1
|
Stackpole BJ, Fredericksen JM, Brasch NE. Exploring the potential of the vitamin B 12 derivative azidocobalamin to undergo Huisgen 1,3-dipolar azide-alkyne cycloaddition reactions. J Inorg Biochem 2024; 254:112504. [PMID: 38412777 DOI: 10.1016/j.jinorgbio.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
There is considerable interest in using the metalloprotein cofactor vitamin B12 as a vehicle to deliver drugs and diagnostic agents into mammalian or bacterial cells by exploiting the B12-specific active uptake pathways. Conjugation of the cargo via the β-axial site or the 5'-OH of the ribose of the nucleotide are the most desirable sites, to maximise intracellular uptake. Herein we show the potential of conjugation at the beta-azido ligand of the vitamin B12 derivative azidocobalamin via a click-type azide-alkyne 1,3-dipolar cycloaddition (Huisgen cycloaddition) reaction. Reacting azidocobalamin with dimethyl acetylenedicarboxylate at 40 °C results in essentially stoichiometric conversion of azidocobalamin to the corresponding triazolato complex. The stability of the complex as a function of pH and in the presence of cyanide were investigated. The complex is stable in pD 7.0 phosphate buffer for 24 h. The rate of beta-axial ligand substitution was found to be one order of magnitude slower for the triazolatocobalamin complex compared with azidocobalamin.
Collapse
Affiliation(s)
- Ben J Stackpole
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand
| | - Jessica M Fredericksen
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand
| | - Nicola E Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Naher M, Su C, Harmer JR, Williams CM, Bernhardt PV. Macrocyclic Copper(II) Complexes as Catalysts for Electrochemically Mediated Atom Transfer. Inorg Chem 2024; 63:6453-6464. [PMID: 38526552 DOI: 10.1021/acs.inorgchem.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Copper-catalyzed electrochemical atom transfer radical addition (eATRA) is a new method for the creation of new C-C bonds under mild conditions. In this work, we have explored the reactivity of an analogous series of N4 macrocyclic CuII complexes as eATRA precatalysts, which are primed by reduction to their monovalent oxidation state. These complexes were fully characterized structurally, spectroscopically, and electrochemically. A spectrum of radical activation reactivity was found across the series [CuI(Me4cyclen)(NCMe)]+ (Me4cyclen = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane), [CuI(Me4cyclam)(NCMe)]+ (Me4cyclam = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and [CuI(Me2py2clen)(NCMe)]+ (Me2py2clen = 3,7-dimethyl-3,7-diaza-1,5(2,6)-dipyridinacyclo-octaphane). The rate of radical production by [Cu(Me2py2clen)(NCMe)]+ was modest, but rapid radical capture to form the organocopper complex [CuI(Me2py2clen)(CH2CN)] led to a dramatic acceleration in catalysis, greater than seen in any comparable Cu complex, but this led to rapid radical self-termination instead of radical addition.
Collapse
Affiliation(s)
- Masnun Naher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Chuyi Su
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
3
|
Velasquez JD, Echeverría J, Guerra CF, Alvarez S. Azido-mediated intermolecular interactions of transition metal complexes. Phys Chem Chem Phys 2024; 26:6683-6695. [PMID: 38321825 DOI: 10.1039/d3cp05798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The coordinated azido ligand has a variety of ways to establish intermolecular contacts whose nature is computationally analysed in this work on dimers of the [N3-Hg(CF3)] complex with different interactions involving only N⋯N contacts, or with an additional Hg⋯N contact. The applied tools include the molecular electrostatic map of the monomer, an energy decomposition analysis (EDA), a topological AIM analysis of the electron density and the study of NCI (non-covalent interactions) isosurfaces. The interactions between two azido ligands are found to be weakly stabilizing (by 0.2 to 2.7 kcal mol-1), topology-dependent and require dispersion forces to complement orbital and electrostatic stabilization. Those interactions are supplemented by the formation of simultaneous Hg⋯N secondary interactions by about -1 kcal mol-1, and by the ability of the monomer to simultaneously interact with several neighbours in the crystal structure.
