1
|
Persson I. Structure and size of complete hydration shells of metal ions and inorganic anions in aqueous solution. Dalton Trans 2024; 53:15517-15538. [PMID: 39211949 DOI: 10.1039/d4dt01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The structures of nine hydrated metal ions in aqueous solution have been redetermined by large angle X-ray scattering to obtain experimental data of better quality than those reported 40-50 years ago. Accurate M-OI and M-(OI-H)⋯OII distances and M-OI(H)⋯OII bond angles are reported for the hydrated magnesium(II), aluminium(III), manganese(II), iron(II), iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) ions; the subscripts I and II denote oxygen atoms in the first and second hydration sphere, respectively. Reported structures of hydrated metal ions in aqueous solution are summarized and evaluated with emphasis on a possible relationship between M-OI-OII bond angles and bonding character. Metal ions with high charge density have M-OI-OII bond angles close to 120°, indicative of a mainly electrostatic interaction with the oxygen atom in the water molecule in the first hydration shell. Metal ions forming bonds with a significant covalent contribution, as e.g. mercury(II) and tin(II), have M-OI-OII bond angles close to 109.5°. This implies that they bind to one of the free electron pairs in the water molecule. Comparison of M-O bond distances of hydrated metal ions in the solid state with one hydration shell, and in aqueous solution with in most cases at least two hydration shells, shows no significant differences. On the other hand, the X-O bond distance in hydrated oxoanions increases by ca. 0.02 Å in aqueous solution in comparison with the corresponding X-O distance in the solid state. A linear correlation is observed between volume, calculated from the van der Waals radius of the hydrated ion, and the ionic diffusion coefficient in aqueous solution. This correlation strongly indicates that monovalent metal ions, except lithium and silver(I), and singly-charged monovalent oxoanions have a single hydration shell. Divalent metal ions, bismuth(III) and the lanthanoid(III) and actinoid(III) ions have two hydration shells. Trivalent transition and tetravalent metal ions have two full hydration shells and portion of a third one. Doubly charged oxoanions have one well-defined hydration shell and an ill-defined second one.
Collapse
Affiliation(s)
- Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
2
|
Herbert JM, Paul SK. Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface. Molecules 2021; 26:6719. [PMID: 34771133 PMCID: PMC8588468 DOI: 10.3390/molecules26216719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion-water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl-, Br-, I-, CN-, OCN-, SCN-, NO2-, NO3-, and ClOn- (n=1,2,3,4), several of which are archetypal examples of surface-active species. In all cases, we find that average anion-water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br-(aq), I-(aq), ClO4-(aq), and SCN-(aq), and also for ClO-(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl-(aq) ion has a slightly larger CT energy at the interface, but NO3-(aq) does not; these two species are borderline cases where consensus is lacking regarding their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.
Collapse
Affiliation(s)
- John M. Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| | | |
Collapse
|
3
|
Martini MA, Rüdiger O, Breuer N, Nöring B, DeBeer S, Rodríguez-Maciá P, Birrell JA. The Nonphysiological Reductant Sodium Dithionite and [FeFe] Hydrogenase: Influence on the Enzyme Mechanism. J Am Chem Soc 2021; 143:18159-18171. [PMID: 34668697 PMCID: PMC8569811 DOI: 10.1021/jacs.1c07322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[FeFe] hydrogenases are highly active enzymes for interconverting protons and electrons with hydrogen (H2). Their active site H-cluster is formed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) covalently attached to a unique [2Fe] subcluster ([2Fe]H), where both sites are redox active. Heterolytic splitting and formation of H2 takes place at [2Fe]H, while [4Fe-4S]H stores electrons. The detailed catalytic mechanism of these enzymes is under intense investigation, with two dominant models existing in the literature. In one model, an alternative form of the active oxidized state Hox, named HoxH, which forms at low pH in the presence of the nonphysiological reductant sodium dithionite (NaDT), is believed to play a crucial role. HoxH was previously suggested to have a protonated [4Fe-4S]H. Here, we show that HoxH forms by simple addition of sodium sulfite (Na2SO3, the dominant oxidation product of NaDT) at low pH. The low pH requirement indicates that sulfur dioxide (SO2) is the species involved. Spectroscopy supports binding at or near [4Fe-4S]H, causing its redox potential to increase by ∼60 mV. This potential shift detunes the redox potentials of the subclusters of the H-cluster, lowering activity, as shown in protein film electrochemistry (PFE). Together, these results indicate that HoxH and its one-electron reduced counterpart Hred'H are artifacts of using a nonphysiological reductant, and not crucial catalytic intermediates. We propose renaming these states as the "dithionite (DT) inhibited" states Hox-DTi and Hred-DTi. The broader potential implications of using a nonphysiological reductant in spectroscopic and mechanistic studies of enzymes are highlighted.
