1
|
Jiao Z, Kuang L, Komori M, Hirono M, Komuro R, Wang Y, Hasebe Y. Glucose oxidase, horseradish peroxidase and phenothiazine dyes-co-adsorbed carbon felt-based amperometric flow-biosensor for glucose. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5883-5895. [PMID: 39157883 DOI: 10.1039/d4ay01028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
To develop an amperometric flow-biosensor for glucose, the stabilizing effect of methylene blue (MB) toward adsorbed glucose oxidase (GOx) on carbon felt (CF) was successfully applied to prepare the GOx-modified CF-based enzyme reactor combined with a horseradish peroxidase (HRP)-modified CF-based H2O2 detector. Upon mixing MB in the GOx-adsorption solution, the O2-dependent GOx-activity was significantly increased with increasing concentration of MB in the GOx-adsorption solution. The GOx-immobilization protocol on CF is very straightforward [i.e., adsorption of the GOx/MB mixed aqueous solution for 5 min under ultrasound (US)-irradiation]. Under the optimized operational conditions (i.e., applied potential, 0 vs. Ag/AgCl; carrier pH, 5.0; carrier flow rate, 4.0 mL min-1), the resulting GOx/MB-CF-reactor and HRP/TN-CF-detector combined amperometric flow-biosensor exhibited sensitive, selective, reproducible and stable cathodic peak current responses to glucose with the following analytical performances: sensitivity, 6.22 μA mM-1; linear range, 0.01 to 1 mM; limit of detection, 9.6 μM (S/N = 3, noise level, 20 nA); sample throughput, 46-96 samples per h for 10-0.1 mM glucose. The developed amperometric flow-biosensor allowed the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by conventional spectrophotometry.
Collapse
Affiliation(s)
- Zeting Jiao
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Lichuan Kuang
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Masahito Komori
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
| | - Masaki Hirono
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| | - Ryota Komuro
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology LiaoNing, Anshan, LiaoNing 114501, China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan.
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
2
|
Alatzoglou C, Tzianni EI, Patila M, Trachioti MG, Prodromidis MI, Stamatis H. Structure-Function Studies of Glucose Oxidase in the Presence of Carbon Nanotubes and Bio-Graphene for the Development of Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:85. [PMID: 38202540 PMCID: PMC10780548 DOI: 10.3390/nano14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
In this work, we investigated the effect of multi-walled carbon nanotubes (MWCNTs) and bio-graphene (bG) on the structure and activity of glucose oxidase (GOx), as well as on the performance of the respective electrochemical glucose biosensors. Various spectroscopic techniques were applied to evaluate conformational changes in GOx molecules induced by the presence of MWCNTs and bG. The results showed that MWCNTs induced changes in the flavin adenine dinucleotide (FAD) prosthetic group of GOx, and the tryptophan residues were exposed to a more hydrophobic environment. Moreover, MWCNTs caused protein unfolding and conversion of α-helix to β-sheet structure, whereas bG did not affect the secondary and tertiary structure of GOx. The effect of the structural changes was mirrored by a decrease in the activity of GOx (7%) in the presence of MWCNTs, whereas the enzyme preserved its activity in the presence of bG. The beneficial properties of bG over MWCNTs on GOx activity were further supported by electrochemical data at two glucose biosensors based on GOx entrapped in chitosan gel in the presence of bG or MWCNTs. bG-based biosensors exhibited a 1.33-fold increased sensitivity and improved reproducibility for determining glucose over the sweat-relevant concentration range of glucose.
Collapse
Affiliation(s)
- Christina Alatzoglou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Eleni I. Tzianni
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Maria G. Trachioti
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Mamas I. Prodromidis
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| |
Collapse
|
3
|
Babaluei M, Mojarab Y, Mottaghitalab F, Farokhi M. Injectable hydrogel based on silk fibroin/carboxymethyl cellulose/agarose containing polydopamine functionalized graphene oxide with conductivity, hemostasis, antibacterial, and anti-oxidant properties for full-thickness burn healing. Int J Biol Macromol 2023; 249:126051. [PMID: 37517755 DOI: 10.1016/j.ijbiomac.2023.126051] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Overcoming bacterial infections and promoting wound healing are significant challenges in clinical practice and fundamental research. This study developed a series of enzymatic crosslinking injectable hydrogels based on silk fibroin (SF), carboxymethyl cellulose (CMC), and agarose, with the addition of polydopamine functionalized graphene oxide (GO@PDA) to endow the hydrogel with suitable conductivity and antimicrobial activity. The hydrogels exhibited suitable gelation time, stable mechanical and rheological properties, high water absorbency, and hemostatic properties. Biocompatibility was also confirmed through various assays. After loading the antibiotic vancomycin hydrochloride, the hydrogels showed sustained release and good antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The fast gelation time and desirable tissue-covering ability of the hydrogels allowed for a good hemostatic effect in a rat liver trauma model. In a rat full-thickness burn wound model, the hydrogels exhibited an excellent treatment effect, leading to significantly enhanced wound closure, collagen deposition, and granulation tissue formation, as well as neovascularization and anti-inflammatory effects. In conclusion, the antibacterial electroactive injectable hydrogel dressing, with its multifunctional properties, significantly promoted the in vivo wound healing process, making it an excellent candidate for full-thickness skin wound healing.
