1
|
Xia W, Zhou Z, Sheng L, Chen L, Shen F, Zheng F, Zhang Z, Yang Q, Ren Q, Bao Z. Bioinspired recognition in metal-organic frameworks enabling precise sieving separation of fluorinated propylene and propane mixtures. Nat Commun 2024; 15:8716. [PMID: 39379380 PMCID: PMC11461849 DOI: 10.1038/s41467-024-53024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The separation of fluorinated propane/propylene mixtures remains a major challenge in the electronics industry. Inspired by biological ion channels with negatively charged inner walls that allow selective transport of cations, we presented a series of formic acid-based metal-organic frameworks (MFA) featuring biomimetic multi-hydrogen confined cavities. These MFA materials, especially the cobalt formate (CoFA), exhibit specific recognition of hexafluoropropylene (C3F6) while facilitating size exclusion of perfluoropropane (C3F8). The dual-functional adsorbent offers multiple binding sites to realize intelligent selective recognition of C3F6, as supported by theoretical calculations and in situ spectroscopic experiments. Mixed-gas breakthrough experiments validate the capability of CoFA to produce high-purity (>5 N) C3F8 in a single step. Importantly, the stability and cost-effective scalable synthesis of CoFA underscore its extraordinary potential for industrial C3F6/C3F8 separations. This bioinspired molecular recognition approach opens new avenues for the efficient purification of fluorinated electronic specialty gases.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Zhijie Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Liangzheng Sheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Fuxing Shen
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China.
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Boopathi AA, Navya PV, Mohan I, Ayyadurai N, Karuppusamy M, Easwaramoorthi S, Roy A, Narasimhaswamy T, Sampath S. Hierarchical Self-Assembly and Aggregation-Induced Emission Enhancement in Tetrabenzofluorene-Based Red Emitting Molecules. Chem Asian J 2024; 19:e202400639. [PMID: 39008416 DOI: 10.1002/asia.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The newly synthesized chiral active [5]helicene-like tetrabenzofluorene (TBF) based highly red-emitting molecules exhibit flower-like self-assembly. These molecules display photophysical and structural properties such as intramolecular charge transfer, dual state emission, large fluorescence quantum yield, and solvatochromism. In TBFID, the indandione functional group attached on both sides as the terminal group offers an A-D-A push-pull effect and acts as a strong acceptor to cause more redshift in solution as well as in solid state as compared to TBFPA (TBF with benzaldehyde functional group in terminal position). The self-assembly studies of TBFID demonstrate the aggregation-induced emission enhancement (AIEE) attributed to the restriction of intramolecular rotation at the aggregated state. Furthermore, TBFID shows high quantum yield and intense red emission, making the molecule fit for organic light-emitting diodes (OLED) and bioimaging applications.
Collapse
Affiliation(s)
- A A Boopathi
- Polymer Science & Technology, CSIR- Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - P V Navya
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Indhu Mohan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Masiyappan Karuppusamy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Inorganic and Physical Chemistry Lab, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Arun Roy
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar P. O., Bangalore, 560080, India
| | - T Narasimhaswamy
- Polymer Science & Technology, CSIR- Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Srinivasan Sampath
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, 610005, India
| |
Collapse
|
3
|
Ariga K. Interface-Interactive Nanoarchitectonics: Solid and/or Liquid. Chemphyschem 2024; 25:e202400596. [PMID: 38965042 DOI: 10.1002/cphc.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The methodology of nanoarchitectonics is to construct functional materials using nanounits such as atoms, molecules, and nanoobjects, just like architecting buildings. Nanoarchitectonics pursues the ultimate concept of materials science through the integration of related fields. In this review paper, under the title of interface-interactive nanoarchitectonics, several examples of structure fabrication and function development at interfaces will be discussed, highlighting the importance of architecting materials with nanoscale considerations. Two sections provide some examples at the solid and liquid surfaces. In solid interfacial environments, molecular structures can be precisely observed and analyzed with theoretical calculations. Solid surfaces are a prime site for nanoarchitectonics at the molecular level. Nanoarchitectonics of solid surfaces has the potential to pave the way for cutting-edge functionality and science based on advanced observation and analysis. Liquid surfaces are more kinetic and dynamic than solid interfaces, and their high fluidity offers many possibilities for structure fabrications by nanoarchitectonics. The latter feature has advantages in terms of freedom of interaction and diversity of components, therefore, liquid surfaces may be more suitable environments for the development of functionalities. The final section then discusses what is needed for the future of material creation in nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, 277-8561, Japan
| |
Collapse
|
4
|
Terry LM, Foreman MM, Weber JM. Effects of Anion Size, Shape, and Solvation in Binding of Nitrate to Octamethyl Calix[4]pyrrole. J Phys Chem Lett 2024; 15:9481-9486. [PMID: 39254991 DOI: 10.1021/acs.jpclett.4c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We present cryogenic ion vibrational spectroscopy of complexes of the anion receptor octamethyl calix[4]pyrrole (omC4P) with nitrate in vacuo. We compare the resulting vibrational spectrum with that in deuterated acetonitrile solution, and we interpret the results using density functional theory. Nitrate binds to omC4P through hydrogen bonds between the four NH groups of the receptor and a single NO group of the nitrate ion. The shape of the ion breaks the C4v symmetry of the receptor, and this symmetry lowering is encoded in the pattern of the NH stretching modes of omC4P. We compare the spectrum of nitrate-omC4P with that of chloride-omC4P to discuss effects of ion size, shape, and solvent interaction on the ion binding behavior.
Collapse
Affiliation(s)
- Lane M Terry
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Madison M Foreman
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
5
|
Skvortsova A, Han JH, Tosovska A, Bainova P, Kim RM, Burtsev V, Erzina M, Fitl P, Urbanova M, Svorcik V, Ha IH, Nam KT, Lyutakov O. Enantioselective Molecular Detection by Surface Enhanced Raman Scattering at Chiral Gold Helicoids on Grating Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48526-48535. [PMID: 39224930 PMCID: PMC11403552 DOI: 10.1021/acsami.4c09301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Distinct advantages of surface enhanced Raman scattering (SERS) in molecular detection can benefit the enantioselective discrimination of specific molecular configurations. However, many of the recent methods still lack versatility and require customized anchors to chemically interact with the studied analyte. In this work, we propose the utilization of helicoid-shaped chiral gold nanoparticles arranged in an ordered array on a gold grating surface for enantioselective SERS recognition. This arrangement ensured a homogeneous distribution of chiral plasmonic hot spots and facilitated the enhancement of the SERS response of targeted analytes through plasmon coupling between gold helicoid multimers (formed in the grating valleys) and adjacent regions of the gold grating. Naproxen enantiomers (R(+) and S(-)) were employed as model compounds, revealing a clear dependence of their SERS response on the chirality of the gold helicoids. Additionally, propranolol and penicillamine enantiomers were used to validate the universality of the proposed approach. Finally, numerical simulations were conducted to elucidate the roles of intensified local electric field and optical helicity density on the SERS signal intensity and on the chirality of the nanoparticles and enantiomers. Unlike previously reported methods, our approach relies on the excitation of a chiral plasmonic near-field and its interaction with the chiral environment of analyte molecules, obviating the need for the enantioselective entrapment of targeted molecules. Moreover, our method is not limited to specific analyte classes and can be applied to a broad range of chiral molecules.