Collapse
Affiliation(s)
- Juan D Velasquez
- Instituto de Síntesis Química y Catálisis Homogénea, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Jorge Echeverría
- Instituto de Síntesis Química y Catálisis Homogénea, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Santiago Alvarez
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Moreth D, Hörner G, Müller VVL, Geyer L, Schatzschneider U. Isostructural Series of Ni(II), Pd(II), Pt(II), and Au(III) Azido Complexes with a N^C^N Pincer Ligand to Elucidate Trends in the iClick Reaction Kinetics and Structural Parameters of the Triazolato Products. Inorg Chem 2023; 62:16000-16012. [PMID: 37728290 DOI: 10.1021/acs.inorgchem.3c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
An isoelectronic and isostructural series of cyclometalated azido complexes [M(N3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) based on the N^C^N pincer ligand 1,3-di(2-pyridyl)phenide (dpb) was characterized by X-ray diffraction analysis and investigated for reactivity in the iClick reaction with a wide range of internal and terminal alkynes by using 1H and 19F NMR spectroscopy. Reaction rate constants were found to increase with greater charge density in the order Ni(II) > Pd(II) > Pt(II) > Au(III). Terminal alkynes R-C≡C-R' with strongly electron-withdrawing groups R and R' exhibited faster kinetics than those with electron-donating substituents in the order CF3 > ketone > ester > H > phenyl ≫ amide, while R = CH3 resulted in complete loss of reactivity. Four symmetrical triazolato complexes [M(triazolatoCOOCH3,COOCH3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) as well as four nonsymmetrically substituted triazolato complexes [Pt(triazolatoR,R')(dpb)] originating from terminal and internal alkynes were shown by X-ray crystal structure analysis to exclusively feature N2-coordination of the five-membered ring ligand. However, the Pt(II) triazolato complexes exist as a mixture of N1- and N2-coordinated species in solution. Torsion angles between the mean planes of the N^C^N pincer and the triazolato ligand increase from a nearly coplanar to a perpendicular arrangement when going from Au(III)/Pt(II)/Pd(II) to Ni(II), while different substituents R and R' on the alkyne have no influence on the torsion angle and were rationalized by DFT calculations. Finally, a carbohydrate derivative obtained by glucuronic acid conjugation to methyl propiolate demonstrates the facile biofunctionalization of metal complexes via the iClick reaction.
Collapse
Affiliation(s)
- Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerald Hörner
- Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Lucia Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
5
|
Korman KJ, Dworzak MR, Yap GPA, Bloch ED. Porous Salts as Platforms for Heterogeneous Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207507. [PMID: 37052509 DOI: 10.1002/smll.202207507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The preparation of a new class of reactive porous solids, prepared via straightforward salt metathesis reactions, is described here. Reaction of the dimethylammonium salt of a magnesium-based porous coordination cage with the chloride salt of [CrII Cl(Me4 cyclam)]+ affords a porous solid with concomitant removal of dimethylammonium chloride. The salt consists of the ions combined in the expected ratio based on their charge as confirmed by UV-vis and X-ray photoelectron spectroscopies, ion chromatography (IC), and inductively coupled plasma mass spectrometry (ICP-MS). The porous salt boasts a Brunauer-Emmett-Teller (BET) surface area of 213 m2 g-1 . Single crystal X-ray diffraction reveals the chromium(II) cations in the structure reside in the interstitial space between porous cages. Importantly, the chromium(II) centers, previously shown to react with O2 to afford reactive chromium(III)-superoxide adducts, are still accessible in the solid state as confirmed by UV-vis spectroscopy. The site-isolated reactive centers have competence toward hydrogen atom abstraction chemistry and display significantly increased stability and reactivity as compared to dissolved ions.
Collapse
Affiliation(s)
- Kyle J Korman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Michael R Dworzak
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
6
|
Pu LM, Zhang T, La YT, Long HT, Xu WB, Dong WK. A study on two unusual heterohexanuclear [CuII4LnIII2] (LnIII = LaIII and CeIII) complexes with a N2O2- and O6-donor bis(salamo)-based ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Franco MP, Carvalho BB, Ribeiro MA, Spada RFK. Evaluation of N‐binding through N1, N2 or N3 of 4‐R‐1,2,3‐Triazolate to [CuCO]
+
Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maurício P. Franco
- Departamento de Física Instituto Tecnológico de Aeronáutica São José dos Campos 12.228-900 SP Brazil
| | - Beatriz B. Carvalho
- Departamento de Química Universidade Federal do Espírito Santo Vitória 29075-910 ES Brazil
| | - Marcos A. Ribeiro
- Departamento de Química Universidade Federal do Espírito Santo Vitória 29075-910 ES Brazil
| | - Rene F. K. Spada
- Departamento de Física Instituto Tecnológico de Aeronáutica São José dos Campos 12.228-900 SP Brazil
| |
Collapse
|
8
|
Dastidar TG, Chattopadhyay S. Synthetic strategies, structures and properties of di and polynuclear cobalt complexes with H2salen type Schiff bases and their reduced analogues. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Toscani A, Hind C, Clifford M, Kim SH, Gucic A, Woolley C, Saeed N, Rahman KM, Sutton JM, Castagnolo D. Development of photoactivable phenanthroline-based manganese(I) CO-Releasing molecules (PhotoCORMs) active against ESKAPE bacteria and bacterial biofilms. Eur J Med Chem 2021; 213:113172. [PMID: 33516984 DOI: 10.1016/j.ejmech.2021.113172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The synthesis and biological evaluation of a series of phenanthroline-based visible-light-activated manganese(I) carbon-monoxide-releasing molecules (PhotoCORMs) against ESKAPE bacteria and bacterial biofilms is reported. Four carbonyl compounds of general formula fac-[Mn(N∧N)(CO)3(L)] have been synthesized and characterized. Despite being thermally stable in the absence of light, these PhotoCORMs readily release CO upon blue (435-450 nm) LED light irradiation as confirmed by spectrophotometric CO releasing experiments (Mb Assay). The antibacterial activity of the four PhotoCORMs has been investigated against a panel of ESKAPE bacteria. The compounds 1-3 were found to be effective antibacterials at low concentrations against multidrug-resistant Klebsiella pneumoniae and Acinetobacter baumannii when photoactivated with blue-light. In addition, the PhotoCORMs 1-2 were found to inhibit the formation of Klebsiella pneumoniae and Acinetobacter baumannii bacterial biofilms at low concentrations (MIC = 4-8 μg/mL), turning out to be promising candidates to combat antimicrobial resistance. The antibacterial and biofilm inhibitory effect of the PhotoCORMs is plausibly due to the release of CO as well as the formation of phenanthroline photo-by-products as revealed by spectroscopy and microbiology experiments.
