1
|
Rogers C, Hardwick O, Corry TA, Rummel F, Collison D, Bowen AM, O’Malley PJ. Magnetic and Electronic Structural Properties of the S 3 State of Nature's Water Oxidizing Complex: A Combined Study in ELDOR-Detected Nuclear Magnetic Resonance Spectral Simulation and Broken-Symmetry Density Functional Theory. ACS OMEGA 2022; 7:41783-41788. [PMID: 36406523 PMCID: PMC9670293 DOI: 10.1021/acsomega.2c06151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
ELDOR-detected nuclear magnetic resonance (EDNMR) spectral simulations combined with broken-symmetry density functional theory (BS-DFT) calculations are used to obtain and to assign the 55Mn hyperfine coupling constants (hfcs) for modified forms of the water oxidizing complex in the penultimate S3 state of the water oxidation cycle. The study shows that an open cubane form of the core Mn4CaO6 cluster explains the magnetic properties of the dominant S = 3 species in all cases studied experimentally with no need to invoke a closed cubane intermediate possessing a distorted pentacoordinate Mn4 ion as recently suggested. EDNMR simulations found that both the experimental bandwidth and multinuclear transitions may alter relative EDNMR peak intensities, potentially leading to incorrect assignment of hfcs. The implications of these findings for the water oxidation mechanism are discussed.
Collapse
|
2
|
Tao L, Stich TA, Fugate CJ, Jarrett JT, Britt RD. EPR-Derived Structure of a Paramagnetic Intermediate Generated by Biotin Synthase BioB. J Am Chem Soc 2018; 140:12947-12963. [PMID: 30222930 PMCID: PMC6363123 DOI: 10.1021/jacs.8b07613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biotin (vitamin B7) is an enzyme cofactor required by organisms from all branches of life but synthesized only in microbes and plants. In the final step of biotin biosynthesis, a radical S-adenosyl-l-methionine (SAM) enzyme, biotin synthase (BioB), converts the substrate dethiobiotin to biotin through the stepwise formation of two C-S bonds. Previous electron paramagnetic resonance (EPR) spectroscopic studies identified a semistable intermediate in the formation of the first C-S bond as 9-mercaptodethiobiotin linked to a paramagnetic [2Fe-2S] cluster through one of its bridging sulfides. Herein, we report orientation-selected pulse EPR spectroscopic results that reveal hyperfine interactions between the [2Fe-2S] cluster and a number of magnetic nuclei (e.g., 57Fe, 15N, 13C, and 2H) introduced in a site-specific manner via biosynthetic methods. Combining these results with quantum chemical modeling gives a structural model of the intermediate showing that C6, the target of the second hydrogen-atom abstraction, is now in close proximity to the nascent thioether sulfur and is ideally positioned for the second C-S bond forming event.
Collapse
Affiliation(s)
- Lizhi Tao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Troy A. Stich
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Corey J. Fugate
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Joseph T. Jarrett
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
3
|
Taguchi AT, Ohmori D, Dikanov SA, Iwasaki T. g-Tensor Directions in the Protein Structural Frame of Hyperthermophilic Archaeal Reduced Rieske-Type Ferredoxin Explored by 13C Pulsed Electron Paramagnetic Resonance. Biochemistry 2018; 57:4074-4082. [PMID: 29890072 DOI: 10.1021/acs.biochem.8b00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interpretation of magnetic resonance data in the context of structural and chemical biology requires prior knowledge of the g-tensor directions for paramagnetic metallo-cofactors with respect to the protein structural frame. Access to this information is often limited by the strict requirement of suitable protein crystals for single-crystal electron paramagnetic resonance (EPR) measurements or the reliance on protons (with ambiguous locations in crystal structures) near the paramagnetic metal site. Here we develop a novel pulsed EPR approach with selective 13Cβ-cysteine labeling of model [2Fe-2S] proteins to help bypass these problems. Analysis of the 13Cβ-cysteine hyperfine tensors reproduces the g-tensor of the Pseudomonas putida ISC-like [2Fe-2S] ferredoxin (FdxB). Its application to the hyperthermophilic archaeal Rieske-type [2Fe-2S] ferredoxin (ARF) from Sulfolobus solfataricus, for which the single-crystal EPR approach was not feasible, supports the best-fit g x-, g z-, and g y-tensor directions of the reduced cluster as nearly along Fe-Fe, S-S, and the cluster plane normal, respectively. These approximate principal directions of the reduced ARF g-tensor, explored by 13C pulsed EPR, are less skewed from the cluster molecular axes and are largely consistent with those previously determined by single-crystal EPR for the cytochrome bc1-associated, reduced Rieske [2Fe-2S] center. This suggests the approximate g-tensor directions are conserved across the phylogenetically and functionally divergent Rieske-type [2Fe-2S] proteins.
Collapse
Affiliation(s)
- Alexander T Taguchi
- Department of Biochemistry and Molecular Biology , Nippon Medical School , Sendagi, Tokyo 113-8602 , Japan
| | - Daijiro Ohmori
- Department of Chemistry , Juntendo University , Inzai-shi , Chiba 270-1695 , Japan
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology , Nippon Medical School , Sendagi, Tokyo 113-8602 , Japan
| |
Collapse
|
4
|
Bowen AM, Johnson EOD, Mercuri F, Hoskins NJ, Qiao R, McCullagh JSO, Lovett JE, Bell SG, Zhou W, Timmel CR, Wong LL, Harmer JR. A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron-Electron Resonance Spectroscopy. J Am Chem Soc 2018; 140:2514-2527. [PMID: 29266939 DOI: 10.1021/jacs.7b11056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.