Collapse
Affiliation(s)
- Anastasiia Skvortsova
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Andrea Tosovska
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Polina Bainova
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Mariia Erzina
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Premysl Fitl
- Department of Physics and Measurements, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Marie Urbanova
- Department of Physics and Measurements, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| |
Collapse
|
6
|
Oshchepkov AS. Buckybowl Molecular Tweezers for Recognition of Fullerenes. Chemphyschem 2024; 25:e202400435. [PMID: 38775747 DOI: 10.1002/cphc.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Buckybowl tweezers are a relatively young research area closely associated with the development of non-planar polycyclic aromatic systems and supramolecular chemistry. Since the appearance of the first prototypes in the early 2000s, the tweezers have undergone evolutionary changes. Nowadays they are able to effectively interact with fullerenes and the results opened up prospects for development in the field of sensing, nonlinear optics, and molecular switchers. In the present study, examples of corannulene-based and other buckybowl tweezers for the recognition of C60 and C70 fullerenes were summarized and analyzed. The main structural components of the tweezers were also reviewed in detail and their role in the formation of complexes with fullerenes was evaluated. The revealed structural patterns should trigger the development of novel recognition systems and materials with a wide range of applications.
Collapse
Affiliation(s)
- Alexander S Oshchepkov
- Organic Chemistry Department, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
- Department of Physics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
8
|
Okabe K, Yamashina M, Tsurumaki E, Uekusa H, Toyota S. Solid-State Self-Assembly: Exclusive Formation and Dynamic Interconversion of Discrete Cyclic Assemblies Based on Molecular Tweezers. J Org Chem 2024; 89:9488-9495. [PMID: 38913719 PMCID: PMC11232003 DOI: 10.1021/acs.joc.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In contrast to self-assembly in solution systems, the construction of well-defined assemblies in the solid state has long been identified as a challenging task. Herein, we report the formation of tweezers-shaped molecules into various assemblies through a solid-state self-assembly strategy. The relatively flexible molecular tweezers undergo exclusive and quantitative assembly into either cyclic hexamers or a porous network through classical recrystallization or the exposure of powders to solvent vapor, despite the fact that they form only dimers in solution. The cyclic hexamers have high thermal stability and exhibit moderate solid-state fluorescence. The formation of heterologous assemblies consisting of different tweezers allows for tuning these solid-state properties of the cyclic hexamer. Furthermore, (trimethylsilyl)ethynyl-substituted tweezers demonstrate solvent-vapor-induced dynamic interconversion between the cyclic hexamer and a pseudocyclic dimer in the solid state. This assembly behavior, which has been studied extensively in solution-based supramolecular chemistry, had not been accomplished in the solid state so far.
Collapse
Affiliation(s)
- Koki Okabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
9
|
Carrascal-Hernandez DC, Mendez-Lopez M, Insuasty D, García-Freites S, Sanjuan M, Márquez E. Molecular Recognition between Carbon Dioxide and Biodegradable Hydrogel Models: A Density Functional Theory (DFT) Investigation. Gels 2024; 10:386. [PMID: 38920932 PMCID: PMC11202771 DOI: 10.3390/gels10060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from -4.5 to -6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions.
Collapse
Affiliation(s)
- Domingo Cesar Carrascal-Hernandez
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| | - Maximiliano Mendez-Lopez
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| | - Daniel Insuasty
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| | - Samira García-Freites
- Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; (S.G.-F.); (M.S.)
| | - Marco Sanjuan
- Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; (S.G.-F.); (M.S.)
| | - Edgar Márquez
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| |
Collapse
|
10
|
Zhang HN, Huang X, Jin GX. Efficient and Selective Construction of 4 1 2 Metalla-links Using Weak C-H⋅⋅⋅Halogen Interactions. Angew Chem Int Ed Engl 2024; 63:e202405399. [PMID: 38570193 DOI: 10.1002/anie.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Through a coordination-driven self-assembly method, four4 1 2 ${4_1^2 }$ metalla-links and one tetranuclear monocycle were constructed with high selectivity and yield by adjusting the substituent species of the building blocks, as evidenced using X-ray crystallographic analysis, electrospray ionization-time-of-flight/mass spectrometry (ESI-TOF/MS), elemental analysis and detailed solution-state nuclear magnetic resonance (NMR) spectroscopy. Based on X-ray crystallographic analysis and independent gradient model analysis, a significant factor leading to the formation of4 1 2 ${4_1^2 }$ metalla-links was the introduction of F, Cl, Br and I atoms, which generated additional weak C-H⋅⋅⋅X (X=F, Cl, Br and I) interactions. Furthermore, the dynamic conversion of4 1 2 ${4_1^2 }$ metalla-links to monocyclic rings in methanol solution was systematically investigated using quantitative 1H NMR techniques.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| | - Xi Huang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| |
Collapse
|
11
|
Terry LM, Foreman MM, Rasmussen AP, McCoy AB, Weber JM. Probing Ion-Receptor Interactions in Halide Complexes of Octamethyl Calix[4]Pyrrole. J Am Chem Soc 2024; 146:12401-12409. [PMID: 38652043 DOI: 10.1021/jacs.3c13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ion receptors are molecular hosts that bind ionic guests, often with great selectivity. The interplay of solvation and ion binding in anion host-guest complexes in solution governs the binding efficiency and selectivity of such ion receptors. To gain molecular-level insight into the intrinsic binding properties of octamethyl calix[4]pyrrole (omC4P) host molecules with halide guest ions, we performed cryogenic ion vibrational spectroscopy (CIVS) of omC4P in complexes with fluoride, chloride, and bromide ions. We interpret the spectra using density functional theory, describing the infrared spectra of these complexes with both harmonic and anharmonic second-order vibrational perturbation theory (VPT2) calculations. The NH stretching modes of the pyrrole moieties serve as sensitive probes of the ion binding properties, as their frequencies encode the ion-receptor interactions. While scaled harmonic spectra reproduce the experimental NH stretching modes of the chloride and bromide complexes in broad strokes, the high proton affinity of fluoride introduces strong anharmonic effects. As a result, the spectrum of F-·omC4P is not even qualitatively captured by harmonic calculations, but it is recovered very well by VPT2 calculations. In addition, the VPT2 calculations recover the intricate coupling of the NH stretching modes with overtones and combination bands of CH stretching and NH bending modes and with low-frequency vibrations of the omC4P macrocycle, which are apparent for all of the halide ion complexes investigated here. A comparison of the CIVS spectra with infrared spectra of solutions of the same ion-receptor complexes in d3-acetonitrile and d6-acetone shows how ion solvation changes the ion-receptor interactions for the different halide ions.
Collapse
Affiliation(s)
- Lane M Terry
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Madison M Foreman
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Anne P Rasmussen
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
12
|
Zhai Z, Bai Q, Guan YM, Zhao H, Wu T, Pang J, Xu H, Xie TZ, Zhang Z, Wang P. Metal-ion-determined geometrical configurations of metallo-cages with different emission properties. Dalton Trans 2024; 53:7555-7560. [PMID: 38602370 DOI: 10.1039/d4dt00178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The formation of metallo-cages is affected by a variety of factors such as the ligands, metals, and anions, among which the impact of metals with different binding capacities is particularly important, but has rarely been studied in three-dimensional metallo-cages. Herein, we report the design of truxene-centered terpyridine ligands and the self-assembly of a series of tetrameric metallo-cages. The utilization of metal ions with strong (Zn2+, Fe2+) or weak (Cd2+) binding strength afforded 3D metallo-cages with low symmetry or highly symmetric metallo-tetrahedra, respectively, possessing totally different geometrical configurations. In addition, their photophysical properties and host-guest chemical properties were investigated.
