1
|
A colorimetric sensing probe for chromium (III) ion based on domino like reaction. Colloids Surf B Biointerfaces 2022; 215:112494. [PMID: 35421818 DOI: 10.1016/j.colsurfb.2022.112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
Abstract
In this work, a gold nanobipyramid@Ag nanorod (AuNBP@Ag NR)-based sensor platform was developed for the quantitative, visual, and sensitive detection of Cr3+ ions in aqueous solutions. This assay provides quantitative detection of Cr3+, which relies on the absorbance change of AuNBP@Ag NRs due to morphological change of the AuNBP@Ag NRs induced by Cr3+. When AuNBP@Ag NRs and Cr3+ mix, the coordination reaction of the carboxyl groups of citrate and Cr3+ occurs, which leads to the collapse of Ag shell nanorods, similar to the domino effect, and obvious color changes from yellow to pink can be observed by the naked eye. When combined with UV-vis spectrophotometer-based colorimetric detection, a detection limit of 8.7 nM for Cr3+ in ultrapure water was achieved. With the advantages of high sensitivity, selectivity, and performance, we anticipate that the sensor will be helpful for the on-site, quantitative detection of Cr3+ ions in water samples.
Collapse
|
2
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
3
|
Wang D, Liang Y, Wang Z, Hu S, Yang J. Hydrothermal synthesis of Eu 3+-doped BaMoO 4 fluorescent probe for the selective detection of Fe 3+ ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BaMoO4:Eu3+ fluorescent probe materials have high selectivity and sensitivity for Fe3+-ion detection and can be applied to the detection of Fe3+ in actual wastewater.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Yunhao Liang
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhiyi Wang
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shanshan Hu
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Jun Yang
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
4
|
Salman AD, Juzsakova T, Ákos R, Ibrahim RI, Al-Mayyahi MA, Mohsen S, Abdullah TA, Domokos E. Synthesis and surface modification of magnetic Fe 3O 4@SiO 2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28428-28443. [PMID: 33538976 DOI: 10.1007/s11356-020-12170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The main objective of this work is to produce an eco-friendly and economically nano-adsorbent which can separate scandium metal ions Sc from a model aqueous phase prior to applying these adsorbents in industrial filed. The magnetic core-shell structure Fe3O4@SiO2 nanoparticles were synthesized by modified Stöber method and functionalized with (3-aminopropyl) triethoxysilane APTES as a coupling agent and ethylenediaminetetraacetic acid (EDTA) as a ligand. Magnetic nano support adsorbents exhibit many attractive opportunities due to their easy removal and possibility of reusing. The ligand grafting was chemically robust and does not appreciably influence the morphology or the structure of the substrate. To evaluate the potential, the prepared hybrid nanoparticles were used as nano-adsorbent for Sc ions from model aqueous solutions due to the fact that rare earth elements (REEs) have a strong affinity for oxygen and nitrogen donors. The iron oxide nanoparticles were prepared by co-precipitation method at pH 10 and pH 11 to get the best morphology and nanoscale dimensions of iron oxide magnetic nanoparticles. The particle size, morphology, specific surface area, and surface modification were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and X-ray powder diffraction (XRD). The results showed that the Fe3O4 nanoparticles with average particle size of 15 ± 3 nm were successfully synthesized at pH 11, and 25 °C. Moreover, the prepared Fe3O4 nanoparticles were coated with amorphous SiO2 and functionalized with amino and carboxyl groups. The adsorption study conditions of Sc are as follows: the initial concentrations of the Sc model solution varied 10-50 mg/L, 20 mL volume, 20-80 mg of the Fe3O4@SiO2-COO adsorbent, pH range of 1-5, and 5 h contact time at 25 °C temperature. The adsorption equilibrium was represented with Langmuir, Freundlich, and Temkin isotherm models. Langmuir model was found to have the correlation coefficient value in good agreement with experimental results. However, the adsorption process followed pseudo-second-order kinetics.
Collapse
Affiliation(s)
- Ali Dawood Salman
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary.
