1
|
Synthesis of NiFe2O4 Nanoparticles over the MIL-53 (Fe)/NaY Zeolite for the Sonodegradation of Toxic Organic Dyes from Water Solutions. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Maridevaru MC, Aljafari B, Anandan S, Ashokkumar M. Synergistic impacts of sonolysis aided photocatalytic degradation of water pollutant over perovskite-type CeNiO 3 nanospheres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01127a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current study reports on the preparation of perovskite-type CeNiO3 nanostructures as a sonophotocatalyst via a facile hydrothermal approach followed by annealing at 800 °C.
Collapse
Affiliation(s)
- Madappa C Maridevaru
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | | |
Collapse
|
3
|
Wegeberg C, Skavenborg ML, Liberato A, McPherson JN, Browne WR, Hedegård ED, McKenzie CJ. Engineering the Oxidative Potency of Non-Heme Iron(IV) Oxo Complexes in Water for C-H Oxidation by a cis Donor and Variation of the Second Coordination Sphere. Inorg Chem 2021; 60:1975-1984. [PMID: 33470794 DOI: 10.1021/acs.inorgchem.0c03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of iron(IV) oxo complexes, which differ in the donor (CH2py or CH2COO-) cis to the oxo group, three with hemilabile pendant donor/second coordination sphere base/acid arms (pyH/py or ROH), have been prepared in water at pH 2 and 7. The νFe═O values of 832 ± 2 cm-1 indicate similar FeIV═O bond strengths; however, different reactivities toward C-H substrates in water are observed. HAT occurs at rates that differ by 1 order of magnitude with nonclassical KIEs (kH/kD = 30-66) consistent with hydrogen atom tunneling. Higher KIEs correlate with faster reaction rates as well as a greater thermodynamic stability of the iron(III) resting states. A doubling in rate from pH 7 to pH 2 for substrate C-H oxidation by the most potent complex, that with a cis-carboxylate donor, [FeIVO(Htpena)]2+, is observed. Supramolecular assistance by the first and second coordination spheres in activating the substrate is proposed. The lifetime of this complex in the absence of a C-H substrate is the shortest (at pH 2, 3 h vs up to 1.3 days for the most stable complex), implying that slow water oxidation is a competing background reaction. The iron(IV)═O complex bearing an alcohol moiety in the second coordination sphere displays significantly shorter lifetimes due to a competing selective intramolecular oxidation of the ligand.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrea Liberato
- Universidad de Cádiz, Facultad de Ciencias, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Puerto Real, Cádiz 11510, Spain
| | - James N McPherson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Sadeghi M, Farhadi S, Zabardasti A. Magnetic separable zeolite-type ZSM-5/CdS nanorods/MoS 2 nanoflowers/MnFe 2O 4 quaternary nanocomposites: synthesis and application of sonocatalytic activities. NEW J CHEM 2020. [DOI: 10.1039/d0nj04056h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic zeolite-type ZSM-5/CdS nanorods/MoS2 nanoflowers/MnFe2O4 quaternary nanocomposites were synthesized and used for the sonocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Meysam Sadeghi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Saeed Farhadi
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | | |
Collapse
|
5
|
Somasundar Y, Shen LQ, Hoane AG, Tang LL, Mills MR, Burton AE, Ryabov AD, Collins TJ. Structural, Mechanistic, and Ultradilute Catalysis Portrayal of Substrate Inhibition in the TAML–Hydrogen Peroxide Catalytic Oxidation of the Persistent Drug and Micropollutant, Propranolol. J Am Chem Soc 2018; 140:12280-12289. [DOI: 10.1021/jacs.8b08108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yogesh Somasundar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Longzhu Q. Shen
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, U.K
| | - Alexis G. Hoane
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liang L. Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew R. Mills
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Abigail E. Burton
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander D. Ryabov
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Tang LL, DeNardo MA, Schuler CJ, Mills MR, Gayathri C, Gil RR, Kanda R, Collins TJ. Homogeneous Catalysis Under Ultradilute Conditions: TAML/NaClO Oxidation of Persistent Metaldehyde. J Am Chem Soc 2017; 139:879-887. [DOI: 10.1021/jacs.6b11145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liang L. Tang
- Institute
for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew A. DeNardo
- Institute
for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Christopher J. Schuler
- Institute
for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew R. Mills
- Institute
for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chakicherla Gayathri
- Institute
for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Roberto R. Gil
- Institute
for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rakesh Kanda
- Institute
for the Environment, Brunel University, Halsbury Building (130), Kingston
Lane, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Terrence J. Collins
- Institute
for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Raj P, Singh A, Singh A, Singh N. Syntheses, crystal structures and photophysical properties of Cu(ii) complexes: fine tuning of a coordination sphere for selective binding of azamethiphos. Dalton Trans 2017; 46:985-994. [DOI: 10.1039/c6dt04039j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized two copper complexesC1–2and these complexes were explored as chemosensors for selective binding with azamethiphos.
