1
|
Tu Z, Li J, Yang M, Chen Y, Wang Y, Song H. Accurate ab initio based potential energy surface and kinetics of the Cl + NH3 → HCl + NH2 reaction. J Chem Phys 2024; 161:034304. [PMID: 39007384 DOI: 10.1063/5.0216562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The gas-phase reaction Cl + NH3 → HCl + NH2 is a prototypical hydrogen abstraction reaction, whose minimum energy path involves several intermediate complexes. In this work, a full-dimensional, spin-orbit corrected potential energy surface (SOC PES) is constructed for the ground electronic state of the Cl + NH3 reaction. About 52 000 energy points are sampled and calculated at the UCCSD(T)-F12a/aug-cc-pVTZ level, in which the data points located in the entrance channel are spin-orbit corrected. The spin-orbit corrections are predicted by a fitted three-dimensional energy surface from about 7520 energy points in the entrance channel at the level of CASSCF (15e, 11o)/aug-cc-pVTZ. The fundamental-invariant neural network method is utilized to fit the SOC PES, resulting in a total root mean square error of 0.12 kcal mol-1. The calculated thermal rate constants of the Cl + NH3 → HCl + NH2 reaction on the SOC PES with the soft-zero-point energy constraint agree reasonably well with the available experimental values.
Collapse
Affiliation(s)
- Zhao Tu
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaqi Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China
| | - Mingjuan Yang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yizhuo Chen
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China
| | - Yan Wang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Espinosa-Garcia J, Rangel C, Corchado JC. Role of the Vibrational and Translational Energies in the CN(v)+C 2H 6(ν 1, ν 2, ν 5 and ν 9) Reactions. A Theoretical QCT Study. Chemphyschem 2024; 25:e202300997. [PMID: 38421195 DOI: 10.1002/cphc.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Quasi-classical trajectory (QCT) calculations were conducted on the newly developed full-dimensional potential energy surface, PES-2023, to analyse two critical aspects: the influence of vibrational versus translational energy in promoting reactivity, and the impact of vibrational excitation within similar vibrational modes. The former relates to Polanyi's rules, while the latter concerns mode selectivity. Initially, the investigation revealed that independent vibrational excitation by a single quantum of ethane's symmetric and asymmetric stretching modes (differing by only 15 cm-1) yielded comparable dynamics, reaction cross-sections, HCN(v) vibrational product distributions, and scattering distributions. This observation dismisses any significant mode selectivity. Moreover, an equivalent amount of energy provided as translational energy (at total energies of 9.6 and 20.0 kcal mol-1) gave rise to slightly lower reactivity compared to the same amount of energy provided as vibrational energy. This effect is more evident at low energies, presenting a counterintuitive scenario in an 'early transition state' reaction. These findings challenge the straightforward application of Polanyi's rules in polyatomic systems. Regarding CN(v) vibrational excitation, our calculations reveal that the reaction cross-section remains practically unaffected by this vibrational excitation, suggesting that the CN stretching mode is a spectator mode. The results were rationalized by considering several factors: the strong coupling between different vibrational modes, and between vibrational modes and the reaction coordinate; and a significant vibrational energy redistribution within the ethane reactant before collision. This redistribution creates an unphysical energy flow, resulting in loss of adiabaticity and vibrational memory before the reactants' collision. These theoretical findings require future confirmation through experimental or theoretical quantum mechanical studies, which are currently unavailable.
Collapse
Affiliation(s)
- Joaquin Espinosa-Garcia
- Área de Quimica Fisica and Instituto de Computación Científica Avanzada de Extremadura, Universidad de Extremadura, Badajoz, Spain
| | - Cipriano Rangel
- Área de Quimica Fisica and Instituto de Computación Científica Avanzada de Extremadura, Universidad de Extremadura, Badajoz, Spain
| | - Jose C Corchado
- Área de Quimica Fisica and Instituto de Computación Científica Avanzada de Extremadura, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
3
|
Product Vibrational State Distributions of the F CH 3OH Reaction on a Full-Dimensional Accurate Potential Energy Surface. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Espinosa-Garcia J, Rangel C, Corchado JC, Garcia-Chamorro M. Theoretical study of the O( 3P) + C 2H 6 reaction based on a new ab initio-based global potential energy surface. Phys Chem Chem Phys 2020; 22:22591-22601. [PMID: 33000848 DOI: 10.1039/d0cp04125d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new analytical potential energy surface was developed for the first time for the nine-body O(3P) + C2H6 hydrogen abstraction reaction, named PES-2020, which was fitted to explicitly-correlated high-level electronic structure calculations. This surface simulates the topography of the reactive system, from reactants to products, OH(v,j) + C2H5. The adiabatic energy of reaction, ΔHr(0 K) = -2.33 kcal mol-1, reproduces the experimental evidence, and the barrier height, 10.70 kcal mol-1, agrees with the ab initio calculations used as input. In addition, an intermediate complex in the exit channel is observed, which is stabilized with respect to the products of the reaction. Based on PES-2020 a dynamics study was carried out, where quasi-classical trajectory calculations were performed for collision energies in the range of 7.0-60.0 kcal mol-1, which covers high collision energy regions. The reaction cross section increases with collision energy; the largest fraction of available energy is deposited as translational energy (44-66%), and the scattering distribution evolves from backward to forward with collision energy. These findings reproduce previous theoretical calculations using electronic structure calculations of lower levels. However, where these previous studies failed, viz. in rotational and vibrational OH(v,j) distributions, PES-2020 reproduces practically quantitatively the experimental evidence, i.e., cold vibration and rotation, the rotational distribution peaking at j = 1-3 depending on the collision energy. In sum, this behaviour is typical of gas-phase hydrogen abstraction reactions with direct mechanism and high reaction barrier.