- Department of Chemical and Petroleum Refining Engineering/College of Oil and Gas Engineering, Basrah University, Basra, Iraq.
| | - Tatjána Juzsakova
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Rédey Ákos
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Raheek I Ibrahim
- Electromechanical Engineering Department, University of Technology- Iraq, Baghdad, Iraq.
| | - Mohammad A Al-Mayyahi
- Department of Chemical and Petroleum Refining Engineering/College of Oil and Gas Engineering, Basrah University, Basra, Iraq
| | - Saja Mohsen
- Nanotechnology Advanced Material Research Center, University of Technology, Baghdad, Iraq
| | - Thamer Adnan Abdullah
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Endre Domokos
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
5
|
Niu T, Yao C, Xie W, Zhang S, Xu Y. A red luminescent Eu 3+ doped conjugated microporous polymer for highly sensitive and selective detection of aluminum ions. Polym Chem 2021. [DOI: 10.1039/d0py01482f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Eu3+ doped-CMP composite can be used as a chemosensor for highly sensitive and selective detection of Al3+.
Collapse
Affiliation(s)
- Tianhui Niu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| |
Collapse
|
6
|
Cui D, Yao C, Xu Y, Che G. Conjugated Microporous Polymers Doped with Rare Earth Ions: Synthesis, Characterization and Energy Transfer. Chempluschem 2020; 85:1778-1782. [PMID: 33263943 DOI: 10.1002/cplu.202000355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Indexed: 01/01/2023]
Abstract
In order to study the energy transfer between the conjugated polymer and rare-earth ions, a series of conjugated microporous polymers (CMPs) CMP-COOH@M (M=Eu3+ , Tb3+ , La3+ , and Sm3+ ) with different kinds of rare-earth ions was synthesized, in which the conjugated networks can effectively improve the luminescence of rare-earth ions due to the effective energy transfer from the CMP network to the rare-earth ions centers. The absolute quantum yield of CMP-COOH (ΦFL ) is 29.1 %, while the ΦFL value of CMP-COOH@Eu, CMP-COOH@Tb, CMP-COOH@La, and CMP-COOH@Sm is 9.4, 8.6, 14.3, and 9.1 %, respectively. This result indicates that the quantum efficiency of CMPs network is 1/2-1/3 of the original one due to the coordination of rare earth ions, that is, rare-earth ions can be recognized as fine modulators to adjust the emission color of CMPs in a controlled manner through controlling the species of rare-earth ions.
Collapse
Affiliation(s)
- Di Cui
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 399 Zhuoyue Street, Changchun, 130103, P. R. China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 399 Zhuoyue Street, Changchun, 130103, P. R. China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 399 Zhuoyue Street, Changchun, 130103, P. R. China
- School of Chemistry and Environmental Engineering, the Collaborative Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, 7989 Weixing Street, Changchun, 130022, P. R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 399 Zhuoyue Street, Changchun, 130103, P. R. China
| |
Collapse
|
7
|
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020; 10:2631-2644. [PMID: 32194825 PMCID: PMC7052904 DOI: 10.7150/thno.40808] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative image-guided surgery (IGS) has attracted extensive research interests in determination of tumor margins from surrounding normal tissues. Introduction of near infrared (NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high chemical/photochemical stability. The recent advances in elements doping and morphologies controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth nanoparticles hold advantages in reduction of light scattering, photon absorption and autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical applications. In this review, we systematically compared the benefits of RE nanoparticles with other NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises of NIR emissive RE nanoparticles for IGS were also discussed.
