1
|
Abu Alrub S, Ali AI, Hussein RK, Alghamdi SK, Eladly SA. DFT and TD-DFT Investigations for the Limitations of Lengthening the Polyene Bridge between N,N-dimethylanilino Donor and Dicyanovinyl Acceptor Molecules as a D-π-A Dye-Sensitized Solar Cell. Int J Mol Sci 2024; 25:5586. [PMID: 38891775 PMCID: PMC11172313 DOI: 10.3390/ijms25115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
One useful technique for increasing the efficiency of organic dye-sensitized solar cells (DSSCs) is to extend the π-conjugated bridges between the donor (D) and the acceptor (A) units. The present study used the DFT and TD-DFT techniques to investigate the effect of lengthening the polyene bridge between the donor N, N-dimethyl-anilino and the acceptor dicyanovinyl. The results of the calculated key properties were not all in line with expectations. Planar structure was associated with increasing the π-conjugation linker, implying efficient electron transfer from the donor to the acceptor. A smaller energy gap, greater oscillator strength values, and red-shifted electronic absorption were also observed when the number of polyene units was increased. However, some results indicated that the potential of the stated dyes to operate as effective dye-sensitized solar cells is limited when the polyene bridge is extended. Increasing the polyene units causes the HOMO level to rise until it exceeds the redox potential of the electrolyte, which delays regeneration and impedes the electron transport cycle from being completed. As the number of conjugated units increases, the terminal lobes of HOMO and LUMO continue to shrink, which affects the ease of intramolecular charge transfer within the dyes. Smaller polyene chain lengths yielded the most favorable results when evaluating the efficiency of electron injection and regeneration. This means that the charge transfer mechanism between the conduction band of the semiconductor and the electrolyte is not improved by extending the polyene bridge. The open circuit voltage (VOC) was reduced from 1.23 to 0.70 V. Similarly, the excited-state duration (τ) decreased from 1.71 to 1.23 ns as the number of polyene units increased from n = 1 to n = 10. These findings are incompatible with the power conversion efficiency requirements of DSSCs. Therefore, the elongation of the polyene bridge in such D-π-A configurations rules out its application in solar cell devices.
Collapse
Affiliation(s)
- Sharif Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Ahmed I. Ali
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo 11281, Egypt
- Department of Applied Physics, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Rageh K. Hussein
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Suzan K. Alghamdi
- Physics Department, Faculty of Science, Taibah University, Madinah 44256, Saudi Arabia;
| | - Sally A. Eladly
- Basic Science Department, Modern Academy of Engineering and Technology, Cairo 11439, Egypt;
| |
Collapse
|
2
|
Chen T, Sun Z, Guo Y, Xu Y. Does the active hydrogen atom in the hydantoin anion affect the physical properties, CO 2 capture and conversion of ionic liquids? Phys Chem Chem Phys 2024; 26:12957-12964. [PMID: 38632968 DOI: 10.1039/d3cp05965k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Compared to the effect of the active hydrogen atom in the cation in protic ionic liquids (ILs) on their properties and applications, there are very few reports on the role of the active hydrogen atom in the anion. In order to better understand the role of the active hydrogen atom in the anion, the physical properties, CO2 capture and conversion of three hydantoin-based anion-functionalized ILs ([P4442][Hy], [P4442]2[Hy], and [HDBU][Hy]) have been investigated via experiments, spectroscopy, and DFT calculations in this work. The results show that the active hydrogen atom in the anion can form anionic hydrogen bonding networks, which significantly increase the melting point and viscosity and decrease the basicity of the IL, thereby weakening its ability to capture and convert CO2. Interestingly, [P4442][Hy] undergoes a solid/liquid two-phase transition during CO2 absorption/desorption due to the formation of quasi-intramolecular hydrogen bonding between the active hydrogen atom and the O- atom of the absorbed CO2, suggesting that the presence of the active hydrogen atom gives [P4442][Hy] the potential to be an excellent molecular switch. As there is no active hydrogen atom in the anion of [P4442]2[Hy], it shows excellent CO2 capture and conversion performance through the double-site interaction. [HDBU][Hy] shows the weakest catalytic CO2 conversion due to the presence of active hydrogen atoms on both its anion and cation. Therefore, the active hydrogen atom in the anion may play a more important role in the properties and potential applications of ILs than the active hydrogen atom in the cation.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
| | - Zhongyuan Sun
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
| | - Yujun Guo
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
| | - Yingjie Xu
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China