Collapse
Affiliation(s)
- Pushap Raj
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| | - Amanpreet Singh
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities
- Jawaharlal Nehru Govt. Engineering College
- Sundernagar
- India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| |
Collapse
|
8
|
Tang LL, DeNardo MA, Gayathri C, Gil RR, Kanda R, Collins TJ. TAML/H2O2 Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5261-5268. [PMID: 27088657 DOI: 10.1021/acs.est.5b05518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The extremely persistent molluscicide, metaldehyde, widely used on farms and gardens, is often detected in drinking water sources of various countries at concentrations of regulatory concern. Metaldehyde contamination restricts treatment options. Conventional technologies for remediating dilute organics in drinking water, activated carbon, and ozone, are insufficiently effective against metaldehyde. Some treatment plants have resorted to effective, but more costly UV/H2O2. Here we have examined if TAML/H2O2 can decompose metaldehyde under laboratory conditions to guide development of a better real world option. TAML/H2O2 slowly degrades metaldehyde to acetaldehyde and acetic acid. Nuclear magnetic resonance spectroscopy ((1)H NMR) was used to monitor the degradation-the technique requires a high metaldehyde concentration (60 ppm). Within the pH range of 6.5-9, the reaction rate is greatest at pH 7. Under optimum conditions, one aliquot of TAML 1a (400 nM) catalyzed 5% degradation over 10 h with a turnover number of 40. Five sequential TAML aliquots (2 μM overall) effected a 31% removal over 60 h. TAML/H2O2 degraded metaldehyde steadily over many hours, highlighting an important long-service property. The observation of metaldehyde decomposition under mild conditions provides a further indication that TAML catalysis holds promise for advancing water treatment. These results have turned our attention to more aggressive TAML activators in development, which we expect will advance the observed technical performance.
Collapse
Affiliation(s)
- Liang L Tang
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew A DeNardo
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chakicherla Gayathri
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rakesh Kanda
- Institute for the Environment, Brunel University , Halsbury Building (130), Kingston Lane, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Terrence J Collins
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Raj P, Singh A, Kaur K, Aree T, Singh A, Singh N. Fluorescent Chemosensors for Selective and Sensitive Detection of Phosmet/Chlorpyrifos with Octahedral Ni(2+) Complexes. Inorg Chem 2016; 55:4874-83. [PMID: 27115348 DOI: 10.1021/acs.inorgchem.6b00332] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hexadentate ligands H2L1-L3 with mixed S, N, O donor sites and possessing substituents having either "no" or electron-releasing/withdrawing nature at terminal ends are synthesized. The ligands H2L1-L3 were tested for binding with library of metal ions, wherein maximum efficiency was observed with Ni(2+), and it motivated us to prepare the Ni(2+) complexes. The ligand H2L1 underwent deprotonation and formed binuclear complex when interacted with Ni(2+) as evident from its crystal structure. The H2L2 and H2L3 having electron-withdrawing/electron releasing groups, respectively, were also deprotonated; however, they afforded mononuclear complexes with Ni(2+) ion. This signifies the importance of steric parameters instead of electronic factors in these particular cases. Impressed by differential behavior of complexes of H2L1 and H2L2/H2L3 with Ni(2+) and their photophysical and electrochemical properties, all the metal complexes were studied for their chemosensing ability. Nowadays with increased use of organophosphate, there is alarming increase of these agents in the environment, and thus we require efficient technique to estimate the level of these agents with high sensitivity and selectivity in aqueous medium. The Ni(2+) complexes with hydrophobic nature were suspended into aqueous medium for testing them as sensor for organophosphate. The (L1)2.(Ni(2+))2 could sense phosmet with detection limit of 44 nM, whereas L2.Ni(2+) and L3.Ni(2+) exhibited the detection limits of 62 and 71 nM, respectively, for chlorpyrifos.
