1
|
Alauddin M, Roy M, Song JK, Park SM. Rearrangement of aniline(
H
2
O
)
n
(
n
= 0–12) clusters upon photoionization and their excited state properties: Density functional theory and time‐dependent density functional theory study. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Alauddin
- Department of Theoretical and Computational Chemistry University of Dhaka Dhaka Bangladesh
| | - Madhusudan Roy
- Department of Computer Science and Engineering University of Science and Technology Chittagong Bangladesh
| | - Jae Kyu Song
- Department of Chemistry Kyung Hee University Seoul Republic of Korea
| | - Seung Min Park
- Department of Chemistry Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
2
|
Wu JY, Cheng PY. Ultrafast Protonation of an Amide: Photoionization-Induced Proton Transfer in Phenol-Dimethylformamide Complex Cation. J Phys Chem A 2019; 123:10700-10713. [DOI: 10.1021/acs.jpca.9b09651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun-Yi Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, R.
O. C
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, R.
O. C
| |
Collapse
|
3
|
Guo M, Wu H, Yang M, Luo Z. Acetone Dimer Hydrogenation under Vacuum Ultraviolet: An Intracluster Trimolecular Dissociation Mechanism. J Phys Chem A 2019; 123:10739-10745. [DOI: 10.1021/acs.jpca.9b08833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Zhao Y, Jin Y, Hao J, Yang Y, Wang L, Li C, Jia S. Rotamers of p‑isopropylphenol studied by hole-burning resonantly enhanced multiphoton ionization and mass analyzed threshold ionization spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:328-336. [PMID: 30268901 DOI: 10.1016/j.saa.2018.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
The resonance enhanced multiphoton ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and mass analyzed threshold ionization (MATI) spectroscopy have been applied to investigate the vibrational features of p‑isopropylphenol in its first electronically excited state S1 and cationic ground state D0. Two stable conformational structures of p‑isopropylphenol are distinctly found in the supersonic molecular beam and identified as the cis and trans rotamers through REMPI and UV-UV hole burning spectroscopy. The electronic excitation energies of S1 ← S0 transition of two rotamers are determined to be 35,578 and 35,593 cm-1, and the adiabatic ionization energies are 65,331 and 65,350 cm-1, respectively. The MATI spectra recorded via different intermediate levels of S1 state indicate the similarity in the molecular geometry between the S1 state and the D0 state for each rotamer of p‑isopropylphenol. Geometrical optimizations of p‑isopropylphenol have also been performed using the density functional theory (DFT) for S0 and D0 states, and time-dependent density functional theory (TDDFT) for S1 state. The simulated spectra for S1 ← S0 and D0 ← S1 transitions of two rotamers are able to reproduce qualitatively the experimental spectral profile, which help us to assign the vibronic modes. Most of the observed vibrations of two rotamers in the S1 and D0 states are related to the in-plane ring deformation and some active modes involving isopropyl group.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yinghui Jin
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jiayu Hao
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lirong Wang
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Changyong Li
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
5
|
Shen CC, Tsai TT, Wu JY, Ho JW, Chen YW, Cheng PY. Watching proton transfer in real time: Ultrafast photoionization-induced proton transfer in phenol-ammonia complex cation. J Chem Phys 2017; 147:164302. [PMID: 29096460 DOI: 10.1063/1.5001375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH3) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH3]+ cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.
Collapse
Affiliation(s)
- Ching-Chi Shen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Tsung-Ting Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jun-Yi Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Jr-Wei Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Yi-Wei Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| |
Collapse
|
6
|
Chu TS, Liu BT. Establishing new mechanisms with triplet and singlet excited-state hydrogen bonding roles in photoinduced liquid dynamics. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1148450] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Cao Q, Andrijchenko N, Ermilov A, Räsänen M, Nemukhin A, Khriachtchev L. Interaction of aromatic compounds with xenon: spectroscopic and computational characterization for the cases of p-cresol and toluene. J Phys Chem A 2015; 119:2587-93. [PMID: 25360812 DOI: 10.1021/jp5094004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated noncovalent interactions of two aromatic compounds (toluene and p-cresol) with Xe atoms by using infrared spectroscopy in a Ne matrix and quantum chemical calculations. The present results show that the methyl group of these molecules is a sensitive probe of the interaction with Xe. We have used the molecules with the deuterated methyl group, possessing a relatively simple spectrum, which allows us to detect characteristic vibrational shifts in the complexes, in which a Xe atom interacts with the aromatic π electron system (π structure). For the p-cresol···Xe complex, we also observed evidence of the 1:1 H-bonded structure. The amount of the H-bonded structure of the cresol···Xe complex is relatively small, which agrees with the calculated interaction energies (stronger interaction for the π structure). The bands of the 1:1 complexes of p-cresol and toluene with Xe appear at low Xe concentration and their intensities relative to the monomer bands are nearly proportional to the Xe/Ne concentration ratio. For the p-cresol-Xe system, additional OH stretching bands appear at higher Xe concentrations, which are suitable for the complexes with several Xe atoms. The π structures studied in this work can probably be formed in the case of aromatic amino acids, for which these simple aromatic compounds are useful models.
Collapse
Affiliation(s)
- Qian Cao
- †Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland.,‡School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Natalya Andrijchenko
- §Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Alexander Ermilov
- §Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Markku Räsänen
- †Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland
| | - Alexander Nemukhin
- §Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Leonid Khriachtchev
- †Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014, Finland
| |
Collapse
|
8
|
Communication: Ultrafast time-resolved ion photofragmentation spectroscopy of photoionization-induced proton transfer in phenol-ammonia complex. J Chem Phys 2014; 141:171103. [DOI: 10.1063/1.4901329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|