| |
Collapse
|
3
|
Nouraliei M, Javadian H, Mehdizadeh K, Sheibanian N, Douk AS, Mohamadzade F, Osouleddini N. Fullerene carbon nanostructures for the delivery of phenelzine derivatives as new drugs to inhibit monoamine oxidase enzyme: Molecular docking interactions and density functional theory calculations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Athar M, Patnaik A. Through-Bond-Driven Through-Space Interactions in a Fullerene C 60 Noncovalent Dyad: An Unusual Strong Binding between Spherical and Planar π Electron Clouds and Culmination of Dyadic Fractals. J Phys Chem A 2022; 126:3629-3641. [PMID: 35658511 DOI: 10.1021/acs.jpca.1c10828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen-bond-induced π-depletion as a criterion for π-stacking, a configurationally unique noncovalent strategy enabled an unconventional strong binding between the spherical N-fulleropyrrolidine (NFP) and the planar distributions of π electron clouds of three substituted pybates to form noncovalent fulleropyrrolidino-4-(pyrenyl) butanoate dyads of large computed interaction energies, varying between 37.49 and 44.93 kcal/mol. The geometrical distortion/bending of the alkyl tail of pybate in the noncovalent dyad was experimentally corroborated via UV-vis absorption spectroscopy, which translated into spectral broadening along with pronounced shifts in the n-π* transitions of the oxy-substituted pyrene in different solvents, ensuring through-bond interactions. Facile electron transfer through H-bond influenced the dynamic dispersive forces to be active, revealing the supremacy of through-bond over through-space interactions. The analyses of intermolecular forces using an absolutely localized molecular orbital-based energy decomposition analysis (ALMO-EDA) scheme revealed intricate insights into the intermolecular interactions and characteristic charge transfer; the dominance of forward electron transfer (pybate to NFP) over the reverse in offering stabilization was noted. Charge transfer was investigated further from natural bond orbital (NBO) and absolutely localized molecular orbital-based charge-transfer analysis (ALMO-CTA) methods, establishing the supremacy of donor-to-acceptor electron transfer over the reverse (acceptor-to-donor) one. The characteristic self-assembly of the noncovalent dyad in suitable solvents led to the formation of fractal networks via reaction-limited cluster aggregation with a fractal dimension of 2.37. Adoption of constrained molecular dynamics simulations indicated probable wrapping of pybates around NFP, leading to fractal-like assembly.
Collapse
Affiliation(s)
- Mohd Athar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Archita Patnaik
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Exploring polymer precursors for low-cost high performance carbon fiber: A materials genome approach to finding polyacrylonitrile-co-poly(N-vinyl formamide). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Rodriguez JH. Attractive and repulsive residue fragments at the interface of SARS-CoV-2 and hACE2. Sci Rep 2021; 11:12567. [PMID: 34131210 PMCID: PMC8206228 DOI: 10.1038/s41598-021-91877-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The initial stages of SARS-CoV-2 coronavirus attachment to human cells are mediated by non-covalent interactions of viral spike (S) protein receptor binding domains (S-RBD) with human ACE2 receptors (hACE2). Structural characterization techniques, such as X-ray crystallography (XRC) and cryoelectron microscopy (cryo-EM), previously identified SARS-CoV-2 spike protein conformations and their surface residues in contact with hACE2. However, recent quantum-biochemical calculations on the structurally related S-RBD of SARS-CoV-1 identified some contact-residue fragments as intrinsically attractive and others as repulsive. This indicates that not all surface residues are equally important for hACE2 attachment. Here, using similar quantum-biochemical methods, we report some four-residue fragments (i.e quartets) of the SARS-CoV-2 S-RBD as intrinsically attractive towards hACE2 and, therefore, directly promoting host-virus non-covalent binding. Other fragments are found to be repulsive although involved in intermolecular recognition. By evaluation of their respective intermolecular interaction energies we found two hACE2 fragments that include contact residues (ASP30, LYS31, HIS34) and (ASP38, TYR41, GLN42), respectively, behaving as important SARS-CoV-2 attractors. LYS353 also promotes viral binding via several mechanisms including dispersion van der Waals forces. Similarly, among others, three SARS-CoV-2 S-RBD fragments that include residues (GLN498, THR500, ASN501), (GLU484, PHE486, ASN487) and (LYS417), respectively, were identified as hACE2 attractors. In addition, key hACE2 quartets identified as weakly-repulsive towards the S-RBD of SARS-CoV-1 were found strongly attractive towards SARS-CoV-2 explaining, in part, the stronger binding affinity of hACE2 towards the latter coronavirus. These findings may guide the development of synthetic antibodies or identify potential viral epitopes.
