1
|
Long X, Tokunou Y, Okamoto A. Mechano-control of Extracellular Electron Transport Rate via Modification of Inter-heme Coupling in Bacterial Surface Cytochrome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7421-7430. [PMID: 37079493 DOI: 10.1021/acs.est.3c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacterial outer-membrane multi-heme cytochromes (OMCs) mediate extracellular electron transport (EET). While heme alignment dictates the rate of EET, control of inter-heme coupling in a single OMC remains challenging, especially in intact cells. Given that OMCs diffuse and collide without aggregation on the cell surface, the overexpression of OMCs could increase such mechanical stress to impact the OMCs' protein structure. Here, the heme coupling is modified via mechanical interactions among OMCs by controlling their concentrations. Employment of whole-cell circular dichroism (CD) spectra of genetically engineered Escherichia coli reveals that the OMC concentration significantly impacts the molar CD and redox property of OMCs, resulting in a 4-fold change of microbial current production. The overexpression of OMCs increased the conductive current across the biofilm on an interdigitated electrode, indicating that a higher concentration of OMCs causes more lateral inter-protein electron hopping via collision on the cell surface. The present study would open a novel strategy to increase microbial current production by mechanically enhancing the inter-heme coupling.
Collapse
Affiliation(s)
- Xizi Long
- School of the Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshihide Tokunou
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kitaku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
2
|
Carpenter JM, Zhong F, Ragusa MJ, Louro RO, Hogan DA, Pletneva EV. Structure and redox properties of the diheme electron carrier cytochrome c 4 from Pseudomonas aeruginosa. J Inorg Biochem 2019; 203:110889. [PMID: 31707335 DOI: 10.1016/j.jinorgbio.2019.110889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 02/02/2023]
Abstract
At low oxygen concentrations, respiration of Pseudomonas aeruginosa (Pa) and other bacteria relies on activity of cytochrome cbb3 oxidases. A diheme cytochrome c4 (cyt c4) donates electrons to Pa cbb3 oxidases to enable oxygen reduction and proton pumping by these enzymes. Given the importance of this redox pathway for bacterial pathogenesis, both cyt c4 and cbb3 oxidase are potential targets for new antibacterial strategies. The structural information about these two proteins, however, is scarce, and functional insights for Pa and other bacteria have been primarily drawn from analyses of the analogous system from Pseudomonas stutzeri (Ps). Herein, we describe characterization of structural and redox properties of cyt c4 from Pa. The crystal structure of Pa cyt c4 has revealed that this protein is organized in two monoheme domains. The interdomain interface is more hydrophobic in Pa cyt c4, and the protein surface does not show the dipolar distribution of charges found in Ps cyt c4. The reduction potentials of the two hemes are similar in Pa cyt c4 but differ by about 100 mV in Ps cyt c4. Analyses of structural models of these and other cyt c4 proteins suggest that multiple factors contribute to the potential difference of the two hemes in these proteins, including solvent accessibility of the heme group, the distribution of surface charges, and the nature of the interdomain interface. The distinct properties of cyt c4 proteins from closely-related Pa and Ps bacteria emphasize the importance of examining the cbb3/cyt c4 redox pathway in multiple species.
Collapse
Affiliation(s)
- Jessica M Carpenter
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biologica, Anto ́nio Xavier, Universidade Nova de Lisboa, Av. da Repu ́blica (EAN), 2780-157 Oeiras, Portugal
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States of America
| | - Ekaterina V Pletneva
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America.
| |
Collapse
|
3
|
Sun CL, Liu LP, Tian F, Ding F, Wang LW. Charge-patching method for the calculation of electronic structure of polypeptides. Phys Chem Chem Phys 2018; 20:23301-23310. [DOI: 10.1039/c8cp01803k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the CPM method, the charge densities of polypeptides can be generated and their electronic structure can be further calculated.