Collapse
Affiliation(s)
- Zhibei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Iodide-assisted silver nanoplates for colorimetric determination of chromium(III) and copper(II) via an aggregation/fusion/oxidation etching strategy. Mikrochim Acta 2019; 187:19. [DOI: 10.1007/s00604-019-3982-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/26/2019] [Indexed: 11/26/2022]
|
9
|
Li QF, Ge GW, Sun Y, Yu M, Wang Z. Influence of counter ions on structure, morphology, thermal stability of lanthanide complexes containing dipicolinic acid ligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:333-338. [PMID: 30798215 DOI: 10.1016/j.saa.2019.02.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/28/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Two kinds of lanthanide coordination polymers formed by dipicolinic acid with lanthanide ions were synthesized by varying the counter ions. And their crystal structures, morphology and thermal stabilities were measured and compared. X-ray single-crystal diffraction analysis reveals that Na3[Ln(DPA)3] (Ln = Tb or Eu) stretches to a rigid network by means of bridging Na+ ion. Moreover, Na3[Ln(DPA)]3 exhibits good thermal stability and luminescent properties, and its optical properties can be remained even after heating at 200 °C more than 3 days. However, when Na+ in Na3[Ln(DPA)3] was replaced with NH4+, i.e., (NH4)3[Ln(DPA)3] with a supramolecular structure based on π-π stacking and other weak interactions, shows relatively poor thermal stability which leads to deterioration of their luminescence properties after heating treatment. This result confirms that the rigid frame structure of Na3[Ln(DPA)]3 plays a crucial role in improving its thermal stability and keeping its highly luminescent quantum efficiency.
Collapse
Affiliation(s)
- Qing-Feng Li
- The Key Laboratory of Rare Earth Functional Materials and Applications, Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, Henan, China; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, China.
| | - Gen-Wu Ge
- The Key Laboratory of Rare Earth Functional Materials and Applications, Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, Henan, China; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, China
| | - Yanke Sun
- The Key Laboratory of Rare Earth Functional Materials and Applications, Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, Henan, China; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, China
| | - Mingshen Yu
- The Key Laboratory of Rare Earth Functional Materials and Applications, Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, Henan, China; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, China
| | - Zhenling Wang
- The Key Laboratory of Rare Earth Functional Materials and Applications, Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou 466001, Henan, China; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, China.
| |
Collapse
|
10
|
Li X, Zhang S, Dang Y, Liu Z, Zhang Z, Shan D, Zhang X, Wang T, Lu X. Ultratrace Naked-Eye Colorimetric Ratio Assay of Chromium(III) Ion in Aqueous Solution via Stimuli-Responsive Morphological Transformation of Silver Nanoflakes. Anal Chem 2019; 91:4031-4038. [DOI: 10.1021/acs.analchem.8b05472] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuemei Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xuehong Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Tiansheng Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| |
Collapse
|
11
|
Pawar RC, Park TJ, Choi DH, Jeon KW, Ahn SH, Lee CS. Stable and magnetically reusable nanoporous magnetite micro/nanospheres for rapid extraction of carcinogenic contaminants from water. RSC Adv 2016. [DOI: 10.1039/c6ra02359b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic shows the overall experimental details of hydrothermal process and formation of porous structures with magnetic separability test.
Collapse
Affiliation(s)
- Rajendra C. Pawar
- Department of Materials Engineering
- Hanyang University
- South Korea 426-791
| | - Tae Joon Park
- Research Institute of Engineering and Technology
- Hanyang University
- South Korea 426-791
| | - Da-Hyun Choi
- Department of Materials Engineering
- Hanyang University
- South Korea 426-791
| | - Kwang-won Jeon
- Department of Materials Engineering
- Hanyang University
- South Korea 426-791
| | - Sung Hoon Ahn
- School of Mechanical & Aerospace Engineering
- Seoul National University
- South Korea 151-742
| | - Caroline S. Lee
- Department of Materials Engineering
- Hanyang University
- South Korea 426-791
| |
Collapse
|
12
|
Liu J, Liu J, Liu W, Zhang H, Yang Z, Wang B, Chen F, Chen H. Triple-Emitting Dumbbell Fluorescent Nanoprobe for Multicolor Detection and Imaging Applications. Inorg Chem 2015; 54:7725-34. [DOI: 10.1021/acs.inorgchem.5b00610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Liu
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, State Key Laboratory of Applied Organic Chemistry,
and Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P. R. China
| | - Jian Liu
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, State Key Laboratory of Applied Organic Chemistry,
and Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P. R. China
| | - Weisheng Liu