Collapse
Affiliation(s)
| | - Yasamin Mojarab
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Du Q, Li N, Lian J, Guo J, Zhang Y, Zhang F. Dimensional effect of graphene nanostructures on cytoskeleton-coupled anti-tumor metastasis. SMART MEDICINE 2023; 2:e20230014. [PMID: 39188348 PMCID: PMC11235939 DOI: 10.1002/smmd.20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/12/2023] [Indexed: 08/28/2024]
Abstract
Interactions between inorganic materials and living systems can be strongly influenced by the dimensional property of the materials, which can in turn impact biological activities. Although the role of biomaterials at the molecular and cellular scales has been studied, research investigating the effects of biomaterials across multiple dimensional scales is relatively scarce. Herein, comparing the effectiveness of two-dimensional graphene oxide nanosheets (GOs) and three-dimensional graphene oxide quantum dots (GOQDs) (though not zero-dimensional because of their significant surface area) in cancer therapies, we have discovered that GOs, with the same mass concentration, exhibit stronger anti-cancer and anti-tumor metastasis properties than GOQDs. Our research, which employed liquid-phase atomic force microscopy, revealed that lower-dimensional GOs create a more extensive nano-bio interface that impedes actin protein polymerization into the cytoskeleton, leading to the prevention of tumor metastasis. These results help to better understand the underlying mechanisms and offer a dimensional perspective on the potential of optimizing the properties of graphene-based materials for clinical applications, e.g., cancer therapy.
Collapse
Affiliation(s)
- Qiqige Du
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Na Li
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Jiaqi Lian
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Jun Guo
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yi Zhang
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
| | - Feng Zhang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
5
|
Wang Y, Aoki S, Nara K, Kikuchi Y, Jiao Z, Hasebe Y. Shield, Anchor, and Adhesive Roles of Methylene Blue in Tyrosinase Adsorbed on Carbon Felt for a Flow Injection Amperometric Enzyme Biosensor for Phenolic Substrates and Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4676-4691. [PMID: 36961887 DOI: 10.1021/acs.langmuir.2c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methylene blue (MB) acted as a stabilizer for preventing surface-induced denaturation of tyrosinase (TYR) adsorbed on a carbon felt (CF) surface, which is based on shield and anchor roles preventing the unfavorable conformational change of TYR on the hydrophobic CF surface. Furthermore, MB acted as an effective adhesive for TYR immobilization on CF. The resulting TYR and MB coadsorbed CF (TYR/MB-CF) worked as an excellent working electrode unit in an electrochemical detector in a flow injection amperometric biosensor, which allowed highly sensitive consecutive determination of not only TYR substrates but also competitive inhibitors. Simultaneous adsorption of TYR and MB from their mixed solution was much useful as compared with step-wise separated adsorption of TYR on the MB-adsorbed CF, which suggests that the binding interaction of MB with TYR in the solution phase is important for this phenomenon. Fluorescence and UV-vis spectroscopy revealed that not only electrostatic forces between the cationic MB and anionic amino acid residues of TYR but also hydrophobic interactions via the phenothiazine ring of MB play a principal binding driving force of MB with TYR at the surface of the TYR molecules. Synchronous fluorescence, three-dimensional fluorescence, and circular dichroism (CD) spectroscopy clarified that the conformation and the secondary structure of TYR slightly changed upon the MB binding, implying that MB binding leads to the modification of the original intramolecular bonding in part.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology LiaoNing, Anshan, LiaoNing 114501, China
| | - Shiori Aoki
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Kazuyuki Nara
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yugo Kikuchi
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Zeting Jiao
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
6
|
Wang X, Zhang Z, Liu Z, Ma X, Dai Q, Wang X, Ge B, He H, Huang F. Spectroscopic investigation on the binding interactions between graphene quantum dots and carbonic anhydrase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120369. [PMID: 34547684 DOI: 10.1016/j.saa.2021.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
As a new member of the nanomaterials family, ultrasmall graphene quantum dots (GQDs) have shown broad application prospects in the field of biomedicine, but the analysis of their biological effects at the molecular level is yet limited. Herein, carbonic anhydrase (CA) was selected as a model protein to assess the interactions between GQDs and biomacromolecules. A range of spectroscopic techniques were employed to systematically investigate the binding interactions between GQDs and CA and the catalytic function of CA in the presence of GQDs was evaluated. Experimental results showed that GQDs could quench the intrinsic fluorescence of CA and the concentration dependent quenching efficiency exhibited an obvious deviation from the linear plot, indicating a static binding mode. Further investigation suggested that van der Waal interactions and hydrogen bonding were the main driving forces. Additionally, circular dichroism measurement showed that the binding of GQDs induced slight conformational changes of CA. The catalytic capability assessment proved that these binding interactions resulted in the reduction of the biological functions of CA. This comprehensive study provided important insight into the interaction of GQDs with biomacromolecules, which would be crucial for the further applications of GQDs and other nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zhixiong Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiqi Ma
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qi Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
7
|
Wang J, Yao L, Hu E, Cui Y, Yang D, Qian G. MnO2 decorated ZIF-8@GOx for synergistic chemodynamic and starvation therapy of cancer. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Ren S, Chen R, Wu Z, Su S, Hou J, Yuan Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO 2 conversion. Colloids Surf B Biointerfaces 2021; 204:111779. [PMID: 33901810 DOI: 10.1016/j.colsurfb.2021.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
Collapse
Affiliation(s)
- Sizhu Ren
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China.