Collapse
Affiliation(s)
- Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jingxian Pang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Haoxuan Xu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Wang Z, Chen Z, Zhang Z, Wang H, Zhang H. Highly-ordered assembled organic fluorescent materials for high-resolution bio-sensing: a review. Biomater Sci 2024; 12:2019-2032. [PMID: 38469672 DOI: 10.1039/d3bm02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organic fluorescent materials (OFMs) play a crucial role in the development of biosensors, enabling the extraction of biochemical information within cells and organisms, extending to the human body. Concurrently, OFM biosensors contribute significantly to the progress of modern medical and biological research. However, the practical applications of OFM biosensors face challenges, including issues related to low resolution, dispersivity, and stability. To overcome these challenges, scientists have introduced interactive elements to enhance the order of OFMs. Highly-ordered assembled OFMs represent a novel material type applied to biosensors. In comparison to conventional fluorescent materials, highly-ordered assembled OFMs typically exhibit robust anti-diffusion properties, high imaging contrast, and excellent stability. This approach has emerged as a promising method for effectively tracking bio-signals, particularly in the non-invasive monitoring of chronic diseases. This review introduces several highly-ordered assembled OFMs used in biosensors and also discusses various interactions that are responsible for their assembly, such as hydrogen bonding, π-π interaction, dipole-dipole interaction, and ion electrostatic interaction. Furthermore, it delves into the various applications of these biosensors while addressing the drawbacks that currently limit their commercial application. This review aims to provide a theoretical foundation for designing high-performance, highly-ordered assembled OFM biosensors suitable for practical applications. Additionally, it sheds light on the evolving trends in OFM biosensors and their application fields, offering valuable insights into the future of this dynamic research area.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zilong Chen
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zhenhao Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| |
Collapse
|
14
|
Singh G, Gupta S, Priyanka, Puspa, Rani B, Kaur H, Vikas, Yadav R, Sehgal R. Designing of bis-organosilanes as dual chemosensor for Sn(II) and Al(III) ions: Antibacterial activity and in silico molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123435. [PMID: 37788514 DOI: 10.1016/j.saa.2023.123435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Here, in this article, we present the design and synthesis of 1,2,3-triazole allied Schiff base functionalized organosilanes 6(a-e) utilising single step approach. These compounds were further characterised using NMR (1H, 13C) and mass spectrometry. Furthermore, UV-Visible and fluorescence spectroscopy showed that compound 6a had a high selectivityto Sn(II) and Al(III) metal ions compared to other relevant metal ions with lowlimit of detection (LOD) values. Suppression of -C=N isomerization, constrained intramolecular charge transfer (ICT), and complexation with Sn(II)/Al(III) ions (Chelation Enhanced Fluorescence (CHEF)) results in probe 6a's enhanced turn on fluorescence toward the detection of Sn(II) and Al(III) ions. Probe 6a was a strong candidate for the detection of Sn(II) and Al(III) ions due to its selectivity, reversibility, and competitiveness. Since the detecting phenomenon can be reversed, the sensor 6a perfectly mimics the INHIBIT molecular logic gate. Also, computational study utilising DFT technique was used to shed light on the complexation mode of 6a with Sn(II) and Al(III) metal ions. The compound 6a's antibacterial activity has also been successfully tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Additionally, the compound 6a was docked to the E. coli and S. aureus proteins, which exhibited excellent results with binding energies of -7.18 Kcal mol-1 and -7.05 Kcal mol-1, respectively. As both in-vitro and docking studies demonstrated anti-bacterial activity of the probe 6a, it may be anticipated that the probe has potential to serve as anti-bacterial drug in nearly future.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sofia Gupta
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Priyanka
- Department of Humanities and Applied Sciences, Echelon Institute of Technology Faridabad, 121101 Haryana, India
| | - Puspa
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Bhavana Rani
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Harshbir Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Vikas
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Richa Yadav
- Department of Medicinal Parasitology, PGIMER, Chandigarh 160014, India
| | - Rakesh Sehgal
- Department of Medicinal Parasitology, PGIMER, Chandigarh 160014, India.
| |
Collapse
|
15
|
Prajapati S, Jana S. Selective recognition of Fe 2+ in aqueous solution by chalcones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123129. [PMID: 37473665 DOI: 10.1016/j.saa.2023.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Recognition of metal ions in aqueous media has direct impact for designing new supramolecular hosts for targeting biochemical pathways. In the present work we have studied the binding behavior of three simple chalcones with variation in number of phenolic OH groups. These chalcones showed very good binding capabilities towards metal ions in CH3OH-H2O (1:1, v/v) solvent system. The receptors R1 has interacted with all metal ions, which are used in the present study through 2:1 mode of complexation whereas R2 have showed equilibrium between the complexes of 2:1 and 1:1 with few exceptions. The highest association constants (K21) of R1 and R2 for Fe2+ is observed as 1.1 × 109 (4) M-1 and 2.3 × 108 (7) M-1 respectively by fluorescence titration method. But R3, which is lack of any phenolic OH group, binds all the metal ions through the formation of 1:1 mode of complex formation by exploiting the only one donor site as carbonyl 'O' atom resulting lower association constant for all the metal ions. So intermolecular hydrogen bonding as well as π- π stacking interaction forced the receptors R1 and R2 to arrange in a pseudo cleft orientation for the recognition of metal ions in 2:1 mode of complex formation. The binding behaviour of the receptors with few alkali metal ions (Na+, K+ and Cs+) and alkaline-earth metal ions (Mg2+, Ca2+ and Ba2+) are also studied and observed weak binding nature in compared with the transition metal ions.
Collapse
Affiliation(s)
- Sunita Prajapati
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India.
| |
Collapse
|
16
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
17
|
Gu Y, Zheng JJ, Otake KI, Sakaki S, Ashitani H, Kubota Y, Kawaguchi S, Yao MS, Wang P, Wang Y, Li F, Kitagawa S. Soft corrugated channel with synergistic exclusive discrimination gating for CO 2 recognition in gas mixture. Nat Commun 2023; 14:4245. [PMID: 37454124 DOI: 10.1038/s41467-023-39470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Developing artificial porous systems with high molecular recognition performance is critical but very challenging to achieve selective uptake of a particular component from a mixture of many similar species, regardless of the size and affinity of these competing species. A porous platform that integrates multiple recognition mechanisms working cooperatively for highly efficient guest identification is desired. Here, we designed a flexible porous coordination polymer (PCP) and realised a corrugated channel system that cooperatively responds to only target gas molecules by taking advantage of its stereochemical shape, location of binding sites, and structural softness. The binding sites and structural deformation act synergistically, exhibiting exclusive discrimination gating (EDG) effect for selective gate-opening adsorption of CO2 over nine similar gas molecules, including N2, CH4, CO, O2, H2, Ar, C2H6, and even higher-affinity gases such as C2H2 and C2H4. Combining in-situ crystallographic experiments with theoretical studies, it is clear that this unparalleled ability to decipher the CO2 molecule is achieved through the coordination of framework dynamics, guest diffusion, and interaction energetics. Furthermore, the gas co-adsorption and breakthrough separation performance render the obtained PCP an efficient adsorbent for CO2 capture from various gas mixtures.