Collapse
Affiliation(s)
- Chang-Liang Sun
- Center of Physical Chemistry Test
- Shenyang University of Chemical Technology
- Shenyang 110142
- People's Republic of China
- Materials Science Division
| | - Li-Ping Liu
- Materials Science Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- School of Physics
| | - Fubo Tian
- Materials Science Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- College of Physics
| | - Fu Ding
- Center of Physical Chemistry Test
- Shenyang University of Chemical Technology
- Shenyang 110142
- People's Republic of China
| | - Lin-Wang Wang
- Materials Science Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
4
|
Nazmutdinov RR, Bronshtein MD, Zinkicheva TT, Hansen NS, Zhang J, Ulstrup J. Chiral Selectivity in Inter-reactant Recognition and Electron Transfer of the Oxidation of Horse Heart Cytochrome c by Trioxalatocobaltate(III). Inorg Chem 2016; 55:9335-45. [PMID: 27588329 DOI: 10.1021/acs.inorgchem.6b01489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Outer-sphere electron transfer (ET) between optically active transition-metal complexes and either other transition-metal complexes or metalloproteins is a prototype reaction for kinetic chirality. Chirality as the ratio between bimolecular rate constants of two enantiomers mostly amounts to 1.05-1.2 with either the Λ or Δ form the more reactive, but the origin of chirality in ET parameters such as work terms, electronic transmission coefficient, and nuclear reorganization free energy has not been addressed. We report a study of ET between the Λ-/Δ-[Co(Ox)3](3-) pair (Ox = oxalate) and horse heart cytochrome c (cyt c). This choice is prompted by strong ion-pair formation that enables separation into inter-reactant interaction (chiral "recognition") and ET within the ion pair ("stereoselectivity"). Chiral selectivity was first addressed experimentally. Λ-[Co(Ox)3](3-) was found to be both the more strongly bound and faster reacting enantiomer expressed respectively by the ion-pair formation constant KX and ET rate constant kET(X) (X = Λ and Δ), with KΛ/KΔ and kET(Λ)/kET(Δ) both ≈1.1-1.2. rac-[Co(Ox)3](3-) behavior is intermediate between those of Λ- and Δ-[Co(Ox)3](3-). Chirality was next analyzed by quantum-mechanical ET theory combined with density functional theory and statistical mechanical computations. We also modeled the ion pair K(+)·[Co(Ox)3](3-) in order to address the influence of the solution ionic strength. The complex structure of cyt c meant that this reactant was represented solely by the heme group including the chiral axial ligands L-His and L-Met. Both singlet and triplet hemes as well as hemes with partially deprotonated propionic acid side groups were addressed. The computations showed that the most favorable inter-reactant configuration involved a narrow distance and orientation space very close to the contact distance, substantiating the notion of a reaction complex and the equivalence of the binding constant to a bimolecular reaction volume. The reaction is significantly diabatic even at these short inter-reactant distances, with electronic transmission coefficients κel(X) = 10(-3)-10(-2). The computations demonstrated chirality in both KX and κel(X) but no chirality in the reorganization and reaction free energy (driving force). As a result of subtle features in both KX and κel(X) chirality, the "operational" chirality κET(Λ)KΛ/κET(Δ)KΔ emerges larger than unity (1.1-1.2) from the molecular modeling as in the experimental data.
