Wu W, Lv X, Wang J, Xie J. Integrating AgI/AgBr biphasic heterostructures encased by few layer h-BN with enhanced catalytic activity and stability.
J Colloid Interface Sci 2017;
496:434-445. [PMID:
28254610 DOI:
10.1016/j.jcis.2017.02.046]
[Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022]
Abstract
Using freshly prepared water-soluble KBr crystal as facile, low-cost sacrificial template, AgBr nanocubes were synthesized through one-pot precipitation method, then navy bean shaped AgI/AgBr biphasic heterostructures were synthesized through anion-exchange reaction and encased within few-layer h-BN to obtain final product. The obtained heterostructured AgI/AgBr/h-BN composite without plasmonic noble metal nanoparticles was used as stable and high active photocatalyst for dye degradation under visible light irradiation, comparing both with self-prepared normal AgBr, AgBr cubes, AgI/AgBr navy beans and other related catalysts reported in the literature. The significant boosting of activity was attributed to the formation of AgI/AgBr interface and the coupling of few-layer h-BN, the latter of which not only effectively suppresses the reduction of silver ions but greatly enhance the charge separation. Furthermore, it was suggested that the photogenerated holes and superoxide radical were the main active species according to photoelectron chemical measurements, electron spin resonance spin-trap analysis and radical trapping experiments. Finally, the possible mechanism of enhanced photocatalytic activity and stability was discussed and proposed. The work demonstrates that engineering Ag-based semiconductor coupling with h-BN would profit the design strategy for low-cost, solar-driven photocatalysts.
Collapse