| | - Ruixue Chen
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China
| | - Zhangfei Wu
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China
| | - Shan Su
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Jiaxi Hou
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Yanlin Yuan
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China.
| |
Collapse
|
9
|
Chaudhary K, Kumar K, Venkatesu P, Masram DT. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv Colloid Interface Sci 2021; 289:102367. [PMID: 33545443 DOI: 10.1016/j.cis.2021.102367] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Due to the essential role of biological macromolecules in our daily life; it is important to control the stability and activity of such macromolecules. Therefore, the most promising route for enhancement in stability and activity is immobilizing proteins on different support materials. Furthermore, large surface area and surface functional groups are the important features that are required for a better support system. These features of graphene oxide (GO) and reduced graphene oxide (RGO) makes them ideal support materials for protein immobilization. Studies show the successful formation of GO/RGO-protein complexes with enhancement in structural/thermal stability due to various interactions at the nano-bio interface and their utilization in various functional applications. The present review focuses on protein immobilization using GO/RGO as solid support materials. Moreover, we also emphasized on basic underlying mechanism and interactions (hydrophilic, hydrophobic, electrostatic, local protein-protein, hydrogen bonding and van der Walls) between protein and GO/RGO which influences structural stability and activity of enzymes/proteins. Furthermore, GO/RGO-protein complexes are utilized in various applications such as biosensors, bioimaging and theranostic agent, targeted drug delivery agents, and nanovectors for drug and protein delivery.
Collapse
|
10
|
Popov A, Aukstakojyte R, Gaidukevic J, Lisyte V, Kausaite-Minkstimiene A, Barkauskas J, Ramanaviciene A. Reduced Graphene Oxide and Polyaniline Nanofibers Nanocomposite for the Development of an Amperometric Glucose Biosensor. SENSORS 2021; 21:s21030948. [PMID: 33535400 PMCID: PMC7867097 DOI: 10.3390/s21030948] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The control of glucose concentration is a crucial factor in clinical diagnosis and the food industry. Electrochemical biosensors based on reduced graphene oxide (rGO) and conducting polymers have a high potential for practical application. A novel thermal reduction protocol of graphene oxide (GO) in the presence of malonic acid was applied for the synthesis of rGO. The rGO was characterized by scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and Raman spectroscopy. rGO in combination with polyaniline (PANI), Nafion, and glucose oxidase (GOx) was used to develop an amperometric glucose biosensor. A graphite rod (GR) electrode premodified with a dispersion of PANI nanostructures and rGO, Nafion, and GOx was proposed as the working electrode of the biosensor. The optimal ratio of PANI and rGO in the dispersion used as a matrix for GOx immobilization was equal to 1:10. The developed glucose biosensor was characterized by a wide linear range (from 0.5 to 50 mM), low limit of detection (0.089 mM), good selectivity, reproducibility, and stability. Therefore, the developed biosensor is suitable for glucose determination in human serum. The PANI nanostructure and rGO dispersion is a promising material for the construction of electrochemical glucose biosensors.
Collapse
Affiliation(s)
- Anton Popov
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Ruta Aukstakojyte
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania; (R.A.); (J.G.); (J.B.)
| | - Justina Gaidukevic
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania; (R.A.); (J.G.); (J.B.)
| | - Viktorija Lisyte
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
| | - Asta Kausaite-Minkstimiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Jurgis Barkauskas
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania; (R.A.); (J.G.); (J.B.)