Collapse
Affiliation(s)
- Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Insitute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ying Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
18
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
19
|
Tabaei SR, Fernandez-Villamarin M, Vafaei S, Rooney L, Mendes PM. Recapitulating the Lateral Organization of Membrane Receptors at the Nanoscale. ACS NANO 2023. [PMID: 37200265 DOI: 10.1021/acsnano.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many cell membrane functions emerge from the lateral presentation of membrane receptors. The link between the nanoscale organization of the receptors and ligand binding remains, however, mostly unclear. In this work, we applied surface molecular imprinting and utilized the phase behavior of lipid bilayers to create platforms that recapitulate the lateral organization of membrane receptors at the nanoscale. We used liposomes decorated with amphiphilic boronic acids that commonly serve as synthetic saccharide receptors and generated three lateral modes of receptor presentation─random distribution, nanoclustering, and receptor crowding─and studied their interaction with saccharides. In comparison to liposomes with randomly dispersed receptors, surface-imprinted liposomes resulted in more than a 5-fold increase in avidity. Quantifying the binding affinity and cooperativity proved that the boost was mediated by the formation of the nanoclusters rather than a local increase in the receptor concentration. In contrast, receptor crowding, despite the presence of increased local receptor concentrations, prevented multivalent oligosaccharide binding due to steric effects. The findings demonstrate the significance of nanometric aspects of receptor presentation and generation of multivalent ligands including artificial lectins for the sensitive and specific detection of glycans.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, U.K
| | | | - Setareh Vafaei
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Lorcan Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, U.K
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| |
Collapse
|
20
|
Ariga K. Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:434-453. [PMID: 37091285 PMCID: PMC10113519 DOI: 10.3762/bjnano.14.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The development of nanotechnology has provided an opportunity to integrate a wide range of phenomena and disciplines from the atomic scale, the molecular scale, and the nanoscale into materials. Nanoarchitectonics as a post-nanotechnology concept is a methodology for developing functional material systems using units such as atoms, molecules, and nanomaterials. Especially, molecular nanoarchitectonics has been strongly promoted recently by incorporating nanotechnological methods into organic synthesis. Examples of research that have attracted attention include the direct observation of organic synthesis processes at the molecular level with high resolution, and the control of organic syntheses with probe microscope tips. These can also be considered as starting points for nanoarchitectonics. In this review, these examples of molecular nanoarchitectonics are introduced, and future prospects of nanoarchitectonics are discussed. The fusion of basic science and the application of practical functional materials will complete materials chemistry for everything.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
21
|
Arévalo-Fester J, Briceño A. Insights into Selective Removal by Dye Adsorption on Hydrophobic vs Multivalent Hydrophilic Functionalized MWCNTs. ACS OMEGA 2023; 8:11233-11250. [PMID: 37008137 PMCID: PMC10061520 DOI: 10.1021/acsomega.2c08203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Hydrophilic functionalized carbon nanotubes (MWCNT-COOH) were developed via hydrothermal glucose-coated carbonization, mixing MWCNTs with glucose in different weight ratios. Methyl violet (MV), methylene blue (MB), alizarin yellow (AY), and methyl orange (MO) were used as dye models for adsorption studies. Comparative dye adsorption capacity onto the pristine (MWCNT-raw) and functionalized (MWCNT-COOH-11) CNTs was evaluated in aqueous solution. These results revealed that MWCNT-raw is capable of adsorbing either anionic or cationic dyes. In contrast, an induced selective cation dye adsorption capacity is significantly enhanced on multivalent hydrophilic MWCNT-COOH, in comparison to a pristine surface. This ability can be tuned to the selective adsorption of cations over anionic dyes or between anionic mixtures from binary systems. An insight into adsorbate-adsorbent interactions shows that hierarchical supramolecular interactions dominate the adsorption processes, which is ascribed to the chemical modification by switching from a hydrophobic to a hydrophilic surface, dye charge, temperature, and potential matching multivalent acceptor/donor capacity between chemical groups in the adsorbent interface. The dye adsorption isotherm and thermodynamics on both surfaces were also studied. Changes in the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were evaluated. Thermodynamic parameters were endothermic on MWCNT-raw, whereas the adsorption process on MWCNT-COOH-11 revealed that adsorption processes were spontaneous and exothermic, accompanied by a significant reduction of entropy values as a consequence of a multivalent effect. This approach provides an eco-friendly, low-cost alternative for the preparation of supramolecular nanoadsorbents with unprecedented properties to achieve remarkable selective adsorption independent of the presence of intrinsic porosity.
Collapse
Affiliation(s)
- José Arévalo-Fester
- Instituto
Zuliano de Investigaciones Tecnológicas (INZIT), Km 15, La Cañada de Urdaneta, Estado Zulia 4001, Venezuela
- Instituto
Venezolano de Investigaciones Científicas (IVIC), Centro de
Química, Laboratorio de Síntesis y Caracterización
de Nuevos Materiales. P.O. Box 21817, Caracas 1020-A, Venezuela
| | - Alexander Briceño
- Instituto
Venezolano de Investigaciones Científicas (IVIC), Centro de
Química, Laboratorio de Síntesis y Caracterización
de Nuevos Materiales. P.O. Box 21817, Caracas 1020-A, Venezuela
| |
Collapse
|
22
|
Bhadra BN, Shrestha LK, Ariga K. Porous Boron Nitride Nanoarchitectonics for Environment: Adsorption in Water. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
23
|
Suzuki Y, Mizuta Y, Mikagi A, Misawa-Suzuki T, Tsuchido Y, Sugaya T, Hashimoto T, Ema K, Hayashita T. Recognition of d-Glucose in Water with Excellent Sensitivity, Selectivity, and Chiral Selectivity Using γ-Cyclodextrin and Fluorescent Boronic Acid Inclusion Complexes Having a Pseudo-diboronic Acid Moiety. ACS Sens 2023; 8:218-227. [PMID: 36537860 DOI: 10.1021/acssensors.2c02087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fluorescence recognition of d-glucose in water with excellent sensitivity, selectivity, and chiral selectivity is desired because d-glucose is an essential component in biological and pathological processes. We report an innovative approach that exploits the 1:2 stoichiometric inclusion complexes of γ-cyclodextrin (γ-CyD) with two molecules of fluorescent monoboronic acid-based receptors, which form a pseudo-diboronic acid moiety as the recognition site for d-glucose in water. Two monoboronic acids (1F and 2N) were easily synthesized without heating or column purification. The 1:2 stoichiometric inclusion complexes (1F/γ-CyD and 2N/γ-CyD) were prepared in a mixture of dimethyl sulfoxide/water (2/98 in v/v) by mixing γ-CyD and the corresponding monoboronic acids. Both 1F/γ-CyD and 2N/γ-CyD exhibited strong turn-on response to d-glucose with excellent selectivity over nine other saccharides in the water-rich solvent at pH 7.4 owing to the ditopic recognition of d-glucose by the pseudo-diboronic acid moieties. The limits of detection of 1F/γ-CyD and 2N/γ-CyD for d-glucose were 1.1 and 1.8 μM, respectively, indicating the remarkable sensitivity for the detection of d-glucose at μM levels. 1F/γ-CyD and 2N/γ-CyD also demonstrated chiral-selective recognition of d-glucose, which is apparent from the 2.0- and 6.3-fold enhancement of fluorescence by the addition of d-glucose relative to l-glucose addition, owing to the chiral pseudo-diboronic acid moieties produced by the chiral γ-CyD cavity. To the best of our knowledge, 2N/γ-CyD has the highest d/l selectivity among hitherto reported fluorescent diboronic acid-based receptors.
