 0.54 and 1.68, and low r₂/r₁ ratios of 10.1 and 6.3, pre- and after calcination, respectively. The nanoparticles also showed high model drug (ibuprofen) loading capacities, low Fe3+ leakage, and negligible cytotoxicity. All these results demonstrate the potential of LDH-Fe nanorings as an imageable drug delivery system.
Collapse
Affiliation(s)
- Lijun Wang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Yusen Wang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Xiaoxia Wang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
20
|
Zhang H, Li L, Liu XL, Jiao J, Ng CT, Yi JB, Luo YE, Bay BH, Zhao LY, Peng ML, Gu N, Fan HM. Ultrasmall Ferrite Nanoparticles Synthesized via Dynamic Simultaneous Thermal Decomposition for High-Performance and Multifunctional T 1 Magnetic Resonance Imaging Contrast Agent. ACS NANO 2017; 11:3614-3631. [PMID: 28371584 DOI: 10.1021/acsnano.6b07684] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Large-scale synthesis of monodisperse ultrasmall metal ferrite nanoparticles as well as understanding the correlations between chemical composition and MR signal enhancement is critical for developing next-generation, ultrasensitive T1 magnetic resonance imaging (MRI) nanoprobes. Herein, taking ultrasmall MnFe2O4 nanoparticles (UMFNPs) as a model system, we report a general dynamic simultaneous thermal decomposition (DSTD) strategy for controllable synthesis of monodisperse ultrasmall metal ferrite nanoparticles with sizes smaller than 4 nm. The comparison study revealed that the DSTD using the iron-eruciate paired with a metal-oleate precursor enabled a nucleation-doping process, which is crucial for particle size and distribution control of ultrasmall metal ferrite nanoparticles. The principle of DSTD synthesis has been further confirmed by synthesizing NiFe2O4 and CoFe2O4 nanoparticles with well-controlled sizes of ∼3 nm. More significantly, the success in DSTD synthesis allows us to tune both MR and biochemical properties of magnetic iron oxide nanoprobes by adjusting their chemical composition. Beneficial from the Mn2+ dopant, the synthesized UMFNPs exhibited the highest r1 relaxivity (up to 8.43 mM-1 s-1) among the ferrite nanoparticles with similar sizes reported so far and demonstrated a multifunctional T1 MR nanoprobe for in vivo high-resolution blood pool and liver-specific MRI simultaneously. Our study provides a general strategy to synthesize ultrasmall multicomponent magnetic nanoparticles, which offers possibilities for the chemical design of a highly sensitive ultrasmall magnetic nanoparticle based T1 MRI probe for various clinical diagnosis applications.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an, Shaanxi 710069, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center , Guangzhou 510060, China
| | - Xiao Li Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an, Shaanxi 710069, China
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University , 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Cheng-Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , 4 Medical Drive, MD10, 117594, Singapore
| | - Jia Bao Yi
- School of Materials Science and Engineering, University of New South Wales , Kensington, NSW 2052, Australia
| | - Yan E Luo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an, Shaanxi 710069, China
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , 4 Medical Drive, MD10, 117594, Singapore
| | - Ling Yun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Material Science & Engineering, Tsinghua University , Beijing 100084, China
| | - Ming Li Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an, Shaanxi 710069, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Hai Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an, Shaanxi 710069, China
| |
Collapse
|
21
|
Zhou H, Tang J, Li J, Li W, Liu Y, Chen C. In vivo aggregation-induced transition between T 1 and T 2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. NANOSCALE 2017; 9:3040-3050. [PMID: 28186215 DOI: 10.1039/c7nr00089h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface ligands and their densities may significantly influence the optic, electric, and stable properties of inorganic nanoparticles as well as their magnetic resonance imaging (MRI) characters. In this study, ultra-small iron oxide nanoparticles with hyaluronic acid as surface ligand (Fe3O4@HA) were designed to target tumor cells and tune the T1- and T2-weighted MRI by aggregating in the tumor microenvironment via the degradation of HA upon exposure to hyaluronidase (HAase) with decreasing pH. To realize this purpose, four kinds of Fe3O4@HA nanoparticles with increasing HA density were synthesized and characterized. Fe3O4@HA280, with higher r1 value than others, was chosen for the signal modulation test in vitro; the T2 signal was enhanced by 36%, and the T1 signal decreased by 22% in the presence of HAase and acidic environment during the measurement. However, the chitosan-coated Fe3O4 nanoparticles did not show a similar tendency. The overlapping sections in the signal change graph of MDA-MB-231 cells and tumor-bearing mice also validate the self-assembling ability of Fe3O4@HA280. Meanwhile, the tumor mapping graphs indicate the excellent tumor penetration of Fe3O4@HA280, which facilitates this self-assembly process and enhances the interior section contrast of the tumor. This fundamental technique for tuning magnetic properties by the tumor microenvironment may provide a useful strategy for the rational synthesis of other inorganic nanoparticles in the field of tumor diagnostics and therapy.
