1
|
Boecker M, Lander S, Müller R, Gaus AL, Neumann C, Moser J, Micheel M, Turchanin A, Delius MV, Synatschke CV, Leopold K, Wächtler M, Weil T. Screening Cobalt-based Catalysts on Multicomponent CdSe@CdS Nanorods for Photocatalytic Hydrogen Evolution in Aqueous Media. ACS APPLIED NANO MATERIALS 2024; 7:14146-14153. [PMID: 38962509 PMCID: PMC11217917 DOI: 10.1021/acsanm.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
We present CdSe@CdS nanorods coated with a redox-active polydopamine (PDA) layer functionalized with cobaloxime-derived photocatalysts for efficient solar-driven hydrogen evolution in aqueous environments. The PDA-coating provides reactive groups for the functionalization of the nanorods with different molecular catalysts, facilitates charge separation and transfer of electrons from the excited photosensitizer to the catalyst, and reduces photo-oxidation of the photosensitizer. X-ray photoelectron spectroscopy (XPS) confirms the successful functionalization of the nanorods with cobalt-based catalysts, whereas the catalyst loading per nanorod is quantified by total reflection X-ray fluorescence spectrometry (TXRF). A systematic comparison of different types of cobalt-based catalysts was carried out, and their respective performance was analyzed in terms of the number of nanorods and the amount of catalyst in each sample [turnover number, (TON)]. This study shows that the performance of these multicomponent photocatalysts depends strongly on the catalyst loading and less on the specific structure of the molecular catalyst. Lower catalyst loading is advantageous for increasing the TON because the catalysts compete for a limited number of charge carriers at the nanoparticle surface. Therefore, increasing the catalyst loading relative to the absolute amount of hydrogen produced does not lead to a steady increase in the photocatalytic activity. In our work, we provide insights into how the performance of a multicomponent photocatalytic system is determined by the intricate interplay of its components. We identify the stable attachment of the catalyst and the ratio between the catalyst and photosensitizer as critical parameters that must be fine-tuned for optimal performance.
Collapse
Affiliation(s)
- Marcel Boecker
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Sarah Lander
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Riccarda Müller
- Institute
of Analytical and Bioanalytical Chemistry, University Ulm, Ulm 89081, Germany
| | - Anna-Laurine Gaus
- Institute
of Organic Chemistry I, University Ulm, Ulm 89081, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julia Moser
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Mathias Micheel
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
- Abbe Center
of Photonics (ACP), Jena 07745, Germany
| | - Max von Delius
- Institute
of Organic Chemistry I, University Ulm, Ulm 89081, Germany
| | - Christopher V. Synatschke
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Kerstin Leopold
- Institute
of Analytical and Bioanalytical Chemistry, University Ulm, Ulm 89081, Germany
| | - Maria Wächtler
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Tanja Weil
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
2
|
Taghizadeh Shool M, Amiri Rudbari H, Gil-Antón T, Cuevas-Vicario JV, García B, Busto N, Moini N, Blacque O. The effect of halogenation of salicylaldehyde on the antiproliferative activities of {Δ/Λ-[Ru(bpy) 2(X,Y-sal)]BF 4} complexes. Dalton Trans 2022; 51:7658-7672. [PMID: 35510940 DOI: 10.1039/d2dt00401a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(II) polypyridyl complexes are widely used in biological fields, due to their physico-chemical and photophysical properties. In this paper, a series of new chiral Ru(II) polypyridyl complexes (1-5) with the general formula {Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4} (bpy = 2,2'-bipyridyl; X,Y-sal = 5-bromosalicylaldehyde (1), 3,5-dibromosalicylaldehyde (2), 5-chlorosalicylaldehyde (3), 3,5-dichlorosalicylaldehyde (4) and 3-bromo-5-chlorosalicylaldehy (5)) were synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. Also, the structures of complexes 1 and 5 were determined by X-ray crystallography; these results showed that the central Ru atom adopts a distorted octahedral coordination sphere with two bpy and one halogen-substituted