Collapse
Affiliation(s)
- Yota Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yuji Mizuta
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Tomoyo Misawa-Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoaki Sugaya
- Education Center, Faculty of Engineering, Chiba Institute of Technology, Shibazono, Narashino-shi, Chiba 275-0023, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Kazuhiro Ema
- Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
24
|
Barreto Gomes D, Galentino K, Sisquellas M, Monari L, Bouysset C, Cecchini M. ChemFlow─From 2D Chemical Libraries to Protein-Ligand Binding Free Energies. J Chem Inf Model 2023; 63:407-411. [PMID: 36603846 PMCID: PMC9875305 DOI: 10.1021/acs.jcim.2c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/07/2023]
Abstract
The accurate prediction of protein-ligand binding affinities is a fundamental problem for the rational design of new drug entities. Current computational approaches are either too expensive or inaccurate to be effectively used in virtual high-throughput screening campaigns. In addition, the most sophisticated methods, e.g., those based on configurational sampling by molecular dynamics, require significant pre- and postprocessing to provide a final ranking, which hinders straightforward applications by nonexpert users. We present a novel computational platform named ChemFlow to bridge the gap between 2D chemical libraries and estimated protein-ligand binding affinities. The software is designed to prepare a library of compounds provided in SMILES or SDF format, dock them into the protein binding site, and rescore the poses by simplified free energy calculations. Using a data set of 626 protein-ligand complexes and GPU computing, we demonstrate that ChemFlow provides relative binding free energies with an RMSE < 2 kcal/mol at a rate of 1000 ligands per day on a midsize computer cluster. The software is publicly available at https://github.com/IFMlab/ChemFlow.
Collapse
Affiliation(s)
- Diego
E. Barreto Gomes
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
- Department
of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Katia Galentino
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Marion Sisquellas
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Luca Monari
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Cédric Bouysset
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| |
Collapse
|
25
|
Shrestha LK, Shrestha RG, Shahi S, Gnawali CL, Adhikari MP, Bhadra BN, Ariga K. Biomass Nanoarchitectonics for Supercapacitor Applications. J Oleo Sci 2023; 72:11-32. [PMID: 36624057 DOI: 10.5650/jos.ess22377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nanoarchitectonics integrates nanotechnology with numerous scientific disciplines to create innovative and novel functional materials from nano-units (atoms, molecules, and nanomaterials). The objective of nanoarchitectonics concept is to develop functional materials and systems with rationally architected functional units. This paper explores the progress and potential of this field using biomass nanoarchitectonics for supercapacitor applications as examples of energetic materials and devices. Strategic design of nanoporous carbons that exhibit ultra-high surface area and hierarchically pore architectures comprising micro- and mesopore structure and controlled pore size distributions are of great significance in energy-related applications, including in high-performance supercapacitors, lithium-ion batteries, and fuel cells. Agricultural wastes or natural biomass are lignocellulosic materials and are excellent carbon sources for the preparation of hierarchically porous carbons with an ultra-high surface area that are attractive materials in high-performance supercapacitor applications due to high electrical and ion conduction, extreme porosity, and exceptional chemical and thermal stability. In this review, we will focus on the latest advancements in the fabrication of hierarchical porous carbon materials from different biomass by chemical activation method. Particularly, the importance of biomass-derived ultra-high surface area porous carbons, hierarchical architectures with interconnected pores in high-energy storage, and high-performance supercapacitors applications will be discussed. Finally, the current challenges and outlook for the further improvement of carbon materials derived from biomass or agricultural wastes in the advancements of supercapacitor devices will be discussed.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU)
| | | | - Biswa Nath Bhadra
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
26
|
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. MICROMACHINES 2022; 14:mi14010025. [PMID: 36677086 PMCID: PMC9860627 DOI: 10.3390/mi14010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
This review will focus on micromachines and microrobots, which are objects at the micro-level with similar machine functions, as well as nano-level objects such as molecular machines and nanomachines. The paper will initially review recent examples of molecular machines and microrobots that are not limited to interfaces, noting the diversity of their functions. Next, examples of molecular machines and micromachines/micro-robots functioning at the air-water interface will be discussed. The behaviors of molecular machines are influenced significantly by the specific characteristics of the air-water interface. By placing molecular machines at the air-water interface, the scientific horizon and depth of molecular machine research will increase dramatically. On the other hand, for microrobotics, more practical and advanced systems have been reported, such as the development of microrobots and microswimmers for environmental remediations and biomedical applications. The research currently being conducted on the surface of water may provide significant basic knowledge for future practical uses of molecular machines and microrobots.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
27
|
Cheng L, Guo Y, Liu Q, Liu G, Li R, Chen X, Zeng H, Liu G, Jin W. Metal Confined in 2D Membranes for Molecular Recognition and Sieving towards Ethylene/Ethane Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206349. [PMID: 36039875 DOI: 10.1002/adma.202206349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Membranes with nanochannels have exhibited great potential in molecular separations, while it remains a great challenge to separate molecules with very close physical properties and kinetic diameters (e.g., ethylene/ethane) owing to the lack of size-sieving property and specific affinity. Herein, a metal confined 2D sub-nanometer channel is reported to successfully discriminate ethylene over ethane via molecular recognition and sieving. Transition metal cations are paired with polyelectrolyte anions to achieve high dissociation activity, forming reversible complexation with ethylene. Aberration-corrected transmission electron microscopy observes that the metals with size of ≈2 nm are uniformly confined in graphene oxide (GO) interlayer channels with average height of ≈0.44 nm, thereby cooperating the size-sieving effect with a molecular recognition ability toward ethylene and stimulating its selective transport over ethane. The resulting ultrathin (≈60 nm) membrane exhibits superior ethylene/ethane separation performance far beyond the polymeric upper-bound. Density functional theory (DFT) and molecular dynamic simulations reveal that the metal@2D interlayer channel provides a molecular recognition pathway for selective gas transport. The proposed metal confined in 2D channel with molecular recognition and sieving properties would have broad application in other related fields such as single-atom catalysis, sensor and energy conversion.