Collapse
Affiliation(s)
- Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Wanqi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanosciences, National Center for Nanoscience and Technology of China, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P.R. China.
| |
Collapse
|
22
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
23
|
Abstract
Magnetic iron oxide nanoparticles (MIONs) have attracted enormous attention due to their wide applications, including for magnetic separation, for magnetic hyperthermia, and as contrast agents for magnetic resonance imaging (MRI). This review article introduces the methods of synthesizing MIONs, and their application as MRI contrast agents. Currently, many methods have been reported for the synthesis of MIONs. Herein, we only focus on the liquid-based synthesis methods including aqueous phase methods and organic phase methods. In addition, the MIONs larger than 10 nm can be used as negative contrast agents and the recently emerged extremely small MIONs (ES-MIONs) smaller than 5 nm are potential positive contrast agents. In this review, we focus on the ES-MIONs because ES-MIONs avoid the disadvantages of MION-based T2- and gadolinium chelate-based T1-weighted contrast agents.
Collapse
Affiliation(s)
- Zheyu Shen
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo, Zhejiang 315201, P. R. China.,Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo, Zhejiang 315201, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
24
|
Blanco-Andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-Flesch D, Begin-Colin S. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine (Lond) 2016; 11:1889-910. [DOI: 10.2217/nnm-2016-5001] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools.
Collapse
Affiliation(s)
- Cristina Blanco-Andujar
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Aurelie Walter
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Geoffrey Cotin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Catalina Bordeianu
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Damien Mertz
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Delphine Felder-Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Sylvie Begin-Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| |
Collapse
|
25
|
Shrestha S, Jiang P, Sousa MH, Morais PC, Mao Z, Gao C. Citrate-capped iron oxide nanoparticles impair the osteogenic differentiation potential of rat mesenchymal stem cells. J Mater Chem B 2016; 4:245-256. [DOI: 10.1039/c5tb02007g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cellular uptake of citrate-capped iron oxide nanoparticles can impair the osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Surakshya Shrestha
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Pengfei Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Marcelo Henrique Sousa
- Green Nanotechnology Group
- Faculdade de Ceilândia
- Universidade de Brasília
- Ceilândia – DF 72220-900
- Brazil
| | - Paulo Cesar Morais
- Universidade de Brasília
- Instituto de Física
- Brasília DF 70910-900
- Brazil
- Huazhong University of Science and Technology
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
26
|
Cheng J, Tan G, Li W, Li J, Wang Z, Jin Y. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer. RSC Adv 2016. [DOI: 10.1039/c6ra03128e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Core–shell structure magneto-fluorescence chlorin pyropheorbide-a photosensitizer (MFNPs) with good water-dispersity and strong superparamagnetic for photodynamic therapy.