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-5-219-3115
| |
Collapse
|
11
|
Osella S. Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead? NANOMATERIALS 2021; 11:nano11020299. [PMID: 33498961 PMCID: PMC7911014 DOI: 10.3390/nano11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
A tremendous effort is currently devoted to the generation of novel hybrid materials with enhanced electronic properties for the creation of artificial photosynthetic systems. This compelling and challenging problem is well-defined from an experimental point of view, as the design of such materials relies on combining organic materials or metals with biological systems like light harvesting and redox-active proteins. Such hybrid systems can be used, e.g., as bio-sensors, bio-fuel cells, biohybrid photoelectrochemical cells, and nanostructured photoelectronic devices. Despite these efforts, the main bottleneck is the formation of efficient interfaces between the biological and the organic/metal counterparts for efficient electron transfer (ET). It is within this aspect that computation can make the difference and improve the current understanding of the mechanisms underneath the interface formation and the charge transfer efficiency. Yet, the systems considered (i.e., light harvesting protein, self-assembly monolayer and surface assembly) are more and more complex, reaching (and often passing) the limit of current computation power. In this review, recent developments in computational methods for studying complex interfaces for artificial photosynthesis will be provided and selected cases discussed, to assess the inherent ability of computation to leave a mark in this field of research.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
12
|
Kang TH, Lee SW, Hwang K, Shim W, Lee KY, Lim JA, Yu WR, Choi IS, Yi H. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24231-24241. [PMID: 32353230 DOI: 10.1021/acsami.0c02596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanostructured flexible electrodes with biological compatibility and intimate electrochemical coupling provide attractive solutions for various emerging bioelectronics and biosensor applications. Here, we develop all-inkjet-printed flexible nanobio-devices with excellent electrochemical coupling by employing amphiphilic biomaterial, an M13 phage, numerical simulation of single-drop formulation, and rational formulations of nanobio-ink. Inkjet-printed nanonetwork-structured electrodes of single-walled carbon nanotubes and M13 phage show efficient electrochemical coupling and hydrostability. Additive printing of the nanobio-inks also allows for systematic control of the physical and chemical properties of patterned electrodes and devices. All-inkjet-printed electrochemical field-effect transistors successfully exhibit pH-sensitive electrical current modulation. Moreover, all-inkjet-printed electrochemical biosensors fabricated via sequential inkjet-printing of the nanobio-ink, electrolytes, and enzyme solutions enable direct electrical coupling within the printed electrodes and detect glucose concentrations at as low as 20 μM. Glucose levels in sweat are successfully measured, and the change in sweat glucose levels is shown to be highly correlated with blood glucose levels. Synergistic combination of additive fabrication by inkjet-printing with directed assembly of nanostructured electrodes by functional biomaterials could provide an efficient means of developing bioelectronic devices for personalized medicine, digital healthcare, and emerging biomimetic devices.
Collapse
Affiliation(s)
- Tae-Hyung Kang
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyowook Hwang
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Wonbo Shim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Young Lee
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung-Ah Lim
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woong-Ryeol Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
13
|
Lin P, Zhang Y, Yao G, Huo H, Ren H, Wang Y, Wang S, Fang B. Immobilization of formate dehydrogenase on polyethylenimine-grafted graphene oxide with kinetics and stability study. Eng Life Sci 2020; 20:104-111. [PMID: 32874174 PMCID: PMC7447899 DOI: 10.1002/elsc.201900134] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022] Open
Abstract
Graphene oxide-based nanomaterials are promising for enzyme immobilization due to the possibilities of functionalizing surface. Polyethylenimine-grafted graphene oxide was constructed as a novel scaffold for immobilization of formate dehydrogenase. Compared with free formate dehydrogenase and graphene oxide adsorbed formate dehydrogenase, thermostability, storage stability, and reusability of polyethylenimine-grafted graphene oxide-formate dehydrogenase were enhanced. Typically, polyethylenimine-grafted graphene oxide-formate dehydrogenase remained 47.4% activity after eight times' repeat reaction. The immobilized capacity of the polyethylenimine-grafted graphene oxide was 2.4-folds of that of graphene oxide. Morphological and functional analysis of polyethylenimine-grafted graphene oxide-formate dehydrogenase was performed and the assembling mechanism based on multi-level interactions was studied. Consequently, this practical and facile strategy will likely find applications in biosynthesis, biosensing, and biomedical engineering.
Collapse
Affiliation(s)
- Peng Lin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
| | - Yonghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
- College of Food and Biology EngineeringJimei UniversityXiamenP. R. China
| | - Guangxiao Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
| | - Heyu Huo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
| | - Hong Ren
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
| | - Yixuan Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
- The Key Lab for Synthetic Biotechnology of Xiamen CityXiamen UniversityXiamenFujianP. R. China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenP. R. China
- The Key Lab for Synthetic Biotechnology of Xiamen CityXiamen UniversityXiamenFujianP. R. China
| |
Collapse
|
14
|
Modulating the electron transport energy levels of protein by doping with foreign molecule. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sakthivel M, Ramaraj S, Chen SM, Chen TW, Ho KC. Transition-Metal-Doped Molybdenum Diselenides with Defects and Abundant Active Sites for Efficient Performances of Enzymatic Biofuel Cell and Supercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18483-18493. [PMID: 31038915 DOI: 10.1021/acsami.9b04884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have demonstrated the synthesis of defect-rich Ni-doped MoSe2 nanoplates (NiMoSe2) and their application as an efficient electrocatalyst for enzymatic biofuel cells and electrochemical pseudocapacitors. In this study, a new type of interpretation is proposed that a defective surface facilitates the effective entrapment of enzymes (glucose oxidase (GOD), laccase) for biofuel cells and additional ion diffusion for Faradic charge-discharge reaction. The transmission electron microscopy and UV-vis spectroscopy techniques scrutinized the formation of defects/distortions and the resultant successful entrapment of enzymes. The performed electrochemical characterizations of enzyme-immobilized NiMoSe2/nickel foam (NF) bioanode (NiMoSe2/GOD/NF) and biocathode (NiMoSe2/laccase/NF) exhibited better direct charge conductive behavior at the interface of enzymes and electrode material. Herein, the assembled biofuel cells exhibited an open-circuit voltage ( VOC = 0.6 V) and a short-circuit current density ( JSC = 8.629 mA cm-2) with a maximum power density ( Pmax) of 1.2 mW cm-2. For the electrochemical pseudocapacitor application, the proposed NiMoSe2/NF exhibited excellent specific capacitance (535.74 F g-1), with 86.7% rate performance. Finally, this work suggests new insights into both enzymatic biofuel cell and supercapacitor applications.