salicylaldehyde. DFT and TD-DFT calculations have been performed to explain the excited states of these complexes. The singlet states with higher oscillator strength are correlated with the absorption signals and are mainly described as 1MLCT from the ruthenium centre to the bpy ligands. The lowest triplet states (T1) are described as 3MLCT from the ruthenium center to the salicylaldehyde ligand. The theoretical results are in good agreement with the observed unstructured band at around 520 nm for complexes 2, 4 and 5. Biological studies on human cancer cells revealed that dihalogenated ligands endow the Ru(II) complexes with enhanced cytotoxicity compared to monohalogenated ligands. In addition, as far as the type of halogen is concerned, bromine is the halogen that provides the highest cytotoxicity to the synthesized complexes. All complexes induce cell cycle arrest in G0/G1 and apoptosis, but only complexes bearing Br are able to provoke an increase in intracellular ROS levels and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Tania Gil-Antón
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - José V Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain. .,Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos, Hospital Militar, Paseo de los Comendadores, s/n, 09001 Burgos, Spain
| | - Nakisa Moini
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University, P.O. Box 1993891176, Vanak Tehran, Iran
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
3
|
Scalambra F, Díaz-Ortega IF, Romerosa-Nievas AM. Photo-generation of H2 by Heterometallic Complexes. Dalton Trans 2022; 51:14022-14031. [DOI: 10.1039/d2dt01870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple and different metals in a complex can accomplish single and sequential multi-step reactions, providing valuable procedures to obtain chemicals in one-pot synthetic routes. Biology has shown how cooperative catalysis...
Collapse
|
4
|
Huber‐Gedert M, Nowakowski M, Kertmen A, Burkhardt L, Lindner N, Schoch R, Herbst‐Irmer R, Neuba A, Schmitz L, Choi T, Kubicki J, Gawelda W, Bauer M. Fundamental Characterization, Photophysics and Photocatalysis of a Base Metal Iron(II)-Cobalt(III) Dyad. Chemistry 2021; 27:9905-9918. [PMID: 33884671 PMCID: PMC8362051 DOI: 10.1002/chem.202100766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/13/2022]
Abstract
A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4'-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3 MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3 MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3 MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2 (py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.
Collapse
Affiliation(s)
- Marina Huber‐Gedert
- Department ChemieUniversität PaderbornWarburger Straße 10033098PaderbornGermany
| | - Michał Nowakowski
- Department ChemieUniversität PaderbornWarburger Straße 10033098PaderbornGermany
| | - Ahmet Kertmen
- Faculty of PhysicsAdam Mickiewicz University Poznańul. Uniwersytetu Poznańskiego 2Poznań61-614Poland
| | - Lukas Burkhardt
- Department ChemieUniversität PaderbornWarburger Straße 10033098PaderbornGermany
| | - Natalia Lindner
- Faculty of PhysicsAdam Mickiewicz University Poznańul. Uniwersytetu Poznańskiego 2Poznań61-614Poland
| | - Roland Schoch
- Department ChemieUniversität PaderbornWarburger Straße 10033098PaderbornGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Adam Neuba
- Department ChemieUniversität PaderbornWarburger Straße 10033098PaderbornGermany
| | - Lennart Schmitz
- Department ChemieUniversität PaderbornWarburger Straße 10033098PaderbornGermany
| | | | - Jacek Kubicki
- Faculty of PhysicsAdam Mickiewicz University Poznańul. Uniwersytetu Poznańskiego 2Poznań61-614Poland
| | - Wojciech Gawelda
- Faculty of PhysicsAdam Mickiewicz University Poznańul. Uniwersytetu Poznańskiego 2Poznań61-614Poland
- Department of ChemistryUniversidad Autónoma de MadridCampus Universitario28049MadridSpain
- IMDEA-NanocienciaCalle Faraday 928049MadridSpain
| | - Matthias Bauer
- Department ChemieUniversität PaderbornWarburger Straße 10033098PaderbornGermany
| |
Collapse
|
5