Collapse
Affiliation(s)
- Maria Alessandra Martini
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Nina Breuer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Birgit Nöring
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patricia Rodríguez-Maciá
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, U.K
| | - James A Birrell
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Borah S. Spatially resolved hydration shells and dynamics of different sulfur species in water from first-principle molecular dynamics simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Abstract
The strength of hydrogen bonding to and structure of hydrated oxometallate ions in aqueous solution have been studied by double difference infrared (DDIR) spectroscopy and large-angle X-ray scattering (LAXS), respectively. Anions are hydrated by accepting hydrogen bonds from the hydrating water molecules. The oxygen atom of the permanganate and perrhenate ions form weaker and longer hydrogen bonds to water than the hydrogen bonds in bulk water (i.e., they act as structure breakers), while the oxygen atoms of the chromate, dichromate, molybdate, tungstate, and hydrogenvanadate ions form hydrogen bonds stronger than those in bulk water (i.e., they act as structure makers). The oxometallate ions form one hydration shell distinguishable from bulk water as determined by DDIR spectroscopy and LAXS. The hydration of oxoanions results in X-O bond distances ca. 0.02 Å longer than those in unsolvated ions in the solid state not involved in strong bonding to counterions. The oxygens of oxoanions with a central atom from the second and third series in the periodic table and the hydrogenvanadate ion hydrogen bind three hydrating water molecules, while oxygens of oxoanions with a heavier central atom only form hydrogen bonds to two water molecules.
Collapse
Affiliation(s)
- Maciej Śmiechowski
- Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, PL-80-233 Gdańsk, Poland
| | - Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
6
|
Weil M, Mereiter K. Sodium sulfite heptahydrate and its relation to sodium carbonate heptahydrate. Acta Crystallogr C Struct Chem 2020; 76:427-432. [PMID: 32367823 PMCID: PMC7199194 DOI: 10.1107/s2053229620004404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
The monoclinic crystal structure of Na2SO3(H2O)7 is characterized by an alternating stacking of (100) cationic sodium-water layers and anionic sulfite layers along [100]. The cationic layers are made up from two types of [Na(H2O)6] octahedra that form linear 1∞[Na(H2O)4/2(H2O)2/1] chains linked by dimeric [Na(H2O)2/2(H2O)4/1]2 units on both sides of the chains. The isolated trigonal-pyramidal sulfite anions are connected to the cationic layers through an intricate network of O-H...O hydrogen bonds, together with a remarkable O-H...S hydrogen bond, with an O...S donor-acceptor distance of 3.2582 (6) Å, which is about 0.05 Å shorter than the average for O-H...S hydrogen bonds in thiosalt hydrates and organic sulfur compounds of the type Y-S-Z (Y/Z = C, N, O or S). Structural relationships between monoclinic Na2SO3(H2O)7 and orthorhombic Na2CO3(H2O)7 are discussed in detail.