Collapse
Affiliation(s)
- Anita Toscani
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Charlotte Hind
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Melanie Clifford
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Seong-Heun Kim
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Antonia Gucic
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Charlotte Woolley
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom
| | - Naima Saeed
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom
| | - J Mark Sutton
- Research and Development Institute, National Infections Service, Porton Down, Public Health England, Salisbury SP4 0JG, Wiltshire, United Kingdom.
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1DB, United Kingdom.
| |
Collapse
|
10
|
Peng K, Einsele R, Irmler P, Winter RF, Schatzschneider U. The iClick Reaction of a BODIPY Platinum(II) Azido Complex with Electron-Poor Alkynes Provides Triazolate Complexes with Good 1O2 Sensitization Efficiency. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Richard Einsele
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Beto CC, Zeman CJ, Yang Y, Bullock JD, Holt ED, Kane AQ, Makal TA, Yang X, Ghiviriga I, Schanze KS, Veige AS. An Application Exploiting Aurophilic Bonding and iClick to Produce White Light Emitting Materials. Inorg Chem 2020; 59:1893-1904. [PMID: 31961144 DOI: 10.1021/acs.inorgchem.9b03195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The paper focuses on exploiting aurophilic bonding to produce white light emitting materials. Inorganic Click (iClick) is employed to link two or four Au(I) metal ions through a triazolate bridge. Depending on the choice of phosphine ligand (PEt3 or PPh3), dinuclear Au2-FO or tetranuclear Au4-FO complexes can be controllably synthesized (FO = 2-(9,9-dioctylfluoreneyl-)). The iClick products Au2-FO and Au4-FO are characterized by combustion analysis and multinuclear NMR, TOCSY 1D, 1H-13C gHMBC, and 1H-13C gHSQC. In addition, the photophysical properties of Au2-FO and Au4-FO were examined in THF solution. Transient absorption spectroscopy was employed to elucidate the excited state features of the gold compounds. Solution processed OLEDs were fabricated and characterized, which gave white light electroluminescence with CIE coordinates (0.34, 0.36), as seen referenced to CIE standard illuminant D65 (0.31, 0.32). TDDFT computational analysis of Au2-FO and Au4-FO reveals the origin of light emission. In the case of Au4-FO, direct excitation leads to increased aurophilic bonding in the excited state, and as a result the emission profile is broadened to cover a larger region of the visible spectrum, thus giving white light emission. Designing molecules that can access or increase aurophilic bonding in the excited state provides another tool for fine-tuning the emission profiles of gold complexes.