Collapse
Affiliation(s)
- Alice M Bowen
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Eachan O D Johnson
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Francesco Mercuri
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via P. Gobetti 101, 40129 Bologna, Italy
| | - Nicola J Hoskins
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Ruihong Qiao
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Janet E Lovett
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Stephen G Bell
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Weihong Zhou
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Christiane R Timmel
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Luet Lok Wong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Jeffrey R Harmer
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
5
|
Taguchi AT, Miyajima-Nakano Y, Fukazawa R, Lin MT, Baldansuren A, Gennis RB, Hasegawa K, Kumasaka T, Dikanov SA, Iwasaki T. Unpaired Electron Spin Density Distribution across Reduced [2Fe-2S] Cluster Ligands by 13Cβ-Cysteine Labeling. Inorg Chem 2017; 57:741-746. [DOI: 10.1021/acs.inorgchem.7b02676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander T. Taguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Yoshiharu Miyajima-Nakano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Risako Fukazawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | | | - Amgalanbaatar Baldansuren
- Department of Veterinary
Clinical Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), Sayo, Hyogo 679-5198, Japan
| | - Sergei A. Dikanov
- Department of Veterinary
Clinical Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| |
Collapse
|
6
|
Bowen AM, Jones MW, Lovett JE, Gaule TG, McPherson MJ, Dilworth JR, Timmel CR, Harmer JR. Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(ii) centres. Phys Chem Chem Phys 2016; 18:5981-94. [DOI: 10.1039/c5cp06096f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of orientation-selective DEER measurements using Cu(ii) centres in a series of molecules demonstrates its limits and capabilities in structure elucidation.
Collapse
Affiliation(s)
- Alice M. Bowen
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
- Institute of Physical and Theoretical Chemistry
| | - Michael W. Jones
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
| | - Janet E. Lovett
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
- SUPA
| | - Thembanikosi G. Gaule
- Astbury Centre for Structural Molecular Biology
- Institute of Molecular and Cellular Biology
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
| | - Michael J. McPherson
- Astbury Centre for Structural Molecular Biology
- Institute of Molecular and Cellular Biology
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
| | | | | | - Jeffrey R. Harmer
- Centre for Advanced Electron Spin Resonance
- University of Oxford
- Oxford
- UK
- Centre for Advanced Imaging
| |
Collapse
|
7
|
Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers. J Am Chem Soc 2015; 137:5381-9. [PMID: 25871921 DOI: 10.1021/ja513074m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR techniques including electron-nuclear double resonance spectroscopy establish that formaldehyde binds close to the active site. Density functional theory calculations support an inhibited super-reduced state having a short Fe-(13)C bond in the 2Fe subsite. The adduct forms when HCHO is available to compete with H(+) transfer to a vacant, nucleophilic Fe site: had H(+) transfer already occurred, the reaction of HCHO with the Fe-hydrido species would lead to methanol, release of which is not detected. Instead, Fe-bound formaldehyde is a metal-hydrido mimic, a locked, inhibited form analogous to that in which two electrons and only one proton have transferred to the H-cluster. The results provide strong support for a mechanism in which the fastest pathway for H2 evolution involves two consecutive proton transfer steps to the H-cluster following transfer of a second electron to the active site.
Collapse
Affiliation(s)
- Andreas Bachmeier
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Julian Esselborn
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Suzannah V Hexter
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tobias Krämer
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kathrin Klein
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - John E McGrady
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - William K Myers
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Fraser A Armstrong
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
8
|
Oyala PH, Stich TA, Britt RD. Metal ion oxidation state assignment based on coordinating ligand hyperfine interaction. PHOTOSYNTHESIS RESEARCH 2015; 124:7-18. [PMID: 25663565 DOI: 10.1007/s11120-015-0086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
In exchange-coupled mixed-valence spin systems, the magnitude and sign of the effective ligand hyperfine interaction (HFI) can be useful in determining the formal oxidation state of the coordinating metal ion, as well as provide information about the coordination geometry. This is due to the fact that the observed ligand HFI is a function of the projection factor (Clebsch-Gordon coefficient) that maps the site spin value S i of the local paramagnetic center onto the total spin of the exchange-coupled system, S T. Recently, this relationship has been successfully exploited in identifying the oxidation state of the Mn ion coordinated by the sole nitrogenous ligand to the oxygen-evolving complex in certain states of photosystem II. The origin and evolution of these efforts is described.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | | |
Collapse
|
9
|
Nakka KK, Tesiram YA, Brereton IM, Mobli M, Harmer JR. Non-uniform sampling in EPR – optimizing data acquisition for HYSCORE spectroscopy. Phys Chem Chem Phys 2014; 16:16378-82. [DOI: 10.1039/c4cp02172j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-uniformly sampled HYSCORE data combined with maximum entropy reconstruction can shorten experimental times by approximately an order of magnitude.
Collapse
Affiliation(s)
- K. K. Nakka
- Centre for Advanced Imaging
- University of Queensland
- , Australia
| | - Y. A. Tesiram
- Centre for Advanced Imaging
- University of Queensland
- , Australia
| | - I. M. Brereton
- Centre for Advanced Imaging
- University of Queensland
- , Australia
| | - M. Mobli
- Centre for Advanced Imaging
- University of Queensland
- , Australia
| | - J. R. Harmer
- Centre for Advanced Imaging
- University of Queensland
- , Australia
| |
Collapse
|
10
|
Orientation-Selective DEER Using Rigid Spin Labels, Cofactors, Metals, and Clusters. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2013_115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|