1
|
E V, Ghadei SK, Ruidas S, Bhakta V, Sakthivel R, Sankaran KJ, Bhaumik A, Dalapati S. A Metal-Free Triazacoronene-Based Bimodal VOC Sensor. ACS Sens 2024; 9:251-261. [PMID: 38207113 DOI: 10.1021/acssensors.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Developing suitable sensors for selective and sensitive detection of volatile organic compounds (VOCs) is crucial for monitoring indoor and outdoor air quality. VOCs are very harmful to our health upon inhalation or contact. Bimodal sensor materials with more than one transduction capability (optical and electrical) offer the ability to extract complementary information from the individual analyte, thus improving detection accuracy and performance. The privilege of manipulating the optoelectronic properties of the polycyclic aromatic hydrocarbon-based semiconducting materials offers rapid signal transduction in multimodal sensing applications. A thiophene-functionalized triazacoronene (TTAC) donor-acceptor-donor (D-A-D) type sensor is reported here for VOC sensing. The single-crystal X-ray structure analysis of the TTAC revealed that a distinctive supramolecular polymer architecture was formed because of cooperative π-π and intermolecular D-A interactions and exhibited rapid signal transduction upon exposure to specific VOCs. The TTAC-embedded green luminescent paper-based test strip exhibited an on-off fluorescence response upon nitrobenzene vapor exposure for 120 s. The selective and rapid response is due to the fast photoinduced electron transfer, as is evident from the time-resolved excited-state dynamics and density functional theory studies. The thick-film-based prototype chemiresistive sensor detects harmful VOCs in a custom-made gas sensing system including benzene, toluene, and nitrobenzene. The TTAC sensor rapidly responds (200 s) at relatively low temperatures (180 οC) compared to other reported metal-oxide-based sensors.
Collapse
Affiliation(s)
- Varadharajan E
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Surya Kanta Ghadei
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Viki Bhakta
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Ramasamy Sakthivel
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | | | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sasanka Dalapati
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| |
Collapse
|
2
|
Chatterjee A, Sharma AK, Purkayastha P. Development of a carbon dot and methylene blue NIR-emitting FLIM-FRET pair in niosomes for controlled ROS generation. NANOSCALE 2022; 14:6570-6584. [PMID: 35420619 DOI: 10.1039/d2nr01032a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-ionic surfactant vesicular systems (niosomes) are structurally similar to lipid vesicles, differing only in the bilayer composition. Herein we report a unique method to generate reactive oxygen species (ROS) utilizing a FLIM-FRET technique involving niosome-trapped yellow emissive carbon dots (YCDs) and methylene blue (MB) in aqueous medium under neutral conditions. Niosomes are biologically important because of their good stability and extremely low toxicity. Fluorescent CDs, emitting in the higher wavelengths on visible light excitation, are of incredible importance in bio-imaging and optoelectronics. Hence, we prepared nitrogen-containing YCDs from a single precursor, o-phenylenediamine, and explained their detailed photophysics upon incorporation into the niosomal bilayer. The YCDs are polarity sensitive, and are rotationally restricted in niosomes, which increases their fluorescence quantum yield from 29% (in water) to 91%. These YCDs are tactically employed to develop a near infrared (NIR) FRET pair with methylene blue (MB), which is a very well-known type-I and type-II photosensitizer. This FRET pair, which emits in the NIR region, is found to be an ideal system to generate ROS by excitation in the lower visible wavelengths. Interestingly, the ROS production by MB from the dissolved oxygen is enhanced inside the niosomes. The donor and the acceptor moieties in this unique NIR-emitting FRET pair display an unprecedented 300 nm Stokes shift. The findings could be influential in bio-imaging in the NIR region evading cellular autofluorescence and the controllably generated ROS can be further applied as a potential photodynamic therapeutic agent.