Collapse
Affiliation(s)
- Christopher C Beto
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Charles J Zeman
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Yajing Yang
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - James D Bullock
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ethan D Holt
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Alexander Q Kane
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Trevor A Makal
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Xi Yang
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Kirk S Schanze
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| |
Collapse
|
12
|
Heravi MM, Dehghani M, Zadsirjan V, Ghanbarian M. Alkynes as Privileged Synthons in Selected Organic Name Reactions. Curr Org Synth 2020; 16:205-243. [PMID: 31975673 DOI: 10.2174/1570179416666190126100744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Alkynes are actually basic chemicals, serving as privileged synthons for planning new organic reactions for assemblage of a reactive motif, which easily undergoes a further desirable transformation. Name reactions, in organic chemistry are referred to those reactions which are well-recognized and reached to such status for being called as their explorers, discoverers or developers. Alkynes have been used in various name reactions. In this review, we try to underscore the applications of alkynes as privileged synthons in prevalent name reactions such as Huisgen 1,3-dipolar cycloaddtion via Click reaction, Sonogashira reaction, and Hetero Diels-Alder reaction. OBJECTIVE In this review, we try to underscore the applications of alkynes as privileged synthons in the formation of heterocycles, focused on the selected reactions of alkynes as a synthon or impending utilization in synthetic organic chemistry, which have reached such high status for being included in the list of name reactions in organic chemistry. CONCLUSION Alkynes (including acetylene) are an unsaturated hydrocarbon bearing one or more triple C-C bond. Remarkably, alkynes and their derivatives are frequently being used as molecular scaffolds for planning new organic reactions and installing reactive functional group for further reaction. It is worth mentioning that in general, the terminal alkynes are more useful and more frequently being used in the art of organic synthesis. Remarkably, alkynes have found different applications in pharmacology, nanotechnology, as well as being known as appropriate starting precursors for the total synthesis of natural products and biologically active complex compounds. They are predominantly applied in various name reactions such as Sonogashira, Glaser reaction, Friedel-crafts reaction, Castro-Stephens coupling, Huisgen 1.3-dipolar cycloaddtion reaction via Click reaction, Sonogashira reaction, hetero-Diels-Alder reaction. In this review, we tried to impress the readers by presenting selected name reactions, which use the alkynes as either stating materials or precursors. We disclosed the applications of alkynes as a privileged synthons in several popular reactions, which reached to such high status being classified as name reactions. They are thriving and well known and established name reactions in organic chemistry such as Regioselective, 1,3-dipolar Huisgen cycloaddtion reaction via Click reaction, Sonogashira reaction and Diels-Alder reaction.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Mahzad Dehghani
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Manijheh Ghanbarian
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
13
|
Kumar R, Ujjval R, Thirupathi N. Half Sandwich Electron Deficient
N
,
N′
,
N′′
‐Triarylguanidinatoruthenium(II) Complexes: Syntheses, Reactivity Studies, and Structural Aspects. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Robin Kumar
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Rishabh Ujjval
- Department of Chemistry University of Delhi Delhi 110 007 India
| | | |
Collapse
|
14
|
Sánchez-Sordo I, Díez J, Lastra E, Gamasa MP. Synthesis of Iridium Tetrazolato, Triazolinato, and Triazolato Complexes by [3+2] Cycloaddition of Iridium(III) Azido Complexes with Unsaturated Nitriles. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irene Sánchez-Sordo
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| | - Josefina Díez
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| | - Elena Lastra
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| | - M. Pilar Gamasa
- Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain
| |
Collapse
|
15
|
Yao K, Bertran A, Morgan J, Hare SM, Rees NH, Kenwright AM, Edkins K, Bowen AM, Farrer NJ. A novel Pt(iv) mono azido mono triazolato complex evolves azidyl radicals following irradiation with visible light. Dalton Trans 2019; 48:6416-6420. [PMID: 31012460 PMCID: PMC6984332 DOI: 10.1039/c9dt01156k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel PtIV azido triazolato complex exists as an equilibrium between two species in d3-MeCN and evolves azide radicals (but not hydroxide radicals) when irradiated with visible light.
The platinum(iv) azido complex trans,trans,trans-[PtIV(N3)2(OH)2(py)2] (1) undergoes cycloaddition with 1,4-diphenyl-2-butyne-1,4-dione (2) under mild, catalyst-free conditions, affording a number of mono and bis click products. The major mono click product (3) exists in MeCN as an equilibrium mixture between two species; 3a and 3b rapidly interconvert through nucleophilic attack of the axial Pt–OH group at the adjacent Ph–CO group. The kinetic and thermodynamic parameters for this interconversion have been measured by selective saturation-transfer NMR spectroscopic experiments and are consistent with cyclisation at the Pt centre. Complex 3b was also characterised by X-ray crystallography. Visible light irradiation (440–480 nm) of 3 in d3-MeCN produces azidyl radicals (N3˙), as demonstrated by EPR spin-trapping with DMPO; no generation of hydroxyl radicals was observed. 1H–195Pt HMBC NMR confirmed that the photoproducts were PtIV rather than PtII species, and HPLC was consistent with these being [3–N3]+ species; no facile photoejection of the triazolato ligand was observed, consistent with MS/MS fragmentation of 3. When 3 was irradiated in the presence of 5′-GMP, no 5′-GMP photoproducts were observed, suggesting that complex 3 is likely to exhibit significantly simplified biological activity (release of azidyl radicals but not DNA binding) compared with complex 1.
Collapse
Affiliation(s)
- Kezi Yao
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Farrer NJ, Sharma G, Sayers R, Shaili E, Sadler PJ. Platinum(iv) azido complexes undergo copper-free click reactions with alkynes. Dalton Trans 2018; 47:10553-10560. [PMID: 29480314 PMCID: PMC6083821 DOI: 10.1039/c7dt04183g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023]
Abstract
We report our investigations into the first examples of copper-free 1,3-dipolar cycloaddition (click) reactions of electrophiles with a PtIV azido complex. The Pt-IV azido complex trans, trans, trans-[PtIV(py)2(N3)2(OH)2] (1) was reactive towards dimethyl acetylenedicarboxylate (DMAD) (2), diethyl acetylenedicarboxylate DEACD (3), N-[(1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl]-1,8-diamino-3,6-dioxaoctane (BCN) (11) and dibenzocyclooctyne-amine (DBCO) (12) resulting in formation of the corresponding mono (a) and bis-substituted (b) complexes. Complexes of 2 undergo further reactions between the Pt centre and the carbonyl group to form 2a' and 2b'. This is not seen for the products of the corresponding PtII azido complex trans-[Pt(py)2(N3)2] with acetylene 2. Novel complexes 2a', 2b', 11a and 11b have been characterised by multinuclear NMR, IR and UV-vis spectroscopy and ESI-MS. These reactions represent new synthetic routes to novel Pt(iv) complexes.