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, State Key Laboratory of Applied Organic Chemistry,
and Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P. R. China
| | - Haoli Zhang
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, State Key Laboratory of Applied Organic Chemistry,
and Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P. R. China
| | - Zhengyin Yang
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, State Key Laboratory of Applied Organic Chemistry,
and Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P. R. China
| | - Baodui Wang
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, State Key Laboratory of Applied Organic Chemistry,
and Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P. R. China
| | - Fengjuan Chen
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, State Key Laboratory of Applied Organic Chemistry,
and Key Laboratory of Special Function Materials and Structure Design,
Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P. R. China
| | - Haotai Chen
- State
Key Laboratory of Veterinary Etiologic Biology, National Foot-and-Mouth
Disease Reference Laboratory of China, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, P. R. China
| |
Collapse
|
13
|
Liu J, Zuo W, Zhang W, Liu J, Wang Z, Yang Z, Wang B. Europium(III) complex-functionalized magnetic nanoparticle as a chemosensor for ultrasensitive detection and removal of copper(II) from aqueous solution. NANOSCALE 2014; 6:11473-11478. [PMID: 25155471 DOI: 10.1039/c4nr03454f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ultrasensitive, accurate detection and separation of heavy metal ions is very important in environmental monitoring and biological detection. In this paper, a highly sensitive and specific detection method for Cu(2+) based on the fluorescence quenching of a europium(III) hybrid magnetic nanoprobe is presented. This nanoprobe can detect Cu(2+) over a wide pH range (5.0-10.0) with a detection limit as low as 0.1 nM and it can be used for detecting Cu(2+) in living cells. After the magnetic separation, the Cu(2+) concentration decreased to 1.18 ppm, which is less than the US EPA drinking water standard (1.3 ppm), and more than 70% Cu(2+) could be removed when the amount of nanocomposite 1 reached 1 mg.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry Lanzhou University Gansu, Lanzhou University, Lanzhou 730000, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Dupont D, Luyten J, Bloemen M, Verbiest T, Binnemans K. Acid-Stable Magnetic Core–Shell Nanoparticles for the Separation of Rare Earths. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502546c] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Dupont
- Molecular Design and Synthesis, Department of Chemistry, and ‡Molecular Imaging
and Photonics, Department of Chemistry, KU Leuven, B-3001 Heverlee, Belgium
| | - Jakob Luyten
- Molecular Design and Synthesis, Department of Chemistry, and ‡Molecular Imaging
and Photonics, Department of Chemistry, KU Leuven, B-3001 Heverlee, Belgium
| | - Maarten Bloemen
- Molecular Design and Synthesis, Department of Chemistry, and ‡Molecular Imaging
and Photonics, Department of Chemistry, KU Leuven, B-3001 Heverlee, Belgium
| | - Thierry Verbiest
- Molecular Design and Synthesis, Department of Chemistry, and ‡Molecular Imaging
and Photonics, Department of Chemistry, KU Leuven, B-3001 Heverlee, Belgium
| | - Koen Binnemans
- Molecular Design and Synthesis, Department of Chemistry, and ‡Molecular Imaging
and Photonics, Department of Chemistry, KU Leuven, B-3001 Heverlee, Belgium
| |
Collapse
|
15
|
Multifunctional hybrid silica nanoparticles based on [Mo6Br14]2− phosphorescent nanosized clusters, magnetic γ-Fe2O3 and plasmonic gold nanoparticles. J Colloid Interface Sci 2014; 424:132-40. [PMID: 24767509 DOI: 10.1016/j.jcis.2014.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/02/2014] [Indexed: 11/22/2022]
|
16
|
Dupont D, Brullot W, Bloemen M, Verbiest T, Binnemans K. Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4980-4988. [PMID: 24641094 DOI: 10.1021/am406027y] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Magnetic (Fe3O4) and nonmagnetic (SiO2 and TiO2) nanoparticles were decorated on their surface with N-[(3-trimethoxysilyl)propyl]ethylenediamine triacetic acid (TMS-EDTA). The aim was to investigate the influence of the substrate on the behavior of these immobilized metal coordinating groups. The nanoparticles functionalized with TMS-EDTA were used for the adsorption and separation of trivalent rare-earth ions from aqueous solutions. The general adsorption capacity of the nanoparticles was very high (100 to 400 mg/g) due to their large surface area. The heavy rare-earth ions are known to have a higher affinity for the coordinating groups than the light rare-earth ions but an additional difference in selectivity was observed between the different nanoparticles. The separation of pairs of rare-earth ions was found to be dependent on the substrate, namely the density of EDTA groups on the surface. The observation that sterical hindrance (or crowding) of immobilized ligands influences the selectivity could provide a new tool for the fine-tuning of the coordination ability of traditional chelating ligands.