Collapse
Affiliation(s)
- Jianjun Cheng
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Wenting Li
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Jinghua Li
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| |
Collapse
|
27
|
Zhang C, Yan Y, Zou Q, Chen J, Li C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia Pac J Clin Oncol 2015; 12:13-21. [PMID: 26663873 DOI: 10.1111/ajco.12437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - Yuzhong Yan
- Clinical Laboratory, Shanghai Pudong Hospital; Fudan University Pudong Medical Center; Pudong, Shanghai China
- Department of Transfusion Medicine, Huashan Hospital; Fudan University; Shanghai China
| | - Qi Zou
- Departments of Hepatobiliary Surgery and
| | - Jie Chen
- Departments of Hepatobiliary Surgery and
| | | |
Collapse
|
28
|
Luo Y, Yang J, Yan Y, Li J, Shen M, Zhang G, Mignani S, Shi X. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T₁-weighted MR imaging of gliomas. NANOSCALE 2015; 7:14538-46. [PMID: 26260703 DOI: 10.1039/c5nr04003e] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration range, and display targeting specificity to glioma cells overexpressing αvβ3 integrin in vitro. With the relatively high r1 relaxivity (r1 = 1.4 mM(-1) s(-1)), the Fe3O4-PEG-RGD particles can be used as an efficient nanoprobe for targeted T1-weighted positive MR imaging of glioma cells in vitro and the xenografted tumor model in vivo via an active RGD-mediated targeting pathway. The developed RGD-functionalized Fe3O4 NPs may hold great promise to be used as a nanoprobe for targeted T1-weighted MR imaging of different αvβ3 integrin-overexpressing cancer cells or biological systems.
Collapse
Affiliation(s)
- Yu Luo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sharma VK, Alipour A, Soran-Erdem Z, Aykut ZG, Demir HV. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T(1)-T(2) MRI contrast agents. NANOSCALE 2015; 7:10519-10526. [PMID: 26010145 DOI: 10.1039/c5nr00752f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 ± 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI.
Collapse
Affiliation(s)
- V K Sharma
- UNAM-Institute of Materials Science and Nanotechnology, National Magnetic Resonance Research Center (UMRAM), Department of Electrical and Electronics Engineering, Department of Physics, Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | | | | | | | | |
Collapse
|
30
|
Li J, Hu Y, Yang J, Sun W, Cai H, Wei P, Sun Y, Zhang G, Shi X, Shen M. Facile synthesis of folic acid-functionalized iron oxide nanoparticles with ultrahigh relaxivity for targeted tumor MR imaging. J Mater Chem B 2015; 3:5720-5730. [PMID: 32262568 DOI: 10.1039/c5tb00849b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present the polyethyleneimine (PEI)-assisted synthesis of folic acid (FA)-functionalized iron oxide (Fe3O4) nanoparticles (NPs) with ultrahigh relaxivity for in vivo targeted tumor magnetic resonance (MR) imaging. In this work, water-dispersible and stable Fe3O4 NPs were synthesized in the presence of PEI via a facile mild reduction approach. The surface PEI coating afforded the formed Fe3O4 NPs with the ability to be functionalized with polyethylene glycol (PEG)-linked FA and fluorescein isothiocyanate (FI). A further acetylation step to neutralize the remaining PEI surface amines gave rise to the formation of multifunctional FA-functionalized Fe3O4 NPs, which were subsequently characterized via different methods. We show that the developed FA-functionalized Fe3O4 NPs have a good water-dispersibility, good colloidal stability, ultrahigh r2 relaxivity (475.92 mM-1 s-1), and good hemocompatibility and cytocompatibility in the studied concentration range. The targeting specificity of the FA-modified Fe3O4 NPs to FA receptor (FAR)-overexpressing HeLa cells (a human cervical carcinoma cell line) was subsequently validated by flow cytometry and confocal microscopy. Significantly, the developed FA-modified Fe3O4 NPs can be used as a nanoprobe for targeted MR imaging of HeLa cells in vitro and the xenografted tumor model in vivo via an active FA-mediated targeting strategy. The developed multifunctional FA-modified Fe3O4 NPs with an ultrahigh r2 relaxivity may be used as an efficient nanoprobe for the targeted MR imaging of various kinds of FAR-overexpressing tumors.