Collapse
Affiliation(s)
| | - Sukanya Ramaraj
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | | |
Collapse
|
16
|
Esposito R, Delfino I, Portaccio M, Iannuzzi C, Lepore M. An insight into pH-induced changes in FAD conformational structure by means of time-resolved fluorescence and circular dichroism. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:395-403. [PMID: 31053922 DOI: 10.1007/s00249-019-01369-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 11/26/2022]
Abstract
Optical properties of flavin adenine dinucleotide (FAD) moiety are widely used nowadays for biotechnological applications. Given the fundamental role played by FAD, additional structural information about this enzymatic cofactor can be extremely useful in order to obtain a greater insight into its functional role in proteins. For this purpose, we have investigated FAD behaviour in aqueous solutions at different pH values by a novel approach based on the combined use of time-resolved fluorescence and circular dichroism spectroscopies. The results showed that pH strongly affects time-resolved fluorescence emission and the analysis allowed us to detect a three-component decay for FAD in aqueous solution with pH-depending lifetimes and relative amplitudes. Circular dichroism data were analyzed by a multi-Gaussian fitting procedure and the trends of properly chosen parameters confirmed pH-depending changes. The comparison between the results obtained by these two optical techniques allowed us to improve the significance of the outcome of circular dichroism. This combined approach may provide a useful tool for biotechnological investigation.
Collapse
Affiliation(s)
- Rosario Esposito
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione industriale, Università Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Ines Delfino
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy.
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", Via S.M. Costantinopoli 16, 80134, Naples, Italy
| | - Clara Iannuzzi
- Dipartimento di Medicina di Precisione, Università della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", Via S.M. Costantinopoli 16, 80134, Naples, Italy
| |
Collapse
|
17
|
Ranji-Burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG. Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. NANOSCALE 2019; 11:5705-5716. [PMID: 30865742 DOI: 10.1039/c8nr09107b] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Separately, Fenton and starvation cancer therapies have been recently reported as impressive methods for tumor destruction. Here, we introduce natural hemoglobin and glucose oxidase (GOx) for efficient cancer treatment following combined Fenton and starvation therapies. GOx and hemoglobin were encapsulated in zeolitic imidazolate frameworks 8 (ZIF-8) to fabricate a pH-sensitive MOF activated by tumor acidity. In the slightly acidic environment of cancer cells, GOx is released and it consumes d-glucose and molecular oxygen, nutrients essential for the survival of cancer cells, and produces gluconic acid and hydrogen peroxide, respectively. The produced gluconic acid increases the acidity of the tumor microenvironment leading to complete MOF destruction and enhances hemoglobin and GOx release. The Fe ions from the heme groups of hemoglobin also release in the presence of both endogenous and produced H2O2 and generate hydroxyl radicals. The produced OH˙ radical can rapidly oxidize the surrounding biomacromolecules in the biological system and treat the cancer cells. In vitro experiments demonstrate that this novel nanoparticle is cytotoxic to cancer cells HeLa and MCF-7, at very low concentrations (<2 μg mL-1). In addition, the selectivity index values are 5.52 and 11.04 for HeLa and MCF-7 cells, respectively, which are much higher than those of commercial drugs and those of similar studies reported by other research groups. This work thus demonstrates a novel pH-sensitive system containing hemoglobin and GOx for effective and selective cancer treatment using both radical generation and nutrient starvation.
Collapse
Affiliation(s)
- Hadi Ranji-Burachaloo
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
18
|
Liang W, Wu C, Cai Z, Sun Y, Zhang H, Wu P, Cai C. Tuning the electron transport band gap of bovine serum albumin by doping with Vb12. Chem Commun (Camb) 2019; 55:2853-2856. [DOI: 10.1039/c9cc00688e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile method to tune the electron transport band gaps of proteins via doping with other molecules is reported.
Collapse
Affiliation(s)
- Wenhui Liang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Chuanli Wu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Zhewei Cai
- Department of Chemical and Biomolecular Engineering
- Clarkson University
- Potsdam
- USA
| | - Yujie Sun
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097
| |
Collapse
|
19
|
Ghimire A, Pattammattel A, Maher CE, Kasi RM, Kumar CV. Three-Dimensional, Enzyme Biohydrogel Electrode for Improved Bioelectrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42556-42565. [PMID: 29140073 DOI: 10.1021/acsami.7b13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Higher loading of enzymes on electrodes and efficient electron transfer from the enzyme to the electrode are urgently needed to enhance the current density of biofuel cells. The two-dimensional nature of the electrode surface limits the enzyme loading on the surface, and unfavorable interactions with electrode surfaces cause inactivation of the enzyme. Benign biohydrogels are designed here to address enzyme degradation, and the three-dimensional nature of the biohydrogel enhanced the enzyme density per unit area. A general strategy is demonstrated here using a redox active enzyme glucose oxidase embedded in a bovine serum albumin biohydrogel on flexible carbon cloth electrodes. In the presence of ferricyanide as a mediator, this bioelectrode generated a maximum current density (jmax) of 13.2 mA·cm-2 at 0.45 V in the presence of glucose with a sensitivity of 67 μA·mol-1·cm-2 and a half-life of >2 weeks at room temperature. A strong correlation of current density with water uptake by the biohydrogel was observed. Moreover, a soluble mediator (sodium ferricyanide) in the biohydrogel enhanced the current density by ∼1000-fold, and citrate-phosphate buffer has been found to be the best to achieve the maximum current density. A record 2.2% of the loaded enzyme was electroactive, which is greater than the highest value reported (2-fold). Stabilization of the enzyme in the biohydrogel resulted in retention of the enzymatic activity over a wide range of pH (4.0-8.0). We showed here that biohydrogels are excellent media for enzymatic electron transfer reactions required for bioelectronics and biofuel cell applications.