Collapse
Affiliation(s)
- Nicola J. Farrer
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Gitanjali Sharma
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Rachel Sayers
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Evyenia Shaili
- Department of Chemistry
, University of Warwick
,
Gibbet Hill Road
, Coventry
, CV4 7AL
, UK
| | - Peter J. Sadler
- Department of Chemistry
, University of Warwick
,
Gibbet Hill Road
, Coventry
, CV4 7AL
, UK
| |
Collapse
|
17
|
Basak T, Ghosh K, Gómez-García CJ, Chattopadhyay S. Synthesis, structure and magnetic characterization of a dinuclear and two mononuclear iron(III) complexes with N,O-donor Schiff base ligands. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Tsai YH, Borini Etichetti CM, Di Benedetto C, Girardini JE, Martins FT, Spanevello RA, Suárez AG, Sarotti AM. Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations. J Org Chem 2018; 83:3516-3528. [DOI: 10.1021/acs.joc.7b03141] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yi-hsuan Tsai
- Instituto de Química Rosario (IQUIR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Carla M. Borini Etichetti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Carolina Di Benedetto
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Javier E. Girardini
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Felipe Terra Martins
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO CP 131, 74001-970, Brazil
| | - Rolando A. Spanevello
- Instituto de Química Rosario (IQUIR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Alejandra G. Suárez
- Instituto de Química Rosario (IQUIR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Ariel M. Sarotti
- Instituto de Química Rosario (IQUIR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
19
|
Schmid P, Maier M, Pfeiffer H, Belz A, Henry L, Friedrich A, Schönfeld F, Edkins K, Schatzschneider U. Catalyst-free room-temperature iClick reaction of molybdenum(ii) and tungsten(ii) azide complexes with electron-poor alkynes: structural preferences and kinetic studies. Dalton Trans 2018; 46:13386-13396. [PMID: 28933494 DOI: 10.1039/c7dt03096g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two isostructural and isoelectronic group VI azide complexes of the general formula [M(η3-allyl)(N3)(bpy)(CO)2] with M = Mo, W and bpy = 2,2'-bipyridine were prepared and fully characterized, including X-ray structure analysis. Both reacted smoothly with electron-poor alkynes such as dimethyl acetylenedicarboxylate (DMAD) and 4,4,4-trifluoro-2-butynoic acid ethyl ester in a catalyst-free room-temperature iClick [3 + 2] cycloaddition reaction. Reaction with phenyl(trifluoromethyl)acetylene, on the other hand, did not lead to any product formation. X-ray structures of the four triazolate complexes isolated showed the monodentate ligand to be N2-coordinated in all cases, which requires a 1,2-shift of the nitrogen from the terminal azide to the triazolate cycloaddition product. On the other hand, a 19F NMR spectroscopic study of the reaction of the fluorinated alkyne with the tungsten azide complex at 27 °C allowed detection of the N1-coordinated intermediate. With this method, the second-order rate constant was determined as (7.3 ± 0.1) × 10-2 M-1 s-1, which compares favorably with that of first-generation compounds such as difluorocyclooctyne (DIFO) used in the strain-promoted azide-alkyne cycloaddition (SPAAC). In contrast, the reaction of the molybdenum analogue was too fast to be studied with NMR methods. Alternatively, solution IR studies revealed pseudo-first order rate constants of 0.4 to 6.5 × 10-3 s-1, which increased in the order of Mo > W and F3C-C[triple bond, length as m-dash]C-COOEt > DMAD.
Collapse
Affiliation(s)
- Paul Schmid
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Roy S, Bhattacharyya A, Purkait S, Bauzá A, Frontera A, Chattopadhyay S. A combined experimental and computational study on supramolecular assemblies in hetero-tetranuclear nickel(ii)-cadmium(ii) complexes with N 2O 4-donor compartmental Schiff bases. Dalton Trans 2018; 45:15048-15059. [PMID: 27722334 DOI: 10.1039/c6dt02587k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two new hetero-tetranuclear nickel(ii)/cadmium(ii) complexes, a cubane [(CH3CO2)2Ni2(L1)2Cd2(NCS)2] (1) and a linear tetramer [(DMSO)2NiL2Cd(NCS)(μ1,3-SCN)Ni(DMSO)L2Cd(NCS)2] (2) {where H2L1 = N,N'-bis(3-methoxysalicylidene)propane-1,3-diamine and H2L2 = N,N'-bis(3-ethoxysalicylidene)propane-1,3-diamine are potential octadentate compartmental Schiff bases}, were synthesized and characterized. The structures of both complexes were confirmed by single crystal X-ray diffraction studies. Complex 1 contained a Ni2Cd2O4 cubane core, whereas complex 2 featured an end-to-end thiocyanate-bridged tetranuclear moiety. Furthermore, complex 1 showed C-HH-C interactions, whereas a unique Sπ interaction was observed in complex 2. Theoretical studies were performed using several computational tools such as NBO and AIM analyses. Both complexes showed photoluminescence in DMSO medium at room temperature upon irradiation with ultraviolet light. The lifetimes of the excited states were ∼27 ns.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.