Collapse
Affiliation(s)
- Matthias Weil
- Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
| | - Kurt Mereiter
- Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
| |
Collapse
|
7
|
Sharma B, Chandra A. Dynamics of Water in the Solvation Shell of an Iodate Ion: A Born-Oppenheimer Molecular Dynamics Study. J Phys Chem B 2020; 124:2618-2631. [PMID: 32150681 DOI: 10.1021/acs.jpcb.9b12008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The iodate ion has an anisotropic structure and charge distribution. It has a pyramidal shape with the iodine atom located at the peak of the pyramid. The water molecules interact differently with the positively charged iodine and the negatively charged oxygen atoms of this anion, giving rise to two distinct solvation shells. In the present study, we have performed ab initio Born-Oppenheimer molecular dynamics simulations to investigate the dynamics of water molecules in the iodine and oxygen solvation shells of the iodate ion and compared the behavior with those of the bulk. The dynamics of water is calculated for both the BLYP and the dispersion-corrected BLYP-D3 functionals at room temperature. The dynamics of water in the solvation shells at higher temperatures of 353 and 330 K has also been investigated for the BLYP and BLYP-D3 functionals, respectively. The hydrogen bond dynamics, vibrational spectral diffusion, orientational and translational diffusion, and residence dynamics of water molecules in the two solvation shells are looked at in the current study. The ion-water hydrogen bond dynamics is found to be somewhat faster than that for water-water hydrogen bonds in the bulk, which can be attributed to a ring-like electron distribution on the iodate oxygens. The dynamical trends are connected to the water structure making/breaking properties of the positively charged iodine and negatively charged oxygen sites of the anion. Furthermore, orientational jumps of the iodate ion and also those of surrounding water molecules which are hydrogen bonded to the oxygen atoms of the iodate ion are also investigated. It is found that the nature of these orientational jumps can be different from those reported earlier for planar polyoxyanions such as the nitrate ion.
Collapse
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| |
Collapse
|
8
|
Song F, Al-Ameed K, Schilling M, Fox T, Luber S, Patzke GR. Mechanistically Driven Control over Cubane Oxo Cluster Catalysts. J Am Chem Soc 2019; 141:8846-8857. [PMID: 31120246 DOI: 10.1021/jacs.9b01356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Predictive and mechanistically driven access to polynuclear oxo clusters and related materials remains a grand challenge of inorganic chemistry. We here introduce a novel strategy for synthetic control over highly sought-after transition metal {M4O4} cubanes. They attract interest as molecular water oxidation catalysts that combine features of both heterogeneous oxide catalysts and nature's cuboidal {CaMn4O5} center of photosystem II. For the first time, we demonstrate the outstanding structure-directing effect of straightforward inorganic counteranions in solution on the self-assembly of oxo clusters. We introduce a selective counteranion toolbox for the controlled assembly of di(2-pyridyl) ketone (dpk) with M(OAc)2 (M = Co, Ni) precursors into different cubane types. Perchlorate anions provide selective access to type 2 cubanes with the characteristic {H2O-M2(OR)2-OH2} edge-site, such as [Co4(dpy-C{OH}O)4(OAc)2(H2O)2](ClO4)2. Type 1 cubanes with separated polar faces [Co4(dpy-C{OH}O)4(L2)4] n+ (L2 = OAc, Cl, or OAc and H2O) can be tuned with a wide range of other counteranions. The combination of these counteranion sets with Ni(OAc)2 as precursor selectively produces type 2 Co/Ni-mixed or {Ni4O4} cubanes. Systematic mechanistic experiments in combination with computational studies provide strong evidence for type 2 cubane formation through reaction of the key dimeric building block [M2(dpy-C{OH}O)2(H2O)4]2+ with monomers, such as [Co(dpy-C{OH}O)(OAc)(H2O)3]. Furthermore, both experiments and DFT calculations support an energetically favorable type 1 cubane formation pathway via direct head-to-head combination of two [Co2(dpy-C{OH}O)2(OAc)2(H2O)2] dimers. Finally, the visible-light-driven water oxidation activity of type 1 and 2 cubanes with tuned ligand environments was assessed. We pave the way to efficient design concepts in coordination chemistry through ionic control over cluster assembly pathways. Our comprehensive strategy demonstrates how retrosynthetic analyses can be implemented with readily available assembly directing counteranions to provide rapid access to tuned molecular materials.