Collapse
Affiliation(s)
- Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang M, Cao Y, Wang L, Ma Y, Tu X, Zhang Z. Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4650-8. [PMID: 25672225 DOI: 10.1021/am5080453] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photothermal therapy (PTT) is a noninvasive and convenient way to ablate tumor tissues. Integrating PTT with imaging technique could precisely identify the location and the size of tumor regions, thereby significantly improving the therapeutic efficacy. Magnetic resonance imaging (MRI) is widely used in clinical diagnosis due to its superb spatial resolution and real-time monitoring feature. In our work, we developed a theranostic nanoplatform based on manganese doped iron oxide (MnIO) nanoparticles modified with denatured bovine serum albumin (MnIO-dBSA). The in vitro experiment revealed that the MnIO nanoparticles exhibited T1-weighted MRI capability (r1 = 8.24 mM(-1) s(-1), r2/r1 = 2.18) and good photothermal effect under near-infrared laser irradiation (808 nm). Using 4T1 tumor-bearing mice as an animal model, we further demonstrated that the MnIO-dBSA composites could significantly increase T1 MRI signal intensity at the tumor site (about two times) and effectively ablate tumor tissues with photoirradiation. Taken together, this work demonstrates the great potential of the MnIO nanoparticles as an ideal theranostic platform for efficient tumor MR imaging and photothermal therapy.
Collapse
Affiliation(s)
- Mengxin Zhang
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | | | | | | | | | | |
Collapse
|
32
|
Peng E, Wang F, Xue JM. Nanostructured magnetic nanocomposites as MRI contrast agents. J Mater Chem B 2015; 3:2241-2276. [PMID: 32262055 DOI: 10.1039/c4tb02023e] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) has become an integral part of modern clinical imaging due to its non-invasiveness and versatility in providing tissue and organ images with high spatial resolution. With the current MRI advancement, MRI imaging probes with suitable biocompatibility, good colloidal stability, enhanced relaxometric properties and advanced functionalities are highly demanded. As such, MRI contrast agents (CAs) have been an extensive research and development area. In the recent years, different inorganic-based nanoprobes comprising inorganic magnetic nanoparticles (MNPs) with an organic functional coating have been engineered to obtain a suitable contrast enhancement effect. For biomedical applications, the organic functional coating is critical to improve colloidal stability and biocompatibility. Simultaneously, it also provides a building block for generating a higher dimensional secondary structure. In this review, the combinatorial design approach by a self-assembling pre-formed hydrophobic inorganic MNPs core (from non-polar thermolysis synthesis) into various functional organic coatings (e.g. ligands, amphiphilic polymers and graphene oxide) to form water soluble nanocomposites will be discussed. The resultant magnetic ensembles were classified based on their dimensionality, namely, 0-D, 1-D, 2-D and 3-D structures. This classification provides further insight into their subsequent potential use as MRI CAs. Special attention will be dedicated towards the correlation between the spatial distribution and the associated MRI applications, which include (i) coating optimization-induced MR relaxivity enhancement, (ii) aggregation-induced MR relaxivity enhancement, (iii) off-resonance saturation imaging (ORS), (iv) magnetically-induced off-resonance imaging (ORI), (v) dual-modalities MR imaging and (vi) multifunctional nanoprobes.
Collapse
Affiliation(s)
- Erwin Peng
- Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore.