Collapse
Affiliation(s)
- Arunavo Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| | - Ankit Kumar Sharma
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
3
|
Sahu AK, Mishra J, Mishra AK. Introducing Tween-curcumin niosomes: preparation, characterization and microenvironment study. SOFT MATTER 2020; 16:1779-1791. [PMID: 31970372 DOI: 10.1039/c9sm02416f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this work, we report unusual niosomes (non-ionic surfactant based vesicles), prepared using non-ionic surfactant Tween 80 (T80) as well as Tween 20 (T20) and curcumin. Conventional niosomes consist of non-ionic surfactant and cholesterol. We found that, despite being a probiotic, curcumin plays a similar role to cholesterol in the formation and stabilization of niosomes. The prepared Tween-curcumin niosomes were characterised using Dynamic Light Scattering (DLS), zeta potential, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) techniques. The curcumin-induced micelle to vesicle transition in the Tween surfactants was investigated by DLS, zeta potential, fluorescence anisotropy, and fluorescence lifetime studies. At room temperature (298 K), the prepared niosomes were found to be stable; however, at a higher temperature (333 K), the niosomes degrade gradually and irreversibly to form micelles. The temperature-dependent vesicle to micelle degradation was monitored using fluorescence anisotropy, absorption, DLS and Differential Scanning Calorimetry (DSC) measurements. Further, the Tween-curcumin niosomes show a controlled release of curcumin, which could open up the possibility of multidrug therapy.
Collapse
Affiliation(s)
- Anand Kumar Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Jhili Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
4
|
Samanta P, Dutta Choudhury S, Pal H. Kinetics and Energetics of Ultrafast Bimolecular Photoinduced Electron Transfer Reactions in Pluronic-Surfactant Supramolecular Assemblies. J Phys Chem B 2019; 123:5942-5953. [PMID: 31246469 DOI: 10.1021/acs.jpcb.9b04223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the kinetics and energetics of photoinduced electron transfer (PET) reactions in constrained media has attracted considerable research interest, as constrained media provide a handle to tune the microenvironments and consequently the mechanisms of PET reactions. In this study, PET reactions between excited 7-aminocoumarin acceptors and ground-state N,N-dimethylaniline (DMAN) donor have been investigated in mixed micellar media composed of triblock copolymer, P123, and anionic surfactant, sodium dodecyl sulfate (SDS), with varying SDS-to-P123 molar ratios (n values). The objective is to elucidate the role of the n values in the rates and energetics of PET reactions over the entire time range from the subpicosecond to the subnanosecond domain, especially in regard to the applicability of the two-dimensional ET (2DET) mechanism. It is observed that by changing the n values, there is a significant change in the hydration characteristics of the SDS-P123 mixed micelles, which in turn changes the kinetics to energetic correlations for the PET reactions. Fluorescence from the excited coumarin acceptors undergoes substantial quenching due to PET from DMAN donor in all of the studied micelles as evidenced from steady-state, subnanosecond time-resolved (TR) and ultrafast (subpicosecond/femtosecond) fluorescence up-conversion measurements. The quenching rate constants (kq), estimated from subnanosecond TR fluorescence studies, and the individual component-wise decay rates (τi-1), estimated from up-conversion measurements, increase gradually with increasing n value, corroborating well with the sequentially increased micropolarity of the mixed micelles. Interestingly, it is observed that the correlations of either kq (from subnanosecond studies) or τi-1 (from femtosecond studies) with the reaction exergonicity (-ΔG°) show the noteworthy Marcus inversion (MI) behavior in a very consistent and similar manner for the entire time window, from subpicoseconds to subnanoseconds. The onset of MI always appears at an exergonicity (-ΔG°MI) much lower than solvent reorganization energy (λs), suggesting the involvement of 2DET mechanism throughout the subpicosecond to subnanosecond time domains. The present results thus provide a comprehensive picture of the kinetics and energetics of the PET reactions in constrained media for the whole time span and unequivocally establish the applicability of 2DET mechanism for the PET reactions in constrained media, eliminating any apprehensions about the effect of time resolution of the subnanosecond setup on the observed Marcus inversion behavior. This is indeed an important finding, providing valuable insights for PET reactions in constrained media, which has not been explored explicitly in any of the previous studies. Observation of MI behavior and the modulations in the PET reactions by simply changing the composition of SDS in the SDS-P123 mixed micelles are noteworthy findings of the present study and are expected to find suitable applications for better utilization and outcome of the PET reactions.