Collapse
Affiliation(s)
- Renat R Nazmutdinov
- Kazan National Research Technological University , K. Marx Strasse 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Michael D Bronshtein
- Kazan National Research Technological University , K. Marx Strasse 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Tamara T Zinkicheva
- Kazan National Research Technological University , K. Marx Strasse 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Niels Sthen Hansen
- Department of Chemistry, Building 207, Technical University of Denmark (DTU) , 2800 Kongens, Lyngby, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Building 207, Technical University of Denmark (DTU) , 2800 Kongens, Lyngby, Denmark
| | - Jens Ulstrup
- Department of Chemistry, Building 207, Technical University of Denmark (DTU) , 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
5
|
de la Lande A, Gillet N, Chen S, Salahub DR. Progress and challenges in simulating and understanding electron transfer in proteins. Arch Biochem Biophys 2015; 582:28-41. [PMID: 26116376 DOI: 10.1016/j.abb.2015.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022]
Abstract
This Review presents an overview of the most common numerical simulation approaches for the investigation of electron transfer (ET) in proteins. We try to highlight the merits of the different approaches but also the current limitations and challenges. The article is organized into three sections. Section 2 deals with direct simulation algorithms of charge migration in proteins. Section 3 summarizes the methods for testing the applicability of the Marcus theory for ET in proteins and for evaluating key thermodynamic quantities entering the reaction rates (reorganization energies and driving force). Recent studies interrogating the validity of the theory due to the presence of non-ergodic effects or of non-linear responses are also described. Section 4 focuses on the tunneling aspects of electron transfer. How can the electronic coupling between charge transfer states be evaluated by quantum chemistry approaches and rationalized? What interesting physics regarding the impact of protein dynamics on tunneling can be addressed? We will illustrate the different sections with examples taken from the literature to show what types of system are currently manageable with current methodologies. We also take care to recall what has been learned on the biophysics of ET within proteins thanks to the advent of atomistic simulations.
Collapse
Affiliation(s)
- Aurélien de la Lande
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France.
| | - Natacha Gillet
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France
| | - Shufeng Chen
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France
| | - Dennis R Salahub
- Department of Chemistry, CMS - Centre for Molecular Simulation and IQST - Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
6
|
Krasilnikov PM. Problems of the theory of electron transfer in biological systems. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Di Rocco G, Ranieri A, Bortolotti CA, Battistuzzi G, Bonifacio A, Sergo V, Borsari M, Sola M. Axial iron coordination and spin state change in a heme c upon electrostatic protein-SAM interaction. Phys Chem Chem Phys 2014; 15:13499-505. [PMID: 23824165 DOI: 10.1039/c3cp50222h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A bacterial di-heme cytochrome c binds electrostatically to a gold electrode surface coated with a negatively charged COOH-terminated SAM adopting a sort of 'perpendicular' orientation. Cyclic voltammetry, Resonance Raman and SERRS spectroscopies indicate that the high-potential C-terminal heme center proximal to the SAM's surface undergoes an adsorption-induced swapping of one axial His ligand with a water molecule, which is probably lost in the reduced form, and a low- to high-spin transition. This coordination change for a bis-His ligated heme center upon an electrostatically-driven molecular recognition is as yet unprecedented, as well as the resulting increase in reduction potential. We discuss it in comparison with the known methionine ligand lability in monoheme cytochromes c occurring upon interaction with charged molecular patches. One possible implication of this finding in biological ET is that mobile redox partners do not behave as rigid and invariant bodies, but in the ET complex are subjected to molecular changes and structural fluctuations that affect in a complex way the thermodynamics and the kinetics of the process.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, I-41125 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Vazquez-Duhalt R, Aguila SA, Arrocha AA, Ayala M. QM/MM Molecular Modeling and Marcus Theory in the Molecular Design of Electrodes for Enzymatic Fuel Cells. ChemElectroChem 2013. [DOI: 10.1002/celc.201300096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Amadei A, Daidone I, Bortolotti CA. A general statistical mechanical approach for modeling redox thermodynamics: the reaction and reorganization free energies. RSC Adv 2013. [DOI: 10.1039/c3ra42842g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
10
|
Hao X, Zhang J, Christensen HEM, Wang H, Ulstrup J. Electrochemical Single-Molecule AFM of the Redox Metalloenzyme Copper Nitrite Reductase in Action. Chemphyschem 2012; 13:2919-24. [DOI: 10.1002/cphc.201200220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Indexed: 11/11/2022]
|