Collapse
Affiliation(s)
- Fangyuan Song
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Karrar Al-Ameed
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland.,Faculty of Science , University of Kufa , 54001 Najaf , Iraq
| | - Mauro Schilling
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Thomas Fox
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Sandra Luber
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Greta R Patzke
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| |
Collapse
|
9
|
Prasetyo N, Hünenberger PH, Hofer TS. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li + Using ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6443-6459. [PMID: 30284829 DOI: 10.1021/acs.jctc.8b00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recently proposed thermodynamic integration (TI) approach formulated in the framework of quantum mechanical/molecular mechanical molecular dynamics (QM/MM MD) simulations is applied to study the structure, dynamics, and absolute intrinsic hydration free energy Δs GM+,wat◦ of the Li+ ion at a correlated ab initio level of theory. Based on the results, standard values (298.15 K, ideal gas at 1 bar, ideal solute at 1 molal) for the absolute intrinsic hydration free energy [Formula: see text] of the proton, the surface electric potential jump χwat◦ upon entering bulk water, and the absolute single-electrode potential [Formula: see text] of the reference hydrogen electrode are calculated to be -1099.9 ± 4.2 kJ·mol-1, 0.13 ± 0.08 V, and 4.28 ± 0.04 V, respectively, in excellent agreement with the standard values recommended by Hünenberger and Reif on the basis of an extensive evaluation of the available experimental data (-1100 ± 5 kJ·mol-1, 0.13 ± 0.10 V, and 4.28 ± 0.13 V). The simulation results for Li+ are also compared to those for Na+ and K+ from a previous study in terms of relative hydration free energies ΔΔs GM+,wat◦ and relative electrode potentials [Formula: see text]. The calculated values are found to agree extremely well with the experimental differences in standard conventional hydration free energies ΔΔs GM+,wat• and redox potentials [Formula: see text]. The level of agreement between simulation and experiment, which is quantitative within error bars, underlines the substantial accuracy improvement achieved by applying a highly demanding QM/MM approach at the resolution-of-identity second-order Møller-Plesset perturbation (RIMP2) level over calculations relying on purely molecular mechanical or density functional theory (DFT) descriptions. A detailed analysis of the structural and dynamical properties of the Li+ hydrate indicates that a correct description of the solvation structure and dynamics is achieved as well at this level of theory. Consideration of the QM/MM potential-energy components also shows that the partitioning into QM and MM zones does not induce any significant energetic artifact for the system considered.
Collapse
Affiliation(s)
- Niko Prasetyo
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria.,Austria-Indonesia Centre (AIC) for Computational Chemistry , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia.,Department of Chemistry, Faculty of Mathematics and Natural Sciences , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie , ETH Zürich, ETH-Hönggerberg , HCI Building , CH-8093 Zürich , Switzerland
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria
| |
Collapse
|
10
|
Persson I, Trublet M, Klysubun W. Structure Determination of Phosphoric Acid and Phosphate Ions in Aqueous Solution Using EXAFS Spectroscopy and Large Angle X-ray Scattering. J Phys Chem A 2018; 122:7413-7420. [PMID: 30156411 DOI: 10.1021/acs.jpca.8b05641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures of hydrated phosphoric acid and phosphate ions (H2PO4-, HPO42-, and PO43-) in aqueous solution have been determined by P K-edge EXAFS and large angle X-ray scattering (LAXS). The P-O bond distance in all phosphate species studied is close to 1.53 Å. The P-(O)···Oaq distances have been refined to ca. 3.6 Å from the LAXS data giving a P-O···Oaq bond angle close to tetrahedral, suggesting that each oxygen or OH group of phosphoric acid and dihydrogen phosphate, on average, hydrogen bind three water molecules. The (P-)O(-H)···Oaq and (P-)O···(H-)Oaq hydrogen bonds in hydrated phosphoric acid and the H2PO4- ion are shorter than the hydrogen bonds in neat water. This supports previous infrared spectroscopic studies claiming that the hydrogen bonds in hydrated phosphoric acid and phosphate ions are stronger than the hydrogen bonds in neat water. Phosphoric acid and phosphate ions can therefore be regarded as structure making solutes. This is the first study applying transmission mode X-ray absorption spectroscopy (XAS) data collection on the P K-edge. It shows that XAS spectra collected in transmission mode have a much better S/N ratio than data collected in fluorescence mode, allowing accurate determination of P-O bond distances. Furthermore, P K-edge EXAFS data collected in fluorescence mode display a higher amplitude at high k than expected due to increasing radiated volume of the sample with increasing energy as the total absorption decreases sharply with increasing energy of the X-rays. As a result, the fluorescence signal becomes nonproportional to the intensity of the X-ray beam over the EXAFS spectrum. This results in an increasing amplitude of the EXAFS function with increasing energy of the X-ray beam resulting in too small Debye-Waller coefficients.