Collapse
Affiliation(s)
- Long Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Renhao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Xi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Hui Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
28
|
Ariga K. Liquid Interfacial Nanoarchitectonics: Molecular Machines, Organic Semiconductors, Nanocarbons, Stem Cells, and Others. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Ibrahim MAA, Shehata MNI, Rady ASSM, Abuelliel HAA, Abd Elhafez HSM, Shawky AM, Oraby HF, Hasanin THA, Soliman MES, Moussa NAM. Effects of Lewis Basicity and Acidity on σ-Hole Interactions in Carbon-Bearing Complexes: A Comparative Ab Initio Study. Int J Mol Sci 2022; 23:13023. [PMID: 36361812 PMCID: PMC9658749 DOI: 10.3390/ijms232113023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2023] Open
Abstract
The effects of Lewis basicity and acidity on σ-hole interactions were investigated using two sets of carbon-containing complexes. In Set I, the effect of Lewis basicity was studied by substituting the X3/X atom(s) of the NC-C6H2-X3 and NCX Lewis bases (LB) with F, Cl, Br, or I. In Set II, the W-C-F3 and F-C-X3 (where X and W = F, Cl, Br, and I) molecules were utilized as Lewis acid (LA) centers. Concerning the Lewis basicity effect, higher negative interaction energies (Eint) were observed for the F-C-F3∙∙∙NC-C6H2-X3 complexes compared with the F-C-F3∙∙∙NCX analogs. Moreover, significant Eint was recorded for Set I complexes, along with decreasing the electron-withdrawing power of the X3/X atom(s). Among Set I complexes, the highest negative Eint was ascribed to the F-C-F3∙∙∙NC-C6H2-I3 complex with a value of -1.23 kcal/mol. For Set II complexes, Eint values of F-C-X3 bearing complexes were noted within the -1.05 to -2.08 kcal/mol scope, while they ranged from -0.82 to -1.20 kcal/mol for the W-C-F3 analogs. However, Vs,max quantities exhibited higher values in the case of W-C-F3 molecules compared with F-C-X3; preferable negative Eint were ascribed to the F-C-X3 bearing complexes. These findings were delineated as a consequence of the promoted contributions of the X3 substituents. Dispersion forces (Edisp) were identified as the dominant forces for these interactions. The obtained results provide a foundation for fields such as crystal engineering and supramolecular chemistry studies that focus on understanding the characteristics of carbon-bearing complexes.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Mohammed N. I. Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Al-shimaa S. M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hassan A. A. Abuelliel
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Heba S. M. Abd Elhafez
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Tamer H. A. Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Research Laboratory, School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
30
|
Highly sensitive sensing and quantitative detection of sulfate ion with a SERS chip-based on boric acid's Lewis effect. ANAL SCI 2022; 38:1385-1394. [PMID: 35927550 DOI: 10.1007/s44211-022-00169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/23/2022] [Indexed: 11/01/2022]
Abstract
Based on the Lewis acid's coordination principle, a surface-enhanced Raman scattering (SERS) chip strategy had been developed for the ultrasensitive quantitation of SO42-. Through the immobilization of silver nanoparticles (Ag NPs) and the construction of the boric acid-based sensing unit, the chip system displayed outstanding merits on the direct sensing of SO42-, e.g., simple operation, ultra-high sensitivity, reproducibility, excellent selectivity and specificity. Moreover, an accurate evaluation was obtained by ratiometric calculations on characteristic peaks (1382 and 1070 cm-1) for quantitative detection of SO42-. The detection limit was down to 10 nM. Tap water, beer, and mineral water samples were tested, and high recoveries were achieved (97.12-110.12%). Besides, such SERS chip also displayed strong applicability for the evaluation of SO32-. Therefore, this SERS chip provided a promising idea for the quantification of trace amounts of SO42- and SO32- in the fields of food safety and environmental monitoring.
Collapse
|
31
|
Shen X, Song J, Kawakami K, Ariga K. Molecule-to-Material-to-Bio Nanoarchitectonics with Biomedical Fullerene Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5404. [PMID: 35955337 PMCID: PMC9369991 DOI: 10.3390/ma15155404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics integrates nanotechnology with various other fields, with the goal of creating functional material systems from nanoscale units such as atoms, molecules, and nanomaterials. The concept bears strong similarities to the processes and functions seen in biological systems. Therefore, it is natural for materials designed through nanoarchitectonics to truly shine in bio-related applications. In this review, we present an overview of recent work exemplifying how nanoarchitectonics relates to biology and how it is being applied in biomedical research. First, we present nanoscale interactions being studied in basic biology and how they parallel nanoarchitectonics concepts. Then, we overview the state-of-the-art in biomedical applications pursuant to the nanoarchitectonics framework. On this basis, we take a deep dive into a particular building-block material frequently seen in nanoarchitectonics approaches: fullerene. We take a closer look at recent research on fullerene nanoparticles, paying special attention to biomedical applications in biosensing, gene delivery, and radical scavenging. With these subjects, we aim to illustrate the power of nanomaterials and biomimetic nanoarchitectonics when applied to bio-related applications, and we offer some considerations for future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| |
Collapse
|
32
|
Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. NANOSCALE 2022; 14:10610-10629. [PMID: 35838591 DOI: 10.1039/d2nr02513b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Promoted understanding of nanotechnology has enabled the construction of functional materials with nanoscale-regulated structures. Accordingly, materials science requires one-step further innovation by coupling nanotechnology with the other materials sciences. As a post-nanotechnology concept, nanoarchitectonics has recently been proposed. It is a methodology to architect functional material systems using atomic, molecular, and nanomaterial unit-components. One of the attractive methodologies would be to develop nanoarchitectonics in a defined dimensional environment with certain dynamism, such as liquid interfaces. However, nanoarchitectonics at liquid interfaces has not been fully explored because of difficulties in direct observations and evaluations with high-resolutions. This unsatisfied situation in the nanoscale understanding of liquid interfaces may keep liquid interfaces as unexplored and attractive frontiers in nanotechnology and nanoarchitectonics. Research efforts related to materials nanoarchitectonics on liquid interfaces have been continuously made. As exemplified in this review paper, a wide range of materials can be organized and functionalized on liquid interfaces, including organic molecules, inorganic nanomaterials, hybrids, organic semiconductor thin films, proteins, and stem cells. Two-dimensional nanocarbon sheets have been fabricated by molecular reactions at dynamically moving interfaces, and metal-organic frameworks and covalent organic frameworks have been fabricated by specific interactions and reactions at liquid interfaces. Therefore, functions such as sensors, devices, energy-related applications, and cell control are being explored. In fact, the potential for the nanoarchitectonics of functional materials in two-dimensional nanospaces at liquid surfaces is sufficiently high. On the basis of these backgrounds, this short review article describes recent approaches to materials nanoarchitectonics in a liquid-based two-dimensional world, i.e., interfacial regions within a nanoscale distance from the liquid phase.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
33
|
Xu K, Li B, Yao S, Li Z, Lu Y, Dong M, Qiu J, Luo L, Li C. Modular Introduction of
endo
‐Binding Sites in a Macrocyclic Cavity towards Selective Recognition of Neutral Azacycles. Angew Chem Int Ed Engl 2022; 61:e202203016. [DOI: 10.1002/anie.202203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kaidi Xu
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Bin Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Shibo Yao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Zhaoxian Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Yunfeng Lu
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
| | - Ming Dong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Jianfeng Qiu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Liqiang Luo
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
| | - Chunju Li
- College of Sciences Center for Supramolecular Chemistry and Catalysis Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
34
|
Al-Sayed E, Rompel A. Lanthanides Singing the Blues: Their Fascinating Role in the Assembly of Gigantic Molybdenum Blue Wheels. ACS NANOSCIENCE AU 2022; 2:179-197. [PMID: 35726275 PMCID: PMC9204829 DOI: 10.1021/acsnanoscienceau.1c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/16/2023]
Abstract
![]()
Molybdenum blues
(MBs) are a distinct class of polyoxometalates,
exhibiting versatile/impressive architectures and high structural
flexibility. In acidified and reduced aqueous environments, isopolymolybdates
generate precisely organizable building blocks, which enable unique
nanoscopic molecular systems (MBs) to be constructed and further fine-tuned
by hetero elements such as lanthanide (Ln) ions. This Review discusses
wheel-shaped MB-based structure types with strong emphasis on the
∼30 Ln-containing MBs as of August 2021, which include both
organically hybridized and nonhybridized structures synthesized to
date. The spotlight is thereby put on the lanthanide ions and ligand
types, which are crucial for the resulting Ln-patterns and alterations
in the gigantic structures. Several critical steps and reaction conditions
in their synthesis are highlighted, as well as appropriate methods
to investigate them both in solid state and in solution. The final
section addresses the homogeneous/heterogeneous catalytic, molecular
recognition and separation properties of wheel-shaped Ln-MBs, emphasizing
their inimitable behavior and encouraging their application in these
areas.