Collapse
Affiliation(s)
- Jorge H Rodriguez
- Computational Biomolecular Physics Group, Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907-2036, USA.
| |
Collapse
|
7
|
Contact residue contributions to interaction energies between SARS-CoV-1 spike proteins and human ACE2 receptors. Sci Rep 2021; 11:1156. [PMID: 33441985 PMCID: PMC7806713 DOI: 10.1038/s41598-020-80942-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
Several viruses of the corona family interact, via their spike (S) proteins, with human cellular receptors. Spike proteins of SARS-CoV-1 and SARS-CoV-2 virions, being structurally related but not identical, mediate attachment to the human angiotensin-converting enzyme 2 (hACE2) receptor in similar but non-identical ways. Molecular-level understanding of interactions between spike proteins and hACE2 can aid strategies for blocking attachment of SARS-CoV-1, a potentially reemerging health threat, to human cells. We have identified dominant molecular-level interactions, some attractive and some repulsive, between the receptor binding domain of SARS-CoV-1 spike proteins (S-RBD) and hACE2. We performed fragment-based quantum-biochemical calculations which directly relate biomolecular structure to the hACE2...S-RBD interaction energy. Consistent with X-ray crystallography and cryo-EM, the interaction energy between hACE2 and S-RBD (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\approx -$$\end{document}≈-26 kcal/mol) corresponds to a net intermolecular attraction which is significantly enhanced by inclusion of dispersion van der Waals forces. Protein fragments at the hACE2...S-RBD interface, that dominate host-virus attraction, have been identified together with their constituent amino acid residues. Two hACE2 fragments which include residues (GLU37, ASP38, TYR41, GLN42) and (GLU329, LYS353, GLY354), respectively, as well as three S-RBD fragments which include residues (TYR436), (ARG426) and (THR487, GLY488, TYR491), respectively, have been identified as primary attractors at the hACE2...S-RBD interface.
Collapse
|
8
|
Visentin G, Kalinina IS, Buchachenko AA. Extended combination rule for like-atom dipole dispersion coefficients. J Chem Phys 2020; 153:064110. [DOI: 10.1063/5.0019010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Giorgio Visentin
- CEST, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia
| | - Inna S. Kalinina
- CEST, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia
| | - Alexei A. Buchachenko
- CEST, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia
| |
Collapse
|
9
|
Liu H, Luo Q, Zhang S, Shi L, Yang J, Liu R, Wang M, Zhu C, Xu J. New comonomer for polyacrylonitrile-based carbon fiber: Density functional theory study and experimental analysis. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
DFT study on the ionic cyclization mechanism of copolymers of acrylonitrile-itaconic acid: Direct or autocatalytic? Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Albertí M, Aguilar A, Huarte-Larrañaga F, Lucas JM, Pirani F. Benzene–Hydrogen Bond (C6H6–HX) Interactions: The Influence of the X Nature on their Strength and Anisotropy. J Phys Chem A 2014; 118:1651-62. [DOI: 10.1021/jp410917x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Albertí
- IQTCUB,
Departament de Química Física, Universitat de Barcelona, Barcelona, Spain
| | - A. Aguilar
- IQTCUB,
Departament de Química Física, Universitat de Barcelona, Barcelona, Spain
| | - F. Huarte-Larrañaga
- IQTCUB,
Departament de Química Física, Universitat de Barcelona, Barcelona, Spain
| | - J. M. Lucas
- IQTCUB,
Departament de Química Física, Universitat de Barcelona, Barcelona, Spain
| | - F. Pirani
- Dipartimento
di Chimica, Università di Perugia, Perugia, Italy
| |
Collapse
|
12
|
Brndiar J, Štich I. van der Waals Interaction Energies of Small Fragments of P, As, Sb, S, Se, and Te: Comparison of Complete Basis Set Limit CCSD(T) and DFT with Approximate Dispersion. J Chem Theory Comput 2012; 8:2301-9. [DOI: 10.1021/ct300258z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ján Brndiar
- Center for Computational Materials
Science, Institute
of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
| | - Ivan Štich
- Center for Computational Materials
Science, Institute
of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
| |
Collapse
|