Collapse
Affiliation(s)
- Papu Samanta
- Homi Bhabha National Institute , Training School Complex , Anushaktinagar, Mumbai 400094 , India
| | | | - Haridas Pal
- Homi Bhabha National Institute , Training School Complex , Anushaktinagar, Mumbai 400094 , India
| |
Collapse
|
5
|
Pawar S, Bhattacharya A, Nag A. Metal-Enhanced Fluorescence Study in Aqueous Medium by Coupling Gold Nanoparticles and Fluorophores Using a Bilayer Vesicle Platform. ACS OMEGA 2019; 4:5983-5990. [PMID: 31459747 PMCID: PMC6648612 DOI: 10.1021/acsomega.9b00036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
Gold nanoparticles (AuNPs) display excellent plasmonic properties, which are expected to assist fluorescence enhancement for dyes, and the phenomenon is known as "metal-enhanced fluorescence" (MEF). In this study, we demonstrate AuNP-induced MEF for a modified bipyridine-based construct 4-(pyridine-2-yl)-3H-pyrrolo[2,3-c]quinoline (PPQ) when it binds with biologically important Zn2+. Importantly, this phenomenon is observed under aqueous conditions in a biocompatible bilayer vesicle platform. When PPQ binds with Zn2+ to form the complex in the presence of appropriate AuNPs, MEF is evident once compared with the fluorescence intensity in the absence of AuNPs. Among the three different sizes of AuNPs used, the enhancement is observed with an average diameter of 33 nm, whereas 18 and 160 nm do not show any enhancement. A possible mechanism is ascribed to the radiating plasmons of the AuNPs, which can couple with the emission frequencies of the fluorophore under a critical distance-dependent arrangement. We witness that the enhancement in fluorescence is accompanied with a reduction in lifetime components. It is proposed that the mechanism may be predominantly derived from the enhancement of an intrinsic radiative decay rate and partly from the localized electric field effect. Overall, this work shows a rational approach to design fluorophore-metal configurations with the desired emissive properties and a basis for a useful nanophotonic technology under biological conditions.
Collapse
Affiliation(s)
- Shweta Pawar
- Department of Chemistry, Birla
Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla
Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Amit Nag
- Department of Chemistry, Birla
Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| |
Collapse
|
6
|
Roy A, Pyne A, Pal P, Dhara S, Sarkar N. Effect of Vitamin E and a Long-Chain Alcohol n-Octanol on the Carbohydrate-Based Nonionic Amphiphile Sucrose Monolaurate-Formulation of Newly Developed Niosomes and Application in Cell Imaging. ACS OMEGA 2017; 2:7637-7646. [PMID: 30023559 PMCID: PMC6044762 DOI: 10.1021/acsomega.7b00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/26/2017] [Indexed: 06/08/2023]
Abstract
We have introduced new niosome formulations using sucrose monolaurate, vitamin E and n-octanol as independent additives. Detailed characterization techniques including turbidity, dynamic light scattering, transmission electron microscopy, ξ potential, and proton nuclear magnetic resonance measurements have been introduced to monitor the morphological transition of the carbohydrate-based micellar assembly into niosomal aggregates. Moreover, microheterogeneity of these niosomal aggregates has been investigated through different fluorescence spectroscopic techniques using a hydrophobic probe molecule coumarin 153 (C153). Further, it has been observed that vitamin E and octanol have an opposing effect on the rotational motion of C153 in the respective niosome assemblies. The time-resolved anisotropy studies suggest that incorporation of vitamin E and octanol into the surfactant aggregates results in slower and faster rotational motion of C153, respectively, compared to the micellar assemblies. Moreover, the ability to entrap a probe molecule by these niosomes is utilized to encapsulate and deliver the anticancer drug doxorubicin inside the mammalian cells which is monitored through fluorescence microscopic images. Interestingly, the niosome composed of vitamin E demonstrated better cytocompatibility toward primary chondrocyte cell lines compared to the octanol-forming niosome.