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Lorraine SC, Lawrence MA, Celestine M, Holder AA. Electrochemical response of a Ru(II) benzothiazolyl-2-pyridinecarbothioamide pincer towards carbon dioxide and transfer hydrogenation of aryl ketones in air. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Singh V, Gupta N, Hargenrader GN, Askins EJ, Valentine AJS, Kumar G, Mara MW, Agarwal N, Li X, Chen LX, Cordones AA, Glusac KD. Photophysics of graphene quantum dot assemblies with axially coordinated cobaloxime catalysts. J Chem Phys 2020; 153:124903. [PMID: 33003752 DOI: 10.1063/5.0018581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a study of chromophore-catalyst assemblies composed of light harvesting hexabenzocoronene (HBC) chromophores axially coordinated to two cobaloxime complexes. The chromophore-catalyst assemblies were prepared using bottom-up synthetic methodology and characterized using solid-state NMR, IR, and x-ray absorption spectroscopy. Detailed steady-state and time-resolved laser spectroscopy was utilized to identify the photophysical properties of the assemblies, coupled with time-dependent DFT calculations to characterize the relevant excited states. The HBC chromophores tend to assemble into aggregates that exhibit high exciton diffusion length (D = 18.5 molecule2/ps), indicating that over 50 chromophores can be sampled within their excited state lifetime. We find that the axial coordination of cobaloximes leads to a significant reduction in the excited state lifetime of the HBC moiety, and this finding was discussed in terms of possible electron and energy transfer pathways. By comparing the experimental quenching rate constant (1.0 × 109 s-1) with the rate constant estimates for Marcus electron transfer (5.7 × 108 s-1) and Förster/Dexter energy transfers (8.1 × 106 s-1 and 1.0 × 1010 s-1), we conclude that both Dexter energy and Marcus electron transfer process are possible deactivation pathways in CoQD-A. No charge transfer or energy transfer intermediate was detected in transient absorption spectroscopy, indicating fast, subpicosecond return to the ground state. These results provide important insights into the factors that control the photophysical properties of photocatalytic chromophore-catalyst assemblies.
Collapse
Affiliation(s)
- Varun Singh
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Nikita Gupta
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - George N Hargenrader
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Erik J Askins
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Gaurav Kumar
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Neeraj Agarwal
- School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| |
Collapse
|
8
|
Biochar and kinetics studies on the reduction of sodium bromate by a cobaloxime in an aqueous media: How we can remove a toxic substance from our environment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Celestine MJ, Lawrence MA, Evaristo NK, Legere BW, Knarr JK, Schott O, Picard V, Bullock JL, Hanan GS, McMillen CD, Bayse CA, Holder AA. N-substituted 2-pyridinecarbothioamides and polypyridyl mixed-ligand cobalt(III)-containing complexes for photocatalytic hydrogen generation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Dolui D, Khandelwal S, Majumder P, Dutta A. The odyssey of cobaloximes for catalytic H 2 production and their recent revival with enzyme-inspired design. Chem Commun (Camb) 2020; 56:8166-8181. [PMID: 32555820 DOI: 10.1039/d0cc03103h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobaloxime complexes gained attention for their intrinsic ability of catalytic H2 production despite their initial emergence as a vitamin B12 model. The simple, robust, and synthetically manoeuvrable cobaloxime core represents a model catalyst molecule for the investigation of optimal conditions for both photo- and electrocatalytic H2 production catalytic assemblies. Cobaloxime is one of the rare catalysts that finds equal applications in the analysis of homogeneous and heterogeneous catalytic conditions. However, the poor aqueous solubility and long-term instability of cobaloximes have severely impeded their growth. Lately, interest in the cobaloxime-based catalysts has been resuscitated with the rational use of extended enzymatic features. This unique enzyme-inspired catalyst design strategy has instigated the formation of a new genre of cobaloxime molecules that exhibit enhanced photo- and electrocatalytic H2 evolution with improved aqueous and air stability.