Collapse
Affiliation(s)
- Emir Al-Sayed
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
35
|
Ariga K. Mechano-Nanoarchitectonics: Design and Function. SMALL METHODS 2022; 6:e2101577. [PMID: 35352500 DOI: 10.1002/smtd.202101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Indexed: 05/27/2023]
Abstract
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
36
|
Hu X, Zhang T, Li J, Ma Z, Lei D, Zu B, Dou X. Competitive Delocalized Charge Transfer Boosted by Solvent Induction Strategy for Survivable Colorimetric Detection of ng-Level Urea. Anal Chem 2022; 94:6318-6328. [DOI: 10.1021/acs.analchem.2c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyun Hu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianshi Zhang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Ma
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Li C, Xu K, Li B, Yao S, Li Z, Lu Y, Dong M, Qiu J, Luo L. Modular Introduction of Endo‐Binding Sites in Macrocycle Cavity towards Selective Recognition of Neutral Azacycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunju Li
- Tianjin Normal University Chemistry No393 west Binshui Road Tianjin CHINA
| | - Kaidi Xu
- Shanghai University College of Science CHINA
| | - Bin Li
- Tianjin Normal University College of Chemistry CHINA
| | - Shibo Yao
- Tianjin Normal University College of Chemistry CHINA
| | - Zhaoxian Li
- Tianjin Normal University College of Chemistry CHINA
| | - Yunfeng Lu
- Shanghai University College of Science CHINA
| | - Ming Dong
- Tianjin Normal University College of Chemistry CHINA
| | - Jianfeng Qiu
- Tianjin Normal University College of Chemistry CHINA
| | - Liqiang Luo
- Shanghai University College of Science CHINA
| |
Collapse
|
38
|
Juanes M, Saragi RT, Pérez C, Enríquez L, Jaraíz M, Lesarri A. Torsional chirality and molecular recognition: the homo and heterochiral dimers of thenyl and furfuryl alcohol. Phys Chem Chem Phys 2022; 24:8999-9006. [PMID: 35380144 DOI: 10.1039/d2cp00479h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Furfuryl alcohol and thenyl alcohol contain a labile torsional chiral center, producing transiently chiral enantiomers interconverting in the nanosecond time-scale. We explored chiral molecular recognition using the weakly-bound intermolecular dimers of both alcohols, freezing stereomutation. Supersonic jet broadband microwave spectroscopy revealed homo and heterochiral diastereoisomers for each alcohol dimer and the structural characteristics of the clusters. All dimers are primarily stabilized by a moderately intense O-H⋯O hydrogen bond, but differ in the secondary interactions, which introduce additional hydrogen bonds either to the ring oxygen in furfuryl alcohol or to the π ring system in thenyl alcohol. Density-functional calculations (B2PLYP-D3(BJ)/def2-TZVP) show no clear preferences for a particular stereochemistry in the dimers, with relative energies of the order 1-2 kJ mol-1. The study suggests opportunities for the investigation of chiral recognition in molecules with torsional barriers in between transient and permanent interconversion regimes.
Collapse
Affiliation(s)
- Marcos Juanes
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Rizalina Tama Saragi
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Cristóbal Pérez
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Lourdes Enríquez
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain
| | - Martín Jaraíz
- Departamento de Electrónica, ETSIT, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| |
Collapse
|
39
|
Zhu L, Lu H, Guo X, Liu H. Multi-level arch characteristics and flow enhancement regulation of nano powders discharged from silo. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Shen X, Song J, Sevencan C, Leong DT, Ariga K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:199-224. [PMID: 35370475 PMCID: PMC8973389 DOI: 10.1080/14686996.2022.2054666] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 05/19/2023]
Abstract
Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
41
|
Ariga K. Biomimetic and Biological Nanoarchitectonics. Int J Mol Sci 2022; 23:3577. [PMID: 35408937 PMCID: PMC8998553 DOI: 10.3390/ijms23073577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
A post-nanotechnology concept has been assigned to an emerging concept, nanoarchitectonics. Nanoarchitectonics aims to establish a discipline in which functional materials are fabricated from nano-scale components such as atoms, molecules, and nanomaterials using various techniques. Nanoarchitectonics opens ways to form a more unified paradigm by integrating nanotechnology with organic chemistry, supramolecular chemistry, material chemistry, microfabrication technology, and biotechnology. On the other hand, biological systems consist of rational organization of constituent molecules. Their structures have highly asymmetric and hierarchical features that allow for chained functional coordination, signal amplification, and vector-like energy and signal flow. The process of nanoarchitectonics is based on the premise of combining several different processes, which makes it easier to obtain a hierarchical structure. Therefore, nanoarchitectonics is a more suitable methodology for creating highly functional systems based on structural asymmetry and hierarchy like biosystems. The creation of functional materials by nanoarchitectonics is somewhat similar to the creation of functional systems in biological systems. It can be said that the goal of nanoarchitectonics is to create highly functional systems similar to those found in biological systems. This review article summarizes the synthesis of biomimetic and biological molecules and their functional structure formation from various viewpoints, from the molecular level to the cellular level. Several recent examples are arranged and categorized to illustrate such a trend with sections of (i) synthetic nanoarchitectonics for bio-related units, (ii) self-assembly nanoarchitectonics with bio-related units, (iii) nanoarchitectonics with nucleic acids, (iv) nanoarchitectonics with peptides, (v) nanoarchitectonics with proteins, and (vi) bio-related nanoarchitectonics in conjugation with materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| |
Collapse
|
42
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
43
|
Shee N, Kim HJ. Three Isomeric Zn(II)-Sn(IV)-Zn(II) Porphyrin-Triad-Based Supramolecular Nanoarchitectures for the Morphology-Dependent Photocatalytic Degradation of Methyl Orange. ACS OMEGA 2022; 7:9775-9784. [PMID: 35350320 PMCID: PMC8945165 DOI: 10.1021/acsomega.2c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Three isomeric Zn(II)-Sn(IV)-Zn(II) porphyrin-based triads (T2, T3, and T4) were synthesized by the reaction of common Zn(II) porphyrins (ZnL) with different Sn(IV) porphyrins (SnP n ). The Sn(IV) porphyrin precursors differ with respect to the position of the pyridyl-N atoms. All compounds were characterized by 1H NMR, UV-vis, fluorescence spectroscopy, electrospray ionization-mass spectrometry, and field-emission scanning electron microscopy measurements. In these structures, the intramolecular cooperative metal-ligand coordination of the 3-pyridyl nitrogen in SnP 3 with axial ZnL and the π-π interactions between the adjacent porphyrin triad are the determining factors affecting the nanostructures of T3. Owing to the geometrical constraints of the SnP 2 center, this type of interaction is not possible for T2. Therefore, only the π-π interactions affect the self-assembly process. In the case of SnP 4 , intermolecular coordinative interactions and then π-π interactions are responsible for the nanostructure of T4. The morphology-dependent photocatalytic degradation of methyl orange (MO) dye in aqueous solution under visible light irradiation was observed for these photocatalysts, and the degradation ratio of MO varied from 76 to 94% within 100 min. Nanorod-shaped T3 exhibited higher performance compared to nanosphere T2 and nanoflake T4.