Collapse
Affiliation(s)
- Ingmar Persson
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , P.O.Box 7015, SE-750 07 Uppsala , Sweden
| | - Mylène Trublet
- Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering , Luleå University of Technology , SE-971 87 Luleå , Sweden
| | - Wantana Klysubun
- Synchrotron Light Research Institute , 111 Moo 6, University Avenue , Muang , Nakhon Ratchasima 30000 , Thailand
| |
Collapse
|
11
|
Hey JC, Doyle EJ, Chen Y, Johnston RL. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0154. [PMID: 29431682 PMCID: PMC5805918 DOI: 10.1098/rsta.2017.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
We present putative global minima for the micro-hydrated sulfite SO32-(H2O) N and chlorate ClO3-(H2O) N systems in the range 3≤N≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤N≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems.This article is part of the theme issue 'Modern theoretical chemistry'.
Collapse
Affiliation(s)
- John C Hey
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Emily J Doyle
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Yuting Chen
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Roy L Johnston
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Sharma B, Chandra A. Nature of hydration shells of a polyoxy-anion with a large cationic centre: The case of iodate ion in water. J Comput Chem 2018; 39:1226-1235. [DOI: 10.1002/jcc.25185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur Uttar Pradesh 208016 India
| | - Amalendu Chandra
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
13
|
Saleh M, Hofer TS. Structure and dynamics of Ni2+ in liquid ammonia: A quantum mechanical charge field molecular dynamics (QMCF-MD) study. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease. J Inorg Biochem 2016; 154:42-9. [DOI: 10.1016/j.jinorgbio.2015.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/22/2015] [Accepted: 11/01/2015] [Indexed: 11/21/2022]
|
15
|
Canaval LR, Passler PP, Rode BM. The hydration properties of Gd(III) and Tb(III): An ab initio quantum mechanical molecular dynamics study. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Eklund L, Hofer TS, Persson I. Structure and water exchange dynamics of hydrated oxo halo ions in aqueous solution using QMCF MD simulation, large angle X-ray scattering and EXAFS. Dalton Trans 2015; 44:1816-28. [PMID: 25473816 PMCID: PMC4281468 DOI: 10.1039/c4dt02580f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO2(-), chlorate, ClO3(-), and perchlorate, ClO4(-). In addition, the structures of the hydrated hypochlorite, ClO(-), bromate, BrO3(-), iodate, IO3(-) and metaperiodate, IO4(-), ions have been determined in aqueous solution by means of LAXS. The structures of the bromate, metaperiodate, and orthoperiodate, H2IO6(3-), ions have been determined by EXAFS as solid sodium salts and in aqueous solution as well. The results show clearly that the only form of periodate present in aqueous solution is metaperiodate. The Cl-O bond distances in the hydrated oxo chloro anions as determined by LAXS and obtained in the QMCF MD simulations are in excellent agreement, being 0.01-0.02 Å longer than in solid anhydrous salts due to hydration through hydrogen bonding to water molecules. The oxo halo anions, all with unit negative charge, have low charge density making them typical structure breakers, thus the hydrogen bonds formed to the hydrating water molecules are weaker and more short-lived than those between water molecules in pure water. The water exchange mechanism of the oxo chloro anions resembles those of the oxo sulfur anions with a direct exchange at the oxygen atoms for perchlorate and sulfate. The water exchange rate for the perchlorate ion is significantly faster, τ0.5 = 1.4 ps, compared to the hydrated sulfate ion and pure water, τ0.5 = 2.6 and 1.7 ps, respectively. The angular radial distribution functions show that the chlorate and sulfite ions have a more complex water exchange mechanism. As the chlorite and chlorate ions are more weakly hydrated than the sulfite ion the spatial occupancy is less well-defined and it is not possible to follow any well-defined migration pattern as it is difficult to distinguish between hydrating water molecules and bulk water in the region close to the ions.