| | | | | |
Collapse
|
33
|
Wigger H, Zimmermann T, Pade C. Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s10669-014-9530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Luo T, Meng QQ, Gao C, Yu XY, Jia Y, Sun B, Jin Z, Li QX, Liu JH, Huang XJ. Sub-20 nm-Fe3O4square and circular nanoplates: synthesis and facet-dependent magnetic and electrochemical properties. Chem Commun (Camb) 2014; 50:15952-5. [DOI: 10.1039/c4cc06064d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Liu CL, Peng YK, Chou SW, Tseng WH, Tseng YJ, Chen HC, Hsiao JK, Chou PT. One-step, room-temperature synthesis of glutathione-capped iron-oxide nanoparticles and their application in in vivo T1-weighted magnetic resonance imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3962-3969. [PMID: 25044378 DOI: 10.1002/smll.201303868] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 06/03/2023]
Abstract
The room-temperature, aqueous-phase synthesis of iron-oxide nanoparticles (IO NPs) with glutathione (GSH) is reported. The simple, one-step reduction involves GSH as a capping agent and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the reducing agent; GSH is an anti-oxidant that is abundant in the human body while THPC is commonly used in the synthesis of noble-metal clusters. Due to their low magnetization and good water-dispersibility, the resulting GSH-IO NPs, which are 3.72 ± 0.12 nm in diameter, exhibit a low r2 relaxivity (8.28 mm(-1) s(-1)) and r2/r1 ratio (2.28)--both of which are critical for T1 contrast agents. This, together with the excellent biocompatibility, makes these NPs an ideal candidate to be a T1 contrast agent. Its capability in cellular imaging is illustrated by the high signal intensity in the T1-weighted magnetic resonance imaging (MRI) of treated HeLa cells. Surprisingly, the GSH-IO NPs escape ingestion by the hepatic reticuloendothelial system, enabling strong vascular enhancement at the internal carotid artery and superior sagittal sinus, where detection of the thrombus is critical for diagnosing a stroke. Moreover, serial T1- and T2-weighted time-dependent MR images are resolved for a rat's kidneys, unveiling detailed cortical-medullary anatomy and renal physiological functions. The newly developed GSH-IO NPs thus open a new dimension in efforts towards high-performance, long-circulating MRI contrast agents that have biotargeting potential.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
LeCroy GE, Sonkar SK, Yang F, Veca LM, Wang P, Tackett KN, Yu JJ, Vasile E, Qian H, Liu Y, Luo PG, Sun YP. Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS NANO 2014; 8:4522-9. [PMID: 24702526 DOI: 10.1021/nn406628s] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There has been much discussion on the need to develop fluorescent quantum dots (QDs) as ultracompact probes, with overall size profiles comparable to those of the genetically encoded fluorescent tags. In the use of conventional semiconductor QDs for such a purpose, the beautifully displayed dependence of fluorescence color on the particle diameter becomes a limitation. More recently, carbon dots have emerged as a new platform of QD-like fluorescent nanomaterials. The optical absorption and fluorescence emissions in carbon dots are not bandgap in origin, different from those in conventional semiconductor QDs. The absence of any theoretically defined fluorescence color-dot size relationships in carbon dots may actually be exploited as a unique advantage in the size reduction toward having carbon dots serve as ultracompact QD-like fluorescence probes. Here we report on carbon dots of less than 5 nm in the overall dot diameter with the use of 2,2'-(ethylenedioxy)bis(ethylamine) (EDA) molecules for the carbon particle surface passivation. The EDA-carbon dots were found to be brightly fluorescent, especially over the spectral range of green fluorescent protein. These aqueous soluble smaller carbon dots also enabled more quantitative characterizations, including the use of solution-phase NMR techniques, and the results suggested that the dot structures were relatively simple and better-defined. The potential for these smaller carbon dots to serve as fluorescence probes of overall sizes comparable to those of fluorescent proteins is discussed.
Collapse
Affiliation(s)
- Gregory Ethan LeCroy
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University , Clemson, South Carolina 29634, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saharkhiz H, Gharehaghaji N, Nazarpoor M, Mesbahi A, Pourissa M. The Effect of Inversion Time on the Relationship Between Iron Oxide Nanoparticles Concentration and Signal Intensity in T1-Weighted MR Images. IRANIAN JOURNAL OF RADIOLOGY 2014; 11:e12667. [PMID: 25035696 PMCID: PMC4090637 DOI: 10.5812/iranjradiol.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/06/2013] [Accepted: 11/17/2013] [Indexed: 11/22/2022]
Abstract
Background: Magnetic nanoparticles have been widely applied in recent years for biomedical applications. Signal intensity (SI) of magnetic resonance (MR) images depends on the concentration of nanoparticles. It is important to find the minimum concentration of iron oxide nanoparticles that produces maximum SI and determines the minimum injection dose for clinical studies. Objectives: This study was performed to determine the relationship between the iron oxide nanoparticle concentration and SI using inversion recovery (IR) sequence in T1-weighted MR images. Materials and Methods: Different concentrations of carboxydextran-coated iron oxide nanoparticles 20 nm in size were prepared. In vitro MR imaging was performed with inversion times (TI) of 100-400 ms (interval of 20 ms) and IR Turbo-FLASH (Turbo fast low angle shot) pulse sequence using a 1.5 T MRI system. Then the SI produced by each concentration of nanoparticles was measured and the minimum nanoparticle concentration that led to the maximum SI was determined. Coil non-uniformity was also considered for measuring the accurate SI of each image. Results: The results indicate that SI depended on the concentration of nanoparticles and TI. In addition, SI increased by increasing the TIs ranging from 200 to 400 ms for all studied concentrations. The linear relationship between the nanoparticle concentrations and SI that gave a square correlation coefficient (R2) equal to 0.99 was seen up to 76.83 µmol Fe/L in 400 ms for long TI and 239.16 µmol Fe/L in 200 ms for short TI. Conclusions: TI is an important parameter to consider in the relationship between SI and nanoparticle concentrations. An increase in TI leads to a decrease in the range of linearity.