Collapse
Affiliation(s)
- Nirmal
Kumar Shee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Joon Kim
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
44
|
Kanao E, Nakano K, Kamei R, Hosomi T, Ishihama Y, Adachi J, Kubo T, Otsuka K, Yanagida T. Moderate molecular recognitions on ZnO m-plane and their selective capture/release of bio-related phosphoric acids. NANOSCALE ADVANCES 2022; 4:1649-1658. [PMID: 36134362 PMCID: PMC9417451 DOI: 10.1039/d1na00865j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/16/2022] [Indexed: 05/25/2023]
Abstract
Herein, we explore the hidden molecular recognition abilities of ZnO nanowires uniformly grown on the inner surface of an open tubular fused silica capillary via liquid chromatography. Chromatographic evaluation revealed that ZnO nanowires showed a stronger intermolecular interaction with phenylphosphoric acid than any other monosubstituted benzene. Furthermore, ZnO nanowires specifically recognized the phosphate groups present in nucleotides even in the aqueous mobile phase, and the intermolecular interaction increased with the number of phosphate groups. This discrimination of phosphate groups in nucleotides was unique to the rich (101̄0) m-plane of ZnO nanowires with a moderate hydrophilicity and negative charge. The discrimination could be evidenced by the changes in the infrared bands of the phosphate groups on nucleotides on ZnO nanowires. Finally, as an application of the molecular recognition, nucleotides were separated by the number of phosphate groups, utilizing optimized gradient elution on ZnO nanowire column. Thus, the present results elucidate the unique and versatile molecular selectivity of well-known ZnO nanostructures for the capture and separation of biomolecules.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Katsuya Nakano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Ryoma Kamei
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| |
Collapse
|
45
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
46
|
Moreno-Gómez N, Vargas EF, Buchner R. Ionic effects on supramolecular hosts: solvation and counter-ion binding in polar media. Phys Chem Chem Phys 2022; 24:2040-2050. [PMID: 35006219 DOI: 10.1039/d1cp05444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the progress of synthetic supramolecular chemistry in aqueous solution the design of host molecules soluble in this medium is essential. A possible route is the introduction of ionic residues, with the additional advantage that also electrostatic interactions can be used to form supramolecular architectures. In this work we study the effect of different ionic substituents on a resorcin[4]arene host on solvation and counterion binding in water and dimethyl sulfoxide (DMSO). To do so, we combine dielectric relaxation spectroscopy (DRS) at 298.15 K and dilute-solution conductivity measurements covering 278.15-308.15 K. The results indicate that studied substituents lead to a comparable increase in solubility in both water and the dipolar-aprotic DMSO. However, solvation and counterion binding not only depend on the nature of the ionic substituent but also on the solvent. Although intrinsically hydrophobic in nature, resorcin[4]arenes with ionic substituents also show strong hydrophilic hydration in water, with the extent depending on the nature of the ionic group. In contrast to that, solvophobicity apparently dominates the interactions of DMSO with the solute. Counterion binding was found for both solvents and is essentially determined by solvent polarity. It appears that, compared to neat DMSO, the solubility of the cationic resorcin[4]arene with dimethylamine substituents is strongly increased in water-DMSO mixtures due to the formation of hydrogen bonds between two DMSO molecules and one water molecule.
Collapse
Affiliation(s)
- Nicolás Moreno-Gómez
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany. .,Laboratorio de Termodinámica de Soluciones, Departamento de Química, Universidad de Los Andes, Cr. 1 No. 18 A-12, Bogotá, Colombia.
| | - Edgar F Vargas
- Laboratorio de Termodinámica de Soluciones, Departamento de Química, Universidad de Los Andes, Cr. 1 No. 18 A-12, Bogotá, Colombia.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
47
|
Bhadra BN, Shrestha LK, Ariga K. Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00872f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a post-nanotechnology concept, nanoarchitectonics has emerged from the 20th century to the 21st century. This review summarizes the recent progress in the field of metal-free porous carbon nanoarchitectonics.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
48
|
Bai Q, Liu Y, Wu T, Su H, Chen G, Guan Y, Wang M, Xie T, Zhang Z, Wang P. Metal Ions Determined Self-Assembly Using Terpyridine Building Blocks. Org Chem Front 2022. [DOI: 10.1039/d2qo00102k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the dynamic reversibility of coordination-driven force, the structures of metallo-cages are sensitive to many stimulus, including ligand geometry, temperature, concentration, anions, pH, light, and so on. Among them,...
Collapse
|
49
|
Dey SK, Harmalkar SS, Yadav RKHO, Lama P, Das G. Structure directing roles of weak noncovalent interactions and charge-assisted hydrogen bonds in the self-assembly of solvated podands: Example of an anion-assisted dimeric water capsule. CrystEngComm 2022. [DOI: 10.1039/d2ce00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures of two new podand molecules (1 and 2) synthesized from 1,3,5-tris(bromomethyl)mesitylene and two bromide salts of tris(4-amino-N-ethylbenzamide)amine (3) were elucidated to witness the structure directing roles of weak...
Collapse
|
50
|
Hu W, Shi J, Lv W, Jia X, Ariga K. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:393-412. [PMID: 35783540 PMCID: PMC9246028 DOI: 10.1080/14686996.2022.2082260] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoarchitectonics has emerged as a post-nanotechnology concept. As one of the applications of nanoarchitectonics, this review paper discusses the control of stem cell fate and function as an important issue. For hybrid nanoarchitectonics involving living cells, it is crucial to understand how biomaterials and their nanoarchitected structures regulate behaviours and fates of stem cells. In this review, biomaterials for the regulation of stem cell fate are firstly discussed. Besides multipotent differentiation, immunomodulation is an important biological function of mesenchymal stem cells (MSCs). MSCs can modulate immune cells to treat multiple immune- and inflammation-mediated diseases. The following sections summarize the recent advances of the regulation of the immunomodulatory functions of MSCs by biophysical signals. In the third part, we discussed how biomaterials direct the self-organization of pluripotent stem cells for organoid. Bioactive materials are constructed which mimic the biophysical cues of in vivo microenvironment such as elasticity, viscoelasticity, biodegradation, fluidity, topography, cell geometry, and etc. Stem cells interpret these biophysical cues by different cytoskeletal forces. The different cytoskeletal forces lead to substantial transcription and protein expression, which affect stem cell fate and function. Regulations of stem cells could not be utilized only for tissue repair and regenerative medicine but also potentially for production of advanced materials systems. Materials nanoarchitectonics with integration of stem cells and related biological substances would have high impacts in science and technology of advanced materials.
Collapse
Affiliation(s)
- Wei Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Jiaming Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Wenyan Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Xiaofang Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
- CONTACT Xiaofang Jia School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, P. R. China
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, the University of Tokyo, KashiwaJapan
- Katsuhiko Ariga International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki305-0044, Japan
| |
Collapse
|