Collapse
Affiliation(s)
- Ananta Ghimire
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - Ajith Pattammattel
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - Charles E Maher
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
- Polymer Program, Institute of Materials Science, University of Connecticut , U-3136, Storrs, Connecticut 06269, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
- Polymer Program, Institute of Materials Science, University of Connecticut , U-3136, Storrs, Connecticut 06269, United States
- Department of Molecular and Cellular Biology, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
Maiti S, Kundu S, Roy CN, Ghosh D, Das TK, Saha A. A comparative evaluation of the activity modulation of flavo and non-flavo enzymes induced by graphene oxide. J Mater Chem B 2017; 5:2601-2608. [PMID: 32264038 DOI: 10.1039/c7tb00083a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Graphene, and its water soluble derivative graphene oxide, has shown great promise in various biomedical applications, such as cancer therapeutics, drug delivery, etc. and in industrial applications such as enzyme immobilization, etc. Thus, modulation of the activities of different classes of enzymes by graphene materials is an important aspect in the formulation of different biological applications. We have demonstrated here how flavin adenine dinucleotide (FAD) moieties protect the binding site from conformational change in the presence of an inhibitor, graphene oxide, and also explore differences in the mode of interactions between flavo and non-flavo enzymes. It was shown that there was a much greater loss of activity with the non-flavo enzyme, l-lactate dehydrogenase (LDH), of ∼74% compared to that with the flavo-enzyme, glucose oxidase (GOX), of ∼45%, in the presence of equal concentrations of GO. Furthermore, GO acts as an enzyme inhibitor and the mode of inhibition is uncompetitive for GOX and competitive for LDH. Circular dichromism measurements showed a 21% decrease in the α helix of GOX and a 31% decrease in the α helix of LDH in the presence of a given concentration of GO (0.5 mg mL-1). There was a slight change in the average emission lifetime of tryptophan in GOX in the presence of GO from 3.2 to 2.6 ns. In contrast, there was no change in the average emission lifetime of tryptophan in LDH in the presence of GO. The extents of fluorescence quenching for GOX and LDH were 39% and 70% upon addition of a certain amount of GO. The present study provides insight into the development of sensors through the immobilization of enzymes and the possible formulation of a multifunctional protein and graphene composite system for various biomedical applications such as bio-sensing, gene and drug delivery, etc.
Collapse
Affiliation(s)
- Susmita Maiti
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098, India.
| | | | | | | | | | | |
Collapse
|
21
|
Hao X, Chen S, Zhu H, Wang L, Zhang Y, Yin Y. The Synergy of Graphene Oxide and Polydopamine Assisted Immobilization of Lysozyme to Improve Antibacterial Properties. ChemistrySelect 2017. [DOI: 10.1002/slct.201601794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiangping Hao
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Shougang Chen
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Hongzheng Zhu
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Longqiang Wang
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Yue Zhang
- Institute of Materials Science and Engineering; Ocean University of China; Qingdao 266100 P. R. China
| | - Yansheng Yin
- College of Marine Science & Engineering; Shanghai Maritime University; Shanghai 201306 PR China
| |
Collapse
|
22
|
Galbán J, Sanz-Vicente I, Navarro J, de Marcos S. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review. Methods Appl Fluoresc 2016; 4:042005. [DOI: 10.1088/2050-6120/4/4/042005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Gonçales VR, Colombo RN, Minadeo MA, Matsubara EY, Rosolen JM, Córdoba de Torresi SI. Three-dimensional graphene/carbon nanotubes hybrid composites for exploring interaction between glucose oxidase and carbon based electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
In situ synthesized rGO–Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Novak MJ, Pattammattel A, Koshmerl B, Puglia M, Williams C, Kumar CV. “Stable-on-the-Table” Enzymes: Engineering the Enzyme–Graphene Oxide Interface for Unprecedented Kinetic Stability of the Biocatalyst. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01968] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc J. Novak
- Department
of Chemistry,
Department of Molecular and Cell Biology, and Institute of Materials
Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Ajith Pattammattel
- Department
of Chemistry,
Department of Molecular and Cell Biology, and Institute of Materials
Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Brianna Koshmerl
- Department
of Chemistry,
Department of Molecular and Cell Biology, and Institute of Materials
Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Megan Puglia
- Department
of Chemistry,
Department of Molecular and Cell Biology, and Institute of Materials
Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Christina Williams
- Department
of Chemistry,
Department of Molecular and Cell Biology, and Institute of Materials
Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Challa V. Kumar
- Department
of Chemistry,
Department of Molecular and Cell Biology, and Institute of Materials
Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
26
|
