1
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
2
|
Brovarets' OO, Tsiupa KS, Dinets A, Hovorun DM. Unexpected Routes of the Mutagenic Tautomerization of the T Nucleobase in the Classical A·T DNA Base Pairs: A QM/QTAIM Comprehensive View. Front Chem 2018; 6:532. [PMID: 30538979 PMCID: PMC6277528 DOI: 10.3389/fchem.2018.00532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/12/2018] [Indexed: 01/24/2023] Open
Abstract
In this paper using quantum-mechanical (QM) calculations in combination with Bader's quantum theory of "Atoms in Molecules" (QTAIM) in the continuum with ε = 1, we have theoretically demonstrated for the first time that revealed recently highly-energetic conformers of the classical A·T DNA base pairs - Watson-Crick [A·T(wWC)], reverse Watson-Crick [A·T(wrWC)], Hoogsteen [A·T(wH)] and reverse Hoogsteen [A·T(wrH)] - act as intermediates of the intrapair mutagenic tautomerization of the T nucleobase owing to the novel tautomerisation pathways: A·T(wWC)↔A·T*(w⊥ WC); A·T(wrWC)↔A·T O 2 * (w⊥ rWC); A·T(wH)↔A·T*(w⊥ H); A·T(wrH)↔A·T O 2 * (w⊥ rH). All of them occur via the transition states as tight ion pairs (A+, protonated by the N6H2 amino group)·(T-, deprotonated by the N3H group) with quasi-orthogonal geometry, which are stabilized by the participation of the strong (A)N6+H···O4-/O2-(T) and (A)N6+H···N3-(T) H-bonds. Established tautomerizations proceed through a two-step mechanism of the protons moving in the opposite directions along the intermolecular H-bonds. Initially, proton moves from the N3H imino group of T to the N6H2 amino group of A and then subsequently from the protonated N6+H3 amino group of A to the O4/O2 oxygen atom of T, leading to the products - A·T*(w⊥ WC), A·T O 2 * (w⊥ rWC), A·T*(w⊥ H), and A·T O 2 * (w⊥ rH), which are substantially non-planar, conformationally-labile complexes. These mispairs are stabilized by the participation of the (A)N6H/N6H'···N3(T) and (T)O2H/O4H···N6(A) H-bonds, for which the pyramidalized amino group of A is their donor and acceptor. The Gibbs free energy of activation of these mutagenic tautomerizations lies in the range of 27.8-29.8 kcal·mol-1 at T = 298.15 K in the continuum with ε = 1.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Andrii Dinets
- Department of Surgery #4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pathophysiology, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
3
|
Non-dissociative structural transitions of the Watson-Crick and reverse Watson-Crick А·Т DNA base pairs into the Hoogsteen and reverse Hoogsteen forms. Sci Rep 2018; 8:10371. [PMID: 29991693 PMCID: PMC6039495 DOI: 10.1038/s41598-018-28636-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/21/2018] [Indexed: 11/08/2022] Open
Abstract
In this study it was theoretically shown that discovered by us recently (Brovarets' et al., Frontiers in Chemistry, 2018, 6:8; doi: 10.3389/fchem.2018.00008) high-energetical, significantly non-planar (symmetry C1), short-lived wobbled conformers of the classical Watson-Crick А·Т(WC), reverse Watson-Crick А·Т(rWC), Hoogsteen А·Т(Н) and reverse Hoogsteen А·Т(rН) DNA base pairs are the intermediates of their pairwise А∙Т(WC)/А∙Т(rWC) ↔ А∙Т(H)/А∙Т(rH) conformational transformations. These transitions do not require for their realization the energy-consumable anisotropic rotation of the amino group of A around the exocyclic C6-N6 bond. They are controlled by the non-planar transition states with quasi-orthogonal geometry (symmetry C1) joined by the single intermolecular (Т)N3H···N6(А) H-bond (~4 kcal∙mol-1). The Gibbs free energies of activation for these non-dissociative, dipole-active conformational transitions consist 7.33 and 7.81 kcal∙mol-1, accordingly. Quantum-mechanical (QM) calculations in combination with Bader's quantum theory of "Atoms in Molecules" (QTAIM) have been performed at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory in the continuum with ε = 4 under normal conditions.
Collapse
|
4
|
Masoodi HR, Bagheri S, Ghaderi Z. The influence of Cu + binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: a DFT study. J Biomol Struct Dyn 2018; 37:1923-1934. [PMID: 29757083 DOI: 10.1080/07391102.2018.1475256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present work, the influence of Cu+ binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu+ binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu+ binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu+ on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Reza Masoodi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Sotoodeh Bagheri
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Zahra Ghaderi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| |
Collapse
|
5
|
Maximiano RV, Weber G. Deoxyinosine mismatch parameters calculated with a mesoscopic model result in uniform hydrogen bonding and strongly variable stacking interactions. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Brovarets’ OO, Zhurakivsky RO, Hovorun DM. A QM/QTAIM microstructural analysis of the tautomerisationviathe DPT of the hypoxanthine·adenine nucleobase pair. Mol Phys 2014. [DOI: 10.1080/00268976.2013.877170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Vilaivan C, Srinarang W, Yotapan N, Mansawat W, Boonlua C, Kawakami J, Yamaguchi Y, Tanaka Y, Vilaivan T. Specific recognition of cytosine by hypoxanthine in pyrrolidinyl peptide nucleic acid. Org Biomol Chem 2013; 11:2310-7. [PMID: 23423157 DOI: 10.1039/c3ob27129c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypoxanthine is an unnatural base that can potentially pair with all natural nucleobases. While hypoxanthine in DNA exhibits marginal preference for pairing with cytosine (C), little is known about its pairing behavior in other DNA analogues. In this study, we synthesized a hypoxanthine-containing monomer and incorporated it into pyrrolidinyl peptide nucleic acid with α/β-peptide backbone derived from D-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid (acpcPNA). DNA binding studies clearly revealed that hypoxanthine in acpcPNA behaves like G-analogue because it can specifically form a stable base pair with dC in DNA. The ability to replace G by hypoxanthine without affecting the base pairing properties of acpcPNA can solve a number of problems associated with G-rich acpcPNA including difficult synthesis, formation of secondary structures and fluorescence quenching.