Collapse
Affiliation(s)
- J Espinosa-Garcia
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | | | | | | |
Collapse
|
5
|
State-to-state dynamics of the Cl(2P) + C2H6(ν5, ν1 = 0, 1) → HCl(v′, j′) + C2H5 hydrogen abstraction reactions. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2416-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Espinosa-Garcia J, Martinez-Nuñez E, Rangel C. Quasi-Classical Trajectory Dynamics Study of the Cl( 2P) + C 2H 6 → HCl(v,j) + C 2H 5 Reaction. Comparison with Experiment. J Phys Chem A 2018; 122:2626-2633. [PMID: 29489365 DOI: 10.1021/acs.jpca.8b00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand and simulate the dynamics behavior of the title reaction, QCT calculations were performed on a recently developed global analytical potential energy surface, PES-2017. These calculations combine the classical description of the dynamics with pseudoquantization in the reactants and products to perform a theoretical/experimental comparison on the same footing. Thus, in the products a series of constraints are included to analyze the HCl(v = 0,j) product, which is experimentally detected. At collision energies of 5.5 and 6.7 kcal mol-1 the largest fraction of available energy is deposited as translation, 67%, while the ethyl radical shows significant internal energy, 27%, and so it does not act as a spectator of the reaction, thus reproducing recent experimental evidence. The HCl(v=0, j) rotational distribution is cold, peaking at j = 2, only one unit hotter than experiment, which represents an error of 0.12 kcal mol-1. At a collision energy of 5.5 kcal mol-1 product translational distribution is slightly hotter than experiment, but at 6.7 kcal mol-1 agreement with recent experiments is practically quantitative, suggesting that the first experiments should be revised. In addition, we observe that the HCl(v=0, j) scattering distribution shifts from isotropic at low values of j to backward at high values of j, which is in agreement with experimental data. Finally, no evidence was found for the "chattering" mechanism suggested to explain the low translational energy of the HCl product in the backward scattering region. In sum, agreement with experiments of a series of sensible dynamic properties permits us to be optimistic on the quality and accuracy of the theoretical tools used in the present work, QCT and PES-2017.
Collapse
Affiliation(s)
- Joaquin Espinosa-Garcia
- Departamento de Química Física and Instituto de Computacion Cientifica Avanzada , Universidad de Extremadura , 06071 Badajoz , Spain
| | - Emilio Martinez-Nuñez
- Departamento de Química Física , Universidad de Santiago de Compostela , Santiago de Compostela , Spain
| | - Cipriano Rangel
- Departamento de Química Física and Instituto de Computacion Cientifica Avanzada , Universidad de Extremadura , 06071 Badajoz , Spain
| |
Collapse
|
7
|
Espinosa-Garcia J, Rangel C, Corchado JC. Vibrational, rotational and translational effects on the OH(v, j) + CH4(v 1, v 2, v 3, v 4) dynamics reaction: a quasi-classical trajectory study. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1775-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Espinosa-Garcia J. Quasi-Classical Trajectory Study of the Vibrational and Translational Effects on the O(3P) + CD4 Reaction. J Phys Chem A 2014; 118:3572-9. [DOI: 10.1021/jp502414e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Monge-Palacios M, Corchado JC, Espinosa-Garcia J. Dynamics study of the OH + NH3 hydrogen abstraction reaction using QCT calculations based on an analytical potential energy surface. J Chem Phys 2014; 138:214306. [PMID: 23758370 DOI: 10.1063/1.4808109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To understand the reactivity and mechanism of the OH + NH3 → H2O + NH2 gas-phase reaction, which evolves through wells in the entrance and exit channels, a detailed dynamics study was carried out using quasi-classical trajectory calculations. The calculations were performed on an analytical potential energy surface (PES) recently developed by our group, PES-2012 [Monge-Palacios et al. J. Chem. Phys. 138, 084305 (2013)]. Most of the available energy appeared as H2O product vibrational energy (54%), reproducing the only experimental evidence, while only the 21% of this energy appeared as NH2 co-product vibrational energy. Both products appeared with cold and broad rotational distributions. The excitation function (constant collision energy in the range 1.0-14.0 kcal mol(-1)) increases smoothly with energy, contrasting with the only theoretical information (reduced-dimensional quantum scattering calculations based on a simplified PES), which presented a peak at low collision energies, related to quantized states. Analysis of the individual reactive trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) ≥ 6 kcal mol(-1)) all trajectories are direct, at low energies about 20%-30% of trajectories are indirect, i.e., with the mediation of a trapping complex, mainly in the product well. Finally, the effect of the zero-point energy constraint on the dynamics properties was analyzed.
Collapse
Affiliation(s)
- M Monge-Palacios
- Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | |
Collapse
|
10
|
Monge-Palacios M, Rangel C, Espinosa-Garcia J. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction. J Chem Phys 2013; 138:084305. [PMID: 23464149 DOI: 10.1063/1.4792719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
Collapse
Affiliation(s)
- M Monge-Palacios
- Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | |
Collapse
|
11
|
Isotope effects on the dynamics properties and reaction mechanism in the Cl(2P) + NH3 reaction: a QCT and QM study. Theor Chem Acc 2013. [DOI: 10.1007/s00214-013-1349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|