Collapse
Affiliation(s)
- Hodaiseh Saharkhiz
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Gharehaghaji
- Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author: Nahideh Gharehaghaji, Department of Radiology, Faculty of Paramedicine, Tabriz University of Medical Sciences, Daneshgah square, Tabriz, Iran. Tel: +98-4113356911, Fax: +98-4113368733, E-mail:
| | - Mahmood Nazarpoor
- Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pourissa
- Department of Radiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Liu XL, Fan HM. Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications. Curr Opin Chem Eng 2014. [DOI: 10.1016/j.coche.2013.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 2013; 14:15910-30. [PMID: 23912234 PMCID: PMC3759893 DOI: 10.3390/ijms140815910] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/24/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have emerged as an MRI contrast agent for tumor imaging due to their efficacy and safety. Their utility has been proven in clinical applications with a series of marketed SPION-based contrast agents. Extensive research has been performed to study various strategies that could improve SPION by tailoring the surface chemistry and by applying additional therapeutic functionality. Research into the dual-modal contrast uses of SPION has developed because these applications can save time and effort by reducing the number of imaging sessions. In addition to multimodal strategies, efforts have been made to develop multifunctional nanoparticles that carry both diagnostic and therapeutic cargos specifically for cancer. This review provides an overview of recent advances in multimodality imaging agents and focuses on iron oxide based nanoparticles and their theranostic applications for cancer. Furthermore, we discuss the physiochemical properties and compare different synthesis methods of SPION for the development of multimodal contrast agents.
Collapse
|
40
|
Zou Y, Huang Z, Deng M, Yin G, Chen X, Liu J, Wang Y, Yan L, Gu J. Synthesis and neuro-cytocompatibility of magnetic Zn-ferrite nanorods via peptide-assisted process. J Colloid Interface Sci 2013; 408:6-12. [PMID: 23948460 DOI: 10.1016/j.jcis.2013.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/02/2013] [Accepted: 07/06/2013] [Indexed: 01/18/2023]
Abstract
In order to obtain magnetic nanorods (MNRs) with the neuro-cytocompatibility, silk-fibroin (SF)-coated Zn-ferrite NRs are successfully prepared via a mineralization process, and their saturation magnetization is 32emu g(-)(1). After the mineralization of 2d and 4d in the mixed solution of the concentrations of 15w/w% SF and 0.01M HCl, the lengths of NRs are ∼220nm and ∼2μm, respectively. Cell tests of NRs with 220nm length showed that the as-prepared Zn-ferrite NRs hardly produced toxicity on Escherichiacoli, Staphylococcusaureus, L929, and PC12 cells. The results of the outgrown neurites from PC12 cells indicated that the neurite length and the number of neurites were not significantly decreased at the low concentrations of SF-coated NRs (less than 0.25mg mL(-)(1)) in 1-5d culture time. TEM images of cell ultrathin sections indicated that, although Zn-ferrite NRs were split in the cytosol for 5d at the NR concentrations of 0.125mg mL(-)(1), some integrated mitochondria in a neurite suggested that SF-coated NRs inside cells did not influence the extension activity of neurites. Based on the good neuro-cytocompatibility and magnetic property of Zn-ferrite NRs, their potential applications in safe cell manipulation and axon guidance can be envisioned.