Hernández-Cancel G, Suazo-Dávila D, Ojeda-Cruzado AJ, García-Torres D, Cabrera CR, Griebenow K. Graphene oxide as a protein matrix: influence on protein biophysical properties. J Nanobiotechnology 2015; 13:70. [PMID: 26482026 PMCID: PMC4617716 DOI: 10.1186/s12951-015-0134-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Background This study provides fundamental information on the influence of graphene oxide (GO) nanosheets and glycans on protein catalytic activity, dynamics, and thermal stability. We provide evidence of protein stabilization by glycans and how this strategy could be implemented when GO nanosheets is used as protein immobilization matrix. A series of bioconjugates was constructed using two different strategies: adsorbing or covalently attaching native and glycosylated bilirubin oxidase (BOD) to GO. Results Bioconjugate formation was followed by FT-IR, zeta-potential, and X-ray photoelectron spectroscopy measurements. Enzyme kinetic parameters (km and kcat) revealed that the substrate binding affinity was not affected by glycosylation and immobilization on GO, but the rate of enzyme catalysis was reduced. Structural analysis by circular dichroism showed that glycosylation did not affect the tertiary or the secondary structure of BOD. However, GO produced slight changes in the secondary structure. To shed light into the biophysical consequence of protein glycosylation and protein immobilization on GO nanosheets, we studied structural protein dynamical changes by FT-IR H/D exchange and thermal inactivation. Conclusions It was found that glycosylation caused a reduction in structural dynamics that resulted in an increase in thermostability and a decrease in the catalytic activity for both, glycoconjugate and immobilized enzyme. These results establish the usefulness of chemical glycosylation to modulate protein structural dynamics and stability to develop a more stable GO-protein matrix. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0134-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Dámaris Suazo-Dávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Axel J Ojeda-Cruzado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Desiree García-Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Carlos R Cabrera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, 00931, USA.
| |
Collapse
|
27
|
Xu X, Qian Y, Wu P, Zhang H, Cai C. Probing the anticancer-drug-binding-induced microenvironment alterations in subdomain IIA of human serum albumin. J Colloid Interface Sci 2015; 445:102-111. [DOI: 10.1016/j.jcis.2014.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022]
|
28
|
Wei C, Cheng C, Zhao J, Wang Y, Cheng Y, Xu Y, Du W, Pang H. NiS Hollow Spheres for High-Performance Supercapacitors and Non-Enzymatic Glucose Sensors. Chem Asian J 2015; 10:679-86. [DOI: 10.1002/asia.201403198] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/12/2015] [Indexed: 11/11/2022]
|
29
|
Kundu S, Maiti S, Ghosh D, Mondal S, Roy CN, Saha A. Interactions of graphene oxide with luminescent biofunctionalized semiconductor nanoparticles: simultaneous monitoring in a protein–semiconductor coupled system. RSC Adv 2015. [DOI: 10.1039/c5ra17191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present investigation demonstrates how graphene oxide interact protein and semiconductor nanoparticles simultaneously in a coupled system.
Collapse
Affiliation(s)
| | - Susmita Maiti
- UGC-DAE Consortium for Scientific Research
- Kolkata
- India
| | | | | | | | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research
- Kolkata
- India
| |
Collapse
|
30
|
Ahlinder L, Henych J, Lindström SW, Ekstrand-Hammarström B, Stengl V, Österlund L. Graphene oxide nanoparticle attachment and its toxicity on living lung epithelial cells. RSC Adv 2015. [DOI: 10.1039/c5ra09351a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since its discovery graphene and its oxidized form graphene oxide have attracted interest in a wide range of applications, which calls for scrutinized studies about their possible toxicity.
Collapse
Affiliation(s)
- Linnea Ahlinder
- FOI
- Division for CBRN Defence and Security
- Umeå
- Sweden
- Department of Engineering Sciences
| | - Jiří Henych
- Department of Material Chemistry
- Institute of Inorganic Chemistry AS CR v.v.i
- Czech Republic
| | | | | | - Václav Stengl
- Department of Material Chemistry
- Institute of Inorganic Chemistry AS CR v.v.i
- Czech Republic
| | - Lars Österlund
- Department of Engineering Sciences
- The Ångström Laboratory, Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
31
|
Deshapriya IK, Kim CS, Novak MJ, Kumar CV. Biofunctionalization of α-zirconium phosphate nanosheets: toward rational control of enzyme loading, affinities, activities and structure retention. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9643-9653. [PMID: 24853777 DOI: 10.1021/am502070w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Controlling the properties of enzymes bound to solid surfaces in a rational manner is a grand challenge. Here we show that preadsorption of cationized bovine serum albumin (cBSA) to α-Zr(IV) phosphate (α-ZrP) nanosheets promotes enzyme binding in a predictable manner, and surprisingly, the enzyme binding is linearly proportional to the number of residues present in the enzyme or its volume, providing a powerful, new predictable tool. The cBSA loaded α-ZrP (denoted as bZrP) was tested for the binding of pepsin, glucose oxidase (GOX), tyrosinase, catalase, myoglobin and laccase where the number of residues increased from the lowest value of ∼153 to the highest value of 2024. Loading depended linearly on the number of residues, rather than enzyme charge or its isoelectric point. No such correlation was seen for the binding of these enzymes to α-ZrP nanosheets without the preadsorption of cBSA, under similar conditions of pH and buffer. Enzyme binding to bZrP was supported by centrifugation studies, powder X-ray diffraction and scanning electron microscopy/energy-dispersive X-ray spectroscopy. All the bound enzymes retained their secondary structure and the extent of structure retention depended directly on the amount of cBSA preadsorbed on α-ZrP, prior to enzyme loading. Except for tyrosinase, all enzyme/bZrP biocatalysts retained their enzymatic activities nearly 90-100%, and biofunctionalization enhanced the loading, improved structure retention and supported higher enzymatic activities. This approach of using a chemically modified protein to serve as a glue, with a predictable affinity/loading of the enzymes, could be useful to rationally control enzyme binding for applications in advanced biocatalysis and biomedical applications.