Collapse
Affiliation(s)
- Pushap Raj
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Amanpreet Singh
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Kamalpreet Kaur
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Phyathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities, Jawaharlal Nehru Government Engineering College , Sundernagar, Mandi (H.P.) 175018, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| |
Collapse
|
10
|
DeNardo MA, Mills MR, Ryabov AD, Collins TJ. Unifying Evaluation of the Technical Performances of Iron-Tetra-amido Macrocyclic Ligand Oxidation Catalysts. J Am Chem Soc 2016; 138:2933-6. [DOI: 10.1021/jacs.5b13087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew A. DeNardo
- Department of Chemistry,
Institute of Green Science, Mellon Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew R. Mills
- Department of Chemistry,
Institute of Green Science, Mellon Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander D. Ryabov
- Department of Chemistry,
Institute of Green Science, Mellon Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Terrence J. Collins
- Department of Chemistry,
Institute of Green Science, Mellon Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Mills MR, Burton AE, Mori DI, Ryabov AD, Collins TJ. Iron(IV) or iron(V)? Heterolytic or free radical? Oxidation pathways of a TAML activator in acetonitrile at −40 °C. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1073270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Matthew R. Mills
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abigail E. Burton
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dylan I. Mori
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | |
Collapse
|
12
|
Kundu S, Chanda A, Thompson JVK, Diabes G, Khetan SK, Ryabov AD, Collins TJ. Rapid degradation of oxidation resistant nitrophenols by TAML activator and H2O2. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01426j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TAML and H2O2remove toxic nitrophenol pollutants producing innocuous minerals. Mechanistic studies reveal the substrate inhibition due to the reversible binding of nitrophenolate to iron(iii) of the TAML resting state.
Collapse
Affiliation(s)
- Soumen Kundu
- Institute for Green Science
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Arani Chanda
- Institute for Green Science
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Jasper V. K. Thompson
- Institute for Green Science
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - George Diabes
- Institute for Green Science
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Sushil K. Khetan
- Institute for Green Science
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Alexander D. Ryabov
- Institute for Green Science
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Terrence J. Collins
- Institute for Green Science
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| |
Collapse
|
13
|
Acetylcholinesterase-Free Colorimetric Detection of Chlorpyrifos in Fruit Juice Based on the Oxidation Reaction of H2O2 with Chlorpyrifos and ABTS2− Catalyzed by Hemin/G-Quadruplex DNAzyme. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0042-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Schmidt J, Ehasz C, Epperson M, Klas K, Wyatt J, Hennig M, Forconi M. The effect of the hydrophobic environment on the retro-aldol reaction: comparison to a computationally-designed enzyme. Org Biomol Chem 2013; 11:8419-25. [PMID: 24189834 PMCID: PMC3919508 DOI: 10.1039/c3ob41898g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent work on a computationally-designed retroaldolase RA-61 suggested that most of the rate-acceleration brought about by this enzyme was due to non-specific interactions with the aromatic substrate. To provide a benchmark for the role of non-specific interactions in this system, we measured the second-order rate constant for the amine-catalysed retro-aldol reaction of methodol in the presence of non-specific hydrophobic pockets such as micelles. We found that a simple micellar system, that consists of a positively-charged surfactant and a long-chain amine, can accelerate the retro-aldol reaction of methodol by 9500-fold. This effect rivals the 10(5)-fold rate acceleration of RA-61. Similar results were obtained with BSA used as the catalyst, implying that the retro-aldol reaction of methodol can be greatly accelerated by non-specific hydrophobic pockets that contain an amino group.