Collapse
Affiliation(s)
- Yuanwen Zou
- College of Materials Science and Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu J, Deng M, Huang Z, Yin G, Liao X, Gu J. Preparation of ZnFe2O4 nanoparticles in the template of silk-fibroin peptide and their neuro-cytocompability in PC12 cells. Colloids Surf B Biointerfaces 2013; 107:19-26. [DOI: 10.1016/j.colsurfb.2013.01.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/27/2022]
|
42
|
Zeng L, Ren W, Xiang L, Zheng J, Chen B, Wu A. Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. NANOSCALE 2013; 5:2107-13. [PMID: 23381832 DOI: 10.1039/c3nr33978e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Multifunctional Fe(3)O(4)-TiO(2) nanocomposites with Janus structure for magnetic resonance imaging (MRI) and potential photodynamic therapy (PDT) were synthesized, in which Fe(3)O(4) was used as a MRI contrast agent and TiO(2) as an inorganic photosensitizer for PDT. Their morphology, structure, and MRI and PDT performance were characterized, respectively. Moreover, the location of Fe(3)O(4)-TiO(2) nanocomposites in MCF-7 cells was also investigated by the staining of Prussian blue and alizarin red, respectively. The results showed that the as-prepared Fe(3)O(4)-TiO(2) nanocomposites had good T(2)-weighted MRI performance, and the MCF-7 cells incubated with nanocomposites could be killed under the irradiation of UV light. Compared with traditional organic photosensitizers, TiO(2) inorganic photosensitizers could have more stable PDT performance due to their nanoscale size and anti-photodegradable stability. Therefore, the as-prepared Fe(3)O(4)-TiO(2) nanocomposites could have potential applications as a new kind of multifunctional agent for both MRI and PDT.
Collapse
Affiliation(s)
- Leyong Zeng
- Key Laboratory of Magnetic Materials and Devices, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | | | | | | | | | | |
Collapse
|
43
|
Wang L, Wu Q, Tang S, Zeng J, Qiao R, Zhao P, Zhang Y, Hu F, Gao M. Ultrasmall PEGylated MnxFe3−xO4 (x = 0–0.34) nanoparticles: effects of Mn(ii) doping on T1- and T2-weighted magnetic resonance imaging. RSC Adv 2013. [DOI: 10.1039/c3ra43985b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
44
|
Ma XH, Gong A, Xiang LC, Chen TX, Gao YX, Liang XJ, Shen ZY, Wu AG. Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer. J Mater Chem B 2013; 1:3419-3428. [DOI: 10.1039/c3tb20648c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Pązik R, Piasecka E, Małecka M, Kessler VG, Idzikowski B, Śniadecki Z, Wiglusz RJ. Facile non-hydrolytic synthesis of highly water dispersible, surfactant free nanoparticles of synthetic MFe2O4 (M–Mn2+, Fe2+, Co2+, Ni2+) ferrite spinel by a modified Bradley reaction. RSC Adv 2013. [DOI: 10.1039/c3ra40763b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
46
|
Hu F, Zhao YS. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. NANOSCALE 2012; 4:6235-43. [PMID: 22971876 DOI: 10.1039/c2nr31865b] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic resonance imaging (MRI) yields high spatially resolved contrast with anatomical details for diagnosis, deeper penetration depth and rapid 3D scanning. To improve imaging sensitivity, adding contrast agents accelerates the relaxation rate of water molecules, thereby greatly increasing the contrast between specific issues or organs of interest. Currently, the majority of T(1) contrast agents are paramagnetic molecular complexes, typically Gd(iii) chelates. Various nanoparticulate T(1) and T(1)/T(2) contrast agents have recently been investigated as novel agents possessing the advantages of both the T(1) contrast effect and nanostructural characteristics. In this minireview, we describe the recent progress of these inorganic nanoparticle-based MRI contrast agents. Specifically, we mainly report on Gd and Mn-based inorganic nanoparticles and ultrasmall iron oxide/ferrite nanoparticles.
Collapse
Affiliation(s)
- Fengqin Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|