Collapse
Affiliation(s)
- David Dupont
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, P.O. Box 2404, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
17
|
Qin DD, Tao CL. A nanostructured ZnO–ZnFe2O4 heterojunction for the visible light photoelectrochemical oxidation of water. RSC Adv 2014. [DOI: 10.1039/c4ra00204k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T. Lanthanide-Functionalized Nanoparticles as MRI and Luminescent Probes for Sensing and/or Imaging Applications. Inorg Chem 2013; 53:1867-79. [DOI: 10.1021/ic4023568] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Steve Comby
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin
2, Ireland
| | - Esther M. Surender
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin
2, Ireland
| | - Oxana Kotova
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin
2, Ireland
| | - Laura K. Truman
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin
2, Ireland
| | - Jennifer K. Molloy
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin
2, Ireland
- Dipartimento di Chimica ‘‘G.
Ciamician’’, Università di Bologna, Via Selmi
2, 40126 Bologna, Italy
| | - Thorfinnur Gunnlaugsson
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin
2, Ireland
| |
Collapse
|
19
|
Maggioni D, Arosio P, Orsini F, Ferretti AM, Orlando T, Manfredi A, Ranucci E, Ferruti P, D'Alfonso G, Lascialfari A. Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe. Dalton Trans 2013; 43:1172-83. [PMID: 24169854 DOI: 10.1039/c3dt52377b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-component nanocomposites, constituted by a superparamagnetic iron oxide core coated with a polymeric surfactant bearing tightly bound Re(CO)3 moieties, were prepared and fully characterized. The water soluble and biocompatible surfactant was a linear poly(amidoamine) copolymer (PAA), containing cysteamine pendants in the minority part (ISA23SH), able to coordinate Re(CO)3 fragments. For the synthesis of the nanocomposites two methods were compared, involving either (i) peptization of bare magnetite nanoparticles by interaction with the preformed ISA23SH-Re(CO)3 complex, or (ii) "one-pot" synthesis of iron oxide nanoparticles in the presence of the ISA23SH copolymer, followed by complexation of Re to the SPIO@ISA23SH nanocomposite. Full characterization by TEM, DLS, TGA, SQUID, and relaxometry showed that the second method gave better results. The magnetic cores had a roundish shape, with low dispersion (mean diameter ca. 6 nm) and a tendency to form larger aggregates (detected both by TEM and DLS), arising from multiple interactions of the polymeric coils. Aggregation did not affect the stability of the nano-suspension, found to be stable for many months without precipitate formation. The SPIO@PAA-Re nanoparticles (NPs) showed superparamagnetic behaviour and nuclear relaxivities similar or superior to commercial MRI contrast agents (CAs), which make them promising as MRI "negative" CAs. The possibility to encapsulate (186/188)Re isotopes (γ and β emitters) gives these novel NPs the potential to behave as bimodal nanostructures devoted to theranostic applications.
Collapse
Affiliation(s)
- Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li J, Jiang H, Yu Z, Xia H, Zou G, Zhang Q, Yu Y. Multifunctional Uniform Core-Shell Fe3O4@mSiO2Mesoporous Nanoparticles for Bimodal Imaging and Photothermal Therapy. Chem Asian J 2012; 8:385-91. [DOI: 10.1002/asia.201201033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 12/22/2022]
|