Collapse
Affiliation(s)
- Joshua Schmidt
- College of Charleston, Department of Chemistry and Biochemistry, 66 George Street, Charleston, SC 29424, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Truong L, DeNardo MA, Kundu S, Collins TJ, Tanguay RL. Zebrafish Assays as Developmental Toxicity Indicators in The Design of TAML Oxidation Catalysts. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2013; 15:2339-2343. [PMID: 24748850 PMCID: PMC3989102 DOI: 10.1039/c3gc40376a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
TAML activators promise a novel water treatment approach by efficiently catalysing peroxide-based degradation of chemicals of high concern at environmental concentrations. Green design ethics demands an exploration of TAML toxicity. Exposure to high concentrations of certain activators caused adverse effects in zebrafish. At typical TAML operational concentrations, development was not perturbed.
Collapse
Affiliation(s)
- Lisa Truong
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, 28645 East HWY 34, Corvallis, OR 97333, USA. Fax: 01 541 737 6074; Tel: 01 541 737 6514
| | - Matthew A. DeNardo
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA. Fax: 01 412 268 1061; Tel: 01 412 268 6335
| | - Soumen Kundu
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA. Fax: 01 412 268 1061; Tel: 01 412 268 6335
| | - Terrence J. Collins
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA. Fax: 01 412 268 1061; Tel: 01 412 268 6335
| | - Robert L. Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, 28645 East HWY 34, Corvallis, OR 97333, USA. Fax: 01 541 737 6074; Tel: 01 541 737 6514
| |
Collapse
|
16
|
Kundu S, Chanda A, Khetan SK, Ryabov AD, Collins TJ. TAML activator/peroxide-catalyzed facile oxidative degradation of the persistent explosives trinitrotoluene and trinitrobenzene in micellar solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5319-5326. [PMID: 23586823 DOI: 10.1021/es4000627] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
TAML activators are well-known for their ability to activate hydrogen peroxide to oxidize persistent pollutants in water. The trinitroaromatic explosives, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB), are often encountered together as persistent, toxic pollutants. Here we show that an aggressive TAML activator with peroxides boosts the effectiveness of the known surfactant/base promoted breakdown of TNT and transforms the surfactant induced nondestructive binding of base to TNB into an extensive multistep degradation process. Treatment of basic cationic surfactant solutions of either TNT or TNB with TAML/peroxide (hydrogen peroxide and tert-butylhydroperoxide, TBHP) gave complete pollutant removal for both in <1 h with >75% of the nitrogen and ≥20% of the carbon converted to nitrite/nitrate and formate, respectively. For TNT, the TAML advantage is to advance the process toward mineralization. Basic surfactant solutions of TNB gave the colored solutions typical of known Meisenheimer complexes which did not progress to degradation products over many hours. However with added TAML activator, the color was bleached quickly and the TNB starting compound was degraded extensively toward minerals within an hour. A slower surfactant-free TAML activator/peroxide process also degrades TNT/TNB effectively. Thus, TAML/peroxide amplification effectively advances TNT and TNB water treatment giving reason to explore the environmental applicability of the approach.
Collapse
Affiliation(s)
- Soumen Kundu
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | |
Collapse
|
17
|
Ryabov AD. Green Challenges of Catalysis via Iron(IV)oxo and Iron(V)oxo Species. ADVANCES IN INORGANIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-404582-8.00004-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Kundu S, Annavajhala M, Kurnikov IV, Ryabov AD, Collins TJ. Experimental and Theoretical Evidence for Multiple FeIV Reactive Intermediates in TAML-Activator Catalysis: Rationalizing a Counterintuitive Reactivity Order. Chemistry 2012; 18:10244-9. [DOI: 10.1002/chem.201201665] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Indexed: 11/06/2022]
|