Collapse
Affiliation(s)
- Arpita Roy
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Arghajit Pyne
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Pallabi Pal
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Santanu Dhara
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| | - Nilmoni Sarkar
- Department
of Chemistry and School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West
Bengal, India
| |
Collapse
|
7
|
dos Santos WH, da Silva-Filho LC. New method for the synthesis of chromeno[4,3-b]chromene derivatives via multicomponent reaction promoted by niobium pentachloride. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Effect of viscosity on photoinduced electron transfer reaction: An observation of the Marcus inverted region in homogeneous solvents. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Dandpat SS, Sahu PK, Sarkar M. Studies on the Mechanism of Fluorescence Quenching of CdS quantum dots by 2-Amino-7-Nitrofluorene and 2-(N,N-dimethylamino)-7-Nitrofluorene. ChemistrySelect 2016. [DOI: 10.1002/slct.201600076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shiba Sundar Dandpat
- School of Chemical Sciences; National Institute of Science Education and Research; Bhimpur-Padanpur, Jatni, Khorda 752050 Odisha India
| | - Prabhat Kumar Sahu
- School of Chemical Sciences; National Institute of Science Education and Research; Bhimpur-Padanpur, Jatni, Khorda 752050 Odisha India
| | - Moloy Sarkar
- School of Chemical Sciences; National Institute of Science Education and Research; Bhimpur-Padanpur, Jatni, Khorda 752050 Odisha India
| |
Collapse
|
10
|
Modulation of ESIPT fluorescence in o-hydroxy acetophenone derivatives: A comparative study in different bio-mimicking aqueous interfaces. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chu TS, Liu BT. Establishing new mechanisms with triplet and singlet excited-state hydrogen bonding roles in photoinduced liquid dynamics. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1148450] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Verma P, Pal H. Tuning of electron transfer reactions in pluronic-surfactant supramolecular assemblies. Phys Chem Chem Phys 2015; 17:15400-11. [PMID: 26006183 DOI: 10.1039/c5cp01480h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced electron transfer (ET) reaction between an anionic acceptor, coumarin-343 (C343), and a neutral donor, N,N-dimethylaniline (DMAN), has been investigated in composite supramolecular assemblies (mixed micelles) comprised of a pluronic copolymer (P123: EO20-PO70-EO20 or F88: EO103-PO39-EO103 where EO: ethylene oxide and PO: propylene oxide) and a cationic surfactant (CTAC: cetyltrimethylammonium chloride), following fluorescence quenching studies. Systematic increase in the quenching rates for the studied donor-acceptor system with the increasing CTAC to pluronic molar ratio in the mixed micelles demonstrates a large modulation in the ET rates. The mixed micellar systems in the present cases are formed through the incorporation of the hydrocarbon chains of CTAC into the poly-PO core of the pluronic micelles whereby the cationic head groups of CTAC are placed at the periphery of the micellar core, protruded into the hydrated poly-EO corona region, leading to the formation of a positively charged layer deep inside these mixed micelles. Thus, the anionic C343 dye, initially dissolved at the micelle-water interface, experiences a gradually increasing electrostatic attraction and is therefore systematically dragged deeper inside the micellar corona, as the CTAC composition is increased in the mixed micellar systems. Consequently, the ET rate of the C343-DMAN pair undergoes a large enhancement in the studied mixed micellar systems with the increasing CTAC to pluronic molar ratio. The present strategy of modulating ET reactions using such composite supramolecular assemblies can find applications in areas where bimolecular ET is an integral reaction step.
Collapse
Affiliation(s)
- Poonam Verma
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | |
Collapse
|
13
|
Chai S, Wang J, Zhu SY, Cong SL. Hydrogen-bonding dynamics of photoexcited coumarin 138 and 339 in protic methanol solution: Time-dependent density functional theory study. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Kuchlyan J, Banik D, Kundu N, Roy A, Sarkar N. Interaction of fluorescence dyes with 5-fluorouracil: A photoinduced electron transfer study in bulk and biologically relevant water. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Chai S, Yu J, Han YC, Cong SL. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:39-44. [PMID: 23831976 DOI: 10.1016/j.saa.2013.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/20/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening.
Collapse
Affiliation(s)
- Shuo Chai
- School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
| | | | | | | |
Collapse
|
16
|
Photoinduced electron transfer between coumarin dyes and N,N-dimethylaniline in imidazolium based room temperature ionic liquids: Effect of the cation's alkyl chain length on the bimolecular photoinduced electron transfer process. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Puvvada N, Rajput S, Kumar BNP, Mandal M, Pathak A. Exploring the fluorescence switching phenomenon of curcumin encapsulated niosomes: in vitro real time monitoring of curcumin release to cancer cells. RSC Adv 2013. [DOI: 10.1039/c2ra23382g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Ghosh S, Mandal AK, Das AK, Mondal T, Bhattacharyya K. Diffusion of organic dyes in a niosome immobilized on a glass surface using fluorescence correlation spectroscopy. Phys Chem Chem Phys 2012; 14:9749-57. [DOI: 10.1039/c2cp41212h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|