| | - Anik Bhattacharyya
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.
| | - Sourav Purkait
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.
| | - Antonio Bauzá
- Departamento de Química, Universitat de les Illes Balears, Crta. deValldemossa km 7.5, 07122 Palma, Baleares, Spain.
| | - Antonio Frontera
- Departamento de Química, Universitat de les Illes Balears, Crta. deValldemossa km 7.5, 07122 Palma, Baleares, Spain.
| | - Shouvik Chattopadhyay
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.
| |
Collapse
|
21
|
Kumar R, Kishan R, Thomas JM, Chinnappan S, Thirupathi N. Probing the factors that influence the conformation of a guanidinato ligand in [(η5-C5Me5)M(NN)X] (NN = chelating N,N′,N′′-tri(o-substituted aryl)guanidinate(1−); X = chloro, azido and triazolato). NEW J CHEM 2018. [DOI: 10.1039/c7nj03766j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational difference illustrated is ascribed to a subtle repulsive interaction between the o-Cl substituent of two proximal aryl rings in the guanidinate ligand.
Collapse
Affiliation(s)
- Robin Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Ram Kishan
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory
- Department of Chemistry
- Pondicherry University (A Central University)
- Puducherry 605014
- India
| | - Sivasankar Chinnappan
- Catalysis and Energy Laboratory
- Department of Chemistry
- Pondicherry University (A Central University)
- Puducherry 605014
- India
| | | |
Collapse
|
22
|
Roy S, Drew MGB, Bauzá A, Frontera A, Chattopadhyay S. A Combined Experimental and Theoretical Study to Explore the Importance of σ-Hole Carbon Bonding Interactions in Stabilizing Molecular Assemblies. ChemistrySelect 2017. [DOI: 10.1002/slct.201702123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Inorganic Section; Jadavpur University; Kolkata - 700032 India, Tel: +9133-2457-2941
| | - Michael G. B. Drew
- School of Chemistry; The University of Reading; P.O. Box 224, Whiteknights Reading RG6 6AD United Kingdom
| | - Antonio Bauzá
- Departamento de Química; Universitat de les Illes Balears; Crta. deValldemossa km 7.5 07122 Palma, Baleares Spain
| | - Antonio Frontera
- Departamento de Química; Universitat de les Illes Balears; Crta. deValldemossa km 7.5 07122 Palma, Baleares Spain
| | - Shouvik Chattopadhyay
- Department of Chemistry, Inorganic Section; Jadavpur University; Kolkata - 700032 India, Tel: +9133-2457-2941
| |
Collapse
|
23
|
Quadri CC, Lalrempuia R, Hessevik J, Törnroos KW, Le Roux E. Structural Characterization of Tridentate N-Heterocyclic Carbene Titanium(IV) Benzyloxide, Silyloxide, Acetate, and Azide Complexes and Assessment of Their Efficacies for Catalyzing the Copolymerization of Cyclohexene Oxide with CO2. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Coralie C. Quadri
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Ralte Lalrempuia
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Julie Hessevik
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Karl W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Erwan Le Roux
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| |
Collapse
|
24
|
Van Heuvelen KM, Lee I, Arriola K, Griffin R, Ye C, Takase MK. Crystal structure and spectroscopic characterization of a cobalt(II) tetraazamacrocycle: completing a series of first-row transition-metal complexes. Acta Crystallogr C Struct Chem 2017; 73:620-624. [PMID: 28776513 DOI: 10.1107/s2053229617010397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Abstract
The tetraazamacrocyclic ligand 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC) has been used to bind a variety of first-row transition metals but to date the crystal structure of the cobalt(II) complex has been missing from this series. The missing cobalt complex chlorido(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane-κ4N)cobalt(II) chloride dihydrate, [CoCl(C14H32N4)]Cl·2H2O or [CoIICl(TMC)]Cl·2H2O, crystallizes as a purple crystal. This species adopts a distorted square-pyramidal geometry in which the TMC ligand assumes the trans-I configuration and the chloride ion binds in the syn-methyl pocket of the ligand. The CoII ion adopts an S = 3/2 spin state, as measured by the Evans NMR method, and UV-visible spectroscopic studies indicate that the title hydrated salt is stable in solution. Density functional theory (DFT) studies reveal that the geometric parameters of [CoIICl(TMC)]Cl·2H2O are sensitive to the cobalt spin state and correctly predict a change in spin state upon a minor perturbation to the ligand environment.