Collapse
Affiliation(s)
- Chotima Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sanders JM, Wampole ME, Chen CP, Sethi D, Singh A, Dupradeau FY, Wang F, Gray BD, Thakur ML, Wickstrom E. Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: theory and experiment. J Phys Chem B 2013; 117:11584-95. [PMID: 23972113 DOI: 10.1021/jp4064966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multimutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick base pairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA:PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA:PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition.
Collapse
Affiliation(s)
- Jeffrey M Sanders
- Departments of Biochemistry & Molecular Biology and ∥Radiology, and ⊥Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania 19107, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brovarets’ OO, Hovorun DM. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dyn 2013; 31:913-36. [PMID: 22962845 DOI: 10.1080/07391102.2012.715041] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Sharma P, Lait LA, Wetmore SD. yDNA versus yyDNA pyrimidines: computational analysis of the effects of unidirectional ring expansion on the preferred sugar-base orientation, hydrogen-bonding interactions and stacking abilities. Phys Chem Chem Phys 2013; 15:2435-48. [PMID: 23303174 DOI: 10.1039/c2cp43910g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The properties of natural, y- and yy-pyrimidines are compared using computational (B3LYP, MP2) methods. Ring expansion upon incorporation of benzene or naphthalene into the natural pyrimidines affects the preferred orientation of the base about the glycosidic bond in the corresponding nucleoside to a similar extent. Specifically, although the natural pyrimidines preferentially adopt the anti orientation with respect to the 2'-deoxyribose moiety, the expanded analogues will likely display (anti/syn) conformational heterogeneity, which may lead to alternate hydrogen-bonding modes in double-stranded duplexes. Nevertheless, the A:T Watson-Crick hydrogen-bond strengths do not significantly change upon base expansion, while the G:C interaction energy is slightly strengthened upon incorporation of either expanded pyrimidine. The largest effect of base expansion occurs in the stacking energies. Specifically, the maximum (most negative) stacking energies in isolated dimers formed by aligning the nucleobase centers of mass can be increased up to 45% by inclusion of a single y-pyrimidine and up to 55% by consideration of a yy-pyrimidine. Similar increases in the stacking interactions are found when a simplified duplex model composed of two stacked (hydrogen-bonded) base pairs is considered, where both the intrastrand and interstrand stacking interactions can be increased and the effects are more pronounced for the yy-pyrimidines. Moreover, the total stability (sum of all hydrogen-bonding and stacking interactions) is greater for duplexes containing expanded yy-pyrimidines compared to y-pyrimidines, which is mainly due to enhanced stacking interactions. Thus, our calculations suggest that multiple unidirectional increases in the size of the nucleobase spacer can continuously enhance the stability of expanded duplexes.
Collapse
Affiliation(s)
- Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | | | | |
Collapse
|
11
|
Brovarets' OO, Zhurakivsky RO, Hovorun DM. The physico-chemical "anatomy" of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. J Mol Model 2013; 19:4119-37. [PMID: 23292249 DOI: 10.1007/s00894-012-1720-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
The biologically important tautomerization of the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs to the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs, respectively, by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ε = 4) corresponding to hydrophobic interfaces of protein-nucleic acid interactions by combining theoretical investigations at the B3LYP/6-311++G(d,p) level of QM theory with QTAIM topological analysis. Based on the sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), it was proved that the tautomerization through the DPT is concerted and asynchronous process for the Hyp·Cyt and Hyp·Thy base pairs, while concerted and synchronous for the Hyp·Hyp homodimer. The continuum with ε = 4 does not affect qualitatively the course of the tautomerization reaction for all studied complexes. The nine key points along the IRC of the Hyp·Cyt↔Hyp·Cyt and Hyp·Thy↔Hyp·Thy tautomerizations and the six key points of the Hyp·Hyp↔Hyp·Hyp tautomerization have been identified and fully characterized. These key points could be considered as electron-topological "fingerprints" of concerted asynchronous (for Hyp·Cyt and Hyp·Thy) or synchronous (for Hyp·Hyp) tautomerization process via the DPT. It was found, that in the Hyp·Cyt, Hyp·Thy, Hyp·Hyp and Hyp·Hyp base pairs all H-bonds are significantly cooperative and mutually reinforce each other, while the C2H…O2 H-bond in the Hyp·Cyt base pair and the O6H…O4 H-bond in the Hyp·Thy base pair behave anti-cooperatively, i.e., they become weakened, while two others become strengthened.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str, 03680, Kyiv, Ukraine
| | | | | |
Collapse
|