Collapse
Affiliation(s)
- Lars Eklund
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O.Box 7015, SE-750 07 Uppsala, Sweden
| | - Tomas S. Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ingmar Persson
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O.Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
17
|
Canaval LR, Rode BM. The hydration properties of Eu(II) and Eu(III): An ab initio quantum mechanical molecular dynamics study. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.10.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Moin ST, Weiss AK, Rode BM. Ionized CO2 and SO2 in aqueous environment: Ab initio QMCF-MD studies. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Sakwarathorn T, Pongstabodee S, Vchirawongkwin V, Canaval LR, Tirler AO, Hofer TS. Characteristics of selenate in aqueous solution – An ab initio QMCF-MD study. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Hofer TS. Perspectives for hybrid ab initio/molecular mechanical simulations of solutions: from complex chemistry to proton-transfer reactions and interfaces. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
As a consequence of the ongoing development of enhanced computational resources, theoretical chemistry has become an increasingly valuable field for the investigation of a variety of chemical systems. Simulations employing a hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) technique have been shown to be a particularly promising approach, whenever ultrafast (i.e., picosecond) dynamical properties are to be studied, which are in many cases difficult to access via experimental techniques. Details of the quantum mechanical charge field (QMCF) ansatz, an advanced QM/MM protocol, are discussed and simulation results for various systems ranging from simple ionic hydrates to solvated organic molecules and coordination complexes in solution are presented. A particularly challenging application is the description of proton-transfer reactions in chemical simulations, which is a prerequisite to study acidified and basic systems. The methodical requirements for a combination of the QMCF methodology with a dissociative potential model for the description of the solvent are discussed. Furthermore, the possible extension of QM/MM approaches to solid/liquid interfaces is outlined.
Collapse
|
21
|
Eklund L, Persson I. Structure and hydrogen bonding of the hydrated selenite and selenate ions in aqueous solution. Dalton Trans 2014; 43:6315-21. [DOI: 10.1039/c3dt53468e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selenite ion has an asymmetric hydration sphere with loosely electrostatically bound water molecules outside the free electron pair.
Collapse
Affiliation(s)
- Lars Eklund
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- SE-750 07 Uppsala, Sweden
| | - Ingmar Persson
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- SE-750 07 Uppsala, Sweden
| |
Collapse
|
22
|
Eklund L, Hofer TS, Weiss AKH, Tirler AO, Persson I. Structure and water exchange of the hydrated thiosulfate ion in aqueous solution using QMCF MD simulation and large angle X-ray scattering. Dalton Trans 2014; 43:12711-20. [DOI: 10.1039/c4dt01010h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Experimental and simulation data of the thiosulfate ion show large similarities in hydration structure and mechanism with the sulfate ion but with weaker hydration of the terminal sulfur atom in thiosulfate.
Collapse
Affiliation(s)
- Lars Eklund
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- SE-750 07 Uppsala, Sweden
| | - Tomas S. Hofer
- Theoretical Chemistry Division
- Institute of General
- Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck, Austria
| | - Alexander K. H. Weiss
- Theoretical Chemistry Division
- Institute of General
- Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck, Austria
| | - Andreas O. Tirler
- Theoretical Chemistry Division
- Institute of General
- Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck, Austria
| | - Ingmar Persson
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- SE-750 07 Uppsala, Sweden
| |
Collapse
|
23
|
Moin ST, Hofer TS, Weiss AKH, Rode BM. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region. J Chem Phys 2013; 139:014503. [DOI: 10.1063/1.4811114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
24
|
|
25
|
Weiss AKH, Hofer TS. Exploiting the capabilities of quantum chemical simulations to characterise the hydration of molecular compounds. RSC Adv 2013. [DOI: 10.1039/c2ra21873a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Trinapakul M, Kritayakornupong C, Tongraar A, Vchirawongkwin V. Active site of the solvated thiosulfate ion characterized by hydration structures and dynamics. Dalton Trans 2013; 42:10807-17. [PMID: 23783566 DOI: 10.1039/c3dt50329a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Montira Trinapakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
27
|
Vchirawongkwin V, Pornpiganon C, Kritayakornupong C, Tongraar A, Rode BM. The Stability of Bisulfite and Sulfonate Ions in Aqueous Solution Characterized by Hydration Structure and Dynamics. J Phys Chem B 2012; 116:11498-507. [DOI: 10.1021/jp305648e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Viwat Vchirawongkwin
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Chokchai Pornpiganon
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Chinapong Kritayakornupong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Anan Tongraar
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Bernd M. Rode
- Theoretical Chemistry Division,
Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck,
Austria
| |
Collapse
|