Collapse
Affiliation(s)
| | - Isabell Lee
- Department of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - Katherine Arriola
- Department of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - Rilke Griffin
- Department of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - Christopher Ye
- Department of Chemistry, Harvey Mudd College, 301 Platt Blvd, Claremont, CA 91711, USA
| | - Michael K Takase
- Beckman Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
25
|
Yang X, VenkatRamani S, Beto CC, Del Castillo TJ, Ghiviriga I, Abboud KA, Veige AS. Single versus Double Cu(I) Catalyzed [3 + 2] Azide/Platinum Diacetylide Cycloaddition Reactions. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xi Yang
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Sudarsan VenkatRamani
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Christopher C. Beto
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Trevor J. Del Castillo
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A. Abboud
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Adam S. Veige
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
26
|
Giner EA, Gómez-Gallego M, Casarrubios L, de la Torre MC, Ramírez de Arellano C, Sierra MA. Effect of a κ1-Bonded-M-1,2,3-triazole (M = Co, Ru) on the Structure and Reactivity of Group 6 Alkoxy (Fischer) Carbenes. Inorg Chem 2017; 56:2801-2811. [DOI: 10.1021/acs.inorgchem.6b02957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elena A. Giner
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| | - Luis Casarrubios
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| | - María C. de la Torre
- Instituto de Química Orgánica General, Consejo Superior
de Investigaciones Científicas (CSIC) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Carmen Ramírez de Arellano
- Departamento de
Química Orgánica, Universidad de Valencia and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), E-46100, Valencia, Spain
| | - Miguel A. Sierra
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| |
Collapse
|
27
|
|
28
|
Fehlhammer WP, Beck W. Azide Chemistry - An Inorganic Perspective, Part II[‡][3+2]-Cycloaddition Reactions of Metal Azides and Related Systems. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201500165] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Yang X, Wang S, Ghiviriga I, Abboud KA, Veige AS. Organogold oligomers: exploiting iClick and aurophilic cluster formation to prepare solution stable Au4 repeating units. Dalton Trans 2015; 44:11437-43. [DOI: 10.1039/c5dt00282f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cluster formation via multiple gold–gold bonds provides sufficient thermodynamic driving force to overcome entropic penalties to link multiple units and create solution stable organogold oligomers.
Collapse
Affiliation(s)
- Xi Yang
- University of Florida
- Department of Chemistry
- Center for Catalysis
- Gainesville
- USA
| | - Shanshan Wang
- University of Florida
- Department of Chemistry
- Center for Catalysis
- Gainesville
- USA
| | - Ion Ghiviriga
- University of Florida
- Department of Chemistry
- Center for Catalysis
- Gainesville
- USA
| | - Khalil A. Abboud
- University of Florida
- Department of Chemistry
- Center for Catalysis
- Gainesville
- USA
| | - Adam S. Veige
- University of Florida
- Department of Chemistry
- Center for Catalysis
- Gainesville
- USA
| |
Collapse
|
30
|
Powers AR, Ghiviriga I, Abboud KA, Veige AS. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC). Dalton Trans 2015. [DOI: 10.1039/c5dt02405f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Isolated digold-triazolate products and first-order kinetic profiles for Au–acetylide/azide reactants in iClick provide compelling support for two copper ions in CuAAC.
Collapse
Affiliation(s)
- Andrew R. Powers
- Department of Chemistry
- Center for Catalysis
- University of Florida
- Gainesville
- USA
| | - Ion Ghiviriga
- Department of Chemistry
- Center for Catalysis
- University of Florida
- Gainesville
- USA
| | - Khalil A. Abboud
- Department of Chemistry
- Center for Catalysis
- University of Florida
- Gainesville
- USA
| | - Adam S. Veige
- Department of Chemistry
- Center for Catalysis
- University of Florida
- Gainesville
- USA
| |
Collapse
|
31
|
Henry L, Schneider C, Mützel B, Simpson PV, Nagel C, Fucke K, Schatzschneider U. Amino acid bioconjugation via iClick reaction of an oxanorbornadiene-masked alkyne with a Mn(I)(bpy)(CO)3-coordinated azide. Chem Commun (Camb) 2014; 50:15692-5. [PMID: 25370120 DOI: 10.1039/c4cc07892f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalyst-free room temperature iClick reaction of an unsymmetrically 2,3-disubstituted oxanorbornadiene (OND) as a "masked" alkyne equivalent with [Mn(N3)(bpy(CH3,CH3))(CO)3] leads to isolation of a phenylalanine ester bioconjugate, in which the model amino acid is linked to the metal moiety via a N-2-coordinated triazolate formed in a cycloaddition-retro-Diels-Alder (crDA) reaction sequence, in a novel approach to bioorthogonal coupling reactions based on metal-centered reactivity.