Collapse
Affiliation(s)
- Inoka K Deshapriya
- Department of Chemistry, ‡Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
32
|
Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol 2014; 32:312-20. [PMID: 24794165 DOI: 10.1016/j.tibtech.2014.04.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 01/06/2023]
Abstract
Graphene-based nanomaterials are particularly useful nanostructured materials that show great promise in biotechnology and biomedicine. Owing to their unique structural features, exceptional chemical, electrical, and mechanical properties, and their ability to affect the microenvironment of biomolecules, graphene-based nanomaterials are suitable for use in various applications, such as immobilization of enzymes. We present the current advances in research on graphene-based nanomaterials used as novel scaffolds to build robust nanobiocatalytic systems. Their catalytic behavior is affected by the nature of enzyme-nanomaterial interactions and, thus, the availability of methods to couple enzymes with nanomaterials is an important issue. We discuss the implications of such interactions along with future prospects and possible challenges in this rapidly developing area.
Collapse
|
33
|
Liu Y, Zhang Y, Wang T, Qin P, Guo Q, Pang H. Mesoporous Ni0.3Co2.7O4 hierarchical structures for effective non-enzymatic glucose detection. RSC Adv 2014. [DOI: 10.1039/c4ra02665a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An electrode modified with mesoporous Ni0.3Co2.7O4 hierarchical structures shows a low detection limit of 1.0 μM glucose, good sensitivity of 206.5 mA mM−1 cm−2, and good selectivity.
Collapse
Affiliation(s)
- Yuanying Liu
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang, P. R. China
| | - Youjuan Zhang
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang, P. R. China
| | - Ting Wang
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang, P. R. China
| | - Panpan Qin
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang, P. R. China
| | - Qifei Guo
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang, P. R. China
| | - Huan Pang
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang, P. R. China
- State Key Laboratory of Coordination Chemistry
- Nanjing University
| |
Collapse
|
34
|
Graphene oxide-induced conformation changes of glucose oxidase studied by infrared spectroscopy. Colloids Surf B Biointerfaces 2013; 109:115-20. [PMID: 23624279 DOI: 10.1016/j.colsurfb.2013.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/07/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
The adsorption of proteins on the surface of nanomaterials can induce changes in the structure and biological activity of the proteins. Although there have been a number of studies aimed at developing an understanding of the interactions of proteins with surfaces of nanomaterials, a detailed description of the actual state of the adsorbed proteins or the functional consequences of protein adsorption onto nanomaterials has yet to be reported. In this study, the conformation changes of glucose oxidase (GOx) induced by adsorption on graphene oxide (GO) sheets were investigated by quantitative second-derivative infrared analysis and two-dimensional infrared correlation spectroscopy (2D IR). The adsorption of GOx on GO sheets resulted in the conversion of α-helix to β-sheet structures and therefore led to substantial conformation changes of GOx, even the unfolding of the protein. These alterations in the conformation of GOx caused a significant decrease in the catalytic activity of the enzyme for glucose oxidation. This study demonstrates that nanomaterials can strongly influence the conformation and activity of adsorbed proteins. In addition to the importance of this effect in cases of the direct adsorption of proteins on nanomaterials, the results have implications for proteins adsorbed on materials with nanometer-scale surface roughness.
Collapse
|
35
|
Tu Y, Li W, Wu P, Zhang H, Cai C. Fluorescence Quenching of Graphene Oxide Integrating with the Site-Specific Cleavage of the Endonuclease for Sensitive and Selective MicroRNA Detection. Anal Chem 2013; 85:2536-42. [DOI: 10.1021/ac303772m] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yunqiu Tu
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Wen Li
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Ping Wu
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Hui Zhang
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| | - Chenxin Cai
- Jiangsu Key
Laboratory of New Power Batteries, College
of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People’s Republic of China
| |
Collapse
|
36
|
Qian Y, Xu X, Wang Q, Wu P, Zhang H, Cai C. Electrochemical probing of the solution pH-induced structural alterations around the heme group in myoglobin. Phys Chem Chem Phys 2013; 15:16941-8. [DOI: 10.1039/c3cp52352g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Hu Y, Wu P, Zhang H, Cai C. Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.08.080] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|