Collapse
Affiliation(s)
- Lucas Henry
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
You X, Wei Z. Two multidentate ligands utilizing triazolyl, pyridinyl and phenolate groups as donors for constructing dinuclear copper(II) and iron(III) complexes: Syntheses, structures, and electrochemistry. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Halevi O, Bogoslavsky B, Grinstein D, Tibika-Apfelbaum F, Bino A. Synthesis and characterization of nitrogen rich ruthenium complexes. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Nemec I, Herchel R, Šilha T, Trávníček Z. Towards a better understanding of magnetic exchange mediated by hydrogen bonds in Mn(iii)/Fe(iii) salen-type supramolecular dimers. Dalton Trans 2014; 43:15602-16. [DOI: 10.1039/c4dt02025a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed investigations of the magnetic coupling and magnetic anisotropy in a series of Schiff base salen-type Fe(iii) and Mn(iii) complexes, based on SQUID experiments and DFT calculations, are reported.
Collapse
Affiliation(s)
- Ivan Nemec
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- Olomouc, Czech Republic
| | - Radovan Herchel
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- Olomouc, Czech Republic
| | - Tomáš Šilha
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry
- Faculty of Science
- Palacký University
- Olomouc, Czech Republic
| |
Collapse
|
35
|
Schulze B, Schubert US. Beyond click chemistry – supramolecular interactions of 1,2,3-triazoles. Chem Soc Rev 2014; 43:2522-71. [DOI: 10.1039/c3cs60386e] [Citation(s) in RCA: 583] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Cruchter T, Harms K, Meggers E. Strain-promoted azide-alkyne cycloaddition with ruthenium(II)-azido complexes. Chemistry 2013; 19:16682-9. [PMID: 24173767 DOI: 10.1002/chem.201302502] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 12/17/2022]
Abstract
The reactivity of an exemplary ruthenium(II)-azido complex towards non-activated, electron-deficient, and towards strain-activated alkynes at room temperature and low millimolar azide and alkyne concentrations has been investigated. Non-activated terminal and internal alkynes failed to react under such conditions, even under copper(I) catalysis conditions. In contrast, as expected, rapid cycloaddition was observed with electron-deficient dimethyl acetylenedicarboxylate (DMAD) as the dipolarophile. Since DMAD and related propargylic esters are excellent Michael acceptors and thus unsuitable for biological applications, we investigated the reactivity of the azido complex towards cycloaddition with derivatives of cyclooctyne (OCT), bicyclo[6.1.0]non-4-yne (BCN), and azadibenzocyclooctyne (ADIBO). While no reaction could be observed in the case of the less strained cyclooctyne OCT, the highly strained cyclooctynes BCN and ADIBO readily reacted with the azido complex, providing the corresponding stable triazolato complexes, which were amenable to purification by conventional silica gel column chromatography. An X-ray crystal structure of an ADIBO cycloadduct was obtained and verified that the formed 1,2,3-triazolato ligand coordinates the metal center through the central N2 atom. Importantly, the determined second-order rate constant for the ADIBO cycloaddition with the azido complex (k2=6.9 × 10(-2) M(-1) s(-1)) is comparable to the rate determined for the ADIBO cycloaddition with organic benzyl azide (k2=4.0 × 10(-1) M(-1) s(-1)). Our results demonstrate that it is possible to transfer the concept of strain-promoted azide-alkyne cycloaddition (SPAAC) from purely organic azides to metal-coordinated azido ligands. The favorable reaction kinetics for the ADIBO-azido-ligand cycloaddition and the well-proven bioorthogonality of strain-activated alkynes should pave the way for applications in living biological systems.
Collapse
Affiliation(s)
- Thomas Cruchter
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg (Germany), Fax: (+49) 6421-282-2189
| | | | | |
Collapse
|
37
|
Powers AR, Yang X, Del Castillo TJ, Ghiviriga I, Abboud KA, Veige AS. Inorganic click (iClick) synthesis of heterotrinuclear Pt(II)/Au(I)2 complexes. Dalton Trans 2013; 42:14963-6. [PMID: 24036497 DOI: 10.1039/c3dt52105b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-azide-metal-acetylide cycloaddition (iClick) reactions to synthesize heterotrimetallics and an unexpected novel tetranuclear gold(I) complex, are described. In addition, a discussion regarding the connection between traditional azide-alkyne cycloaddition reactions and iClick is presented focusing on applications towards linking multiple metal ions.
Collapse
Affiliation(s)
- Andrew R Powers
- University of Florida, Center for Catalysis, Department of Chemistry, P.O. Box 117200, Gainesville, Florida 32611, USA.
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Knott SA, Templeton JN, Durham JL, Howard AM, McDonald R, Szczepura LF. Azide alkyne cycloaddition facilitated by hexanuclear rhenium chalcogenide cluster complexes. Dalton Trans 2013; 42:8132-9. [DOI: 10.1039/c3dt50436k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|