Collapse
Affiliation(s)
- Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | | | | | | |
Collapse
|
11
|
Lawrence MA, Mulder WH, Celestine MJ, McMillen CD, Holder AA. Assessment of two cobalt(II) complexes with pincer ligands for the electrocatalytic hydrogen evolution reaction. A comparison of the SNS vs ONS coordination. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Elgemeie GH, Azzam RA, Osman RR. Recent advances in synthesis, metal complexes and biological evaluation of 2-aryl, 2-pyridyl and 2-pyrimidylbenzothiazoles as potential chemotherapeutics. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Beebe SJ, Celestine MJ, Bullock JL, Sandhaus S, Arca JF, Cropek DM, Ludvig TA, Foster SR, Clark JS, Beckford FA, Tano CM, Tonsel-White EA, Gurung RK, Stankavich CE, Tse-Dinh YC, Jarrett WL, Holder AA. Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand. J Inorg Biochem 2020; 203:110907. [PMID: 31715377 PMCID: PMC7053658 DOI: 10.1016/j.jinorgbio.2019.110907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/09/2023]
Abstract
In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)2(O2CO)]Cl·6H2O 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)2(O2CO)]Cl·6H2O 2 was used to produce anhydrous [Co(phen)2(H2O)2](NO3)33. Subsequently, anhydrous [Co(phen)2(H2O)2](NO3)33 was reacted with MeATSC 1 to produce [Co(phen)2(MeATSC)](NO3)3·1.5H2O·C2H5OH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (1H, 13C, and 59Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (Kb = 8.1 × 105 and 1.6 × 104 M-1, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC50 = 34.4 ± 5.2 μM when compared to IC50 = 13.75 ± 1.08 μM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨm). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨm, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism.
Collapse
Affiliation(s)
- Stephen J Beebe
- The Frank Reidy Center for Bioelectrics, 4211 Monarch Way, Suite 300, Norfolk, VA 23529, USA
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jimmie L Bullock
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Shayna Sandhaus
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jessa Faye Arca
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Donald M Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, USA
| | - Tekettay A Ludvig
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Sydney R Foster
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jasmine S Clark
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Floyd A Beckford
- The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA
| | - Criszcele M Tano
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Elizabeth A Tonsel-White
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Courtney E Stankavich
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - William L Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA.
| |
Collapse
|
14
|
Lawrence MAW, Mulder WH. SNS versus SNN Pincer Ligands: Electrochemical Studies and Their Palladium(II) Complexes as Electro-Catalyst for Proton Reduction. ChemistrySelect 2018. [DOI: 10.1002/slct.201802065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mark A. W. Lawrence
- Department of Chemistry; University of the West Indies, Mona Kingston 7; Jamaica W.I
- School of Natural and Applied Sciences; University of Technology; 237 Old Hope Road Kingston 6 Jamaica W.I
| | - Willem H. Mulder
- Department of Chemistry; University of the West Indies, Mona Kingston 7; Jamaica W.I
| |
Collapse
|
15
|
Banerjee T, Haase F, Savasci G, Gottschling K, Ochsenfeld C, Lotsch BV. Single-Site Photocatalytic H 2 Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts. J Am Chem Soc 2017; 139:16228-16234. [PMID: 29022345 PMCID: PMC5691321 DOI: 10.1021/jacs.7b07489] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 12/26/2022]
Abstract
We demonstrate photocatalytic hydrogen evolution using COF photosensitizers with molecular proton reduction catalysts for the first time. With azine-linked N2-COF photosensitizer, chloro(pyridine)cobaloxime co-catalyst, and TEOA donor, H2 evolution rate of 782 μmol h-1 g-1 and TON of 54.4 has been obtained in a water/acetonitrile mixture. PXRD, solid-state spectroscopy, EM analysis, and quantum-chemical calculations suggest an outer sphere electron transfer from the COF to the co-catalyst which subsequently follows a monometallic pathway of H2 generation from the CoIII-hydride and/or CoII-hydride species.
Collapse
Affiliation(s)
- Tanmay Banerjee
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Frederik Haase
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
| | - Gökcen Savasci
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
| | - Kerstin Gottschling
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
| | - Christian Ochsenfeld
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
- Center
for Nanoscience, Schellingstraße
4, 80799 München, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
- Center
for Nanoscience, Schellingstraße
4, 80799 München, Germany
- Nanosystems
Initiative Munich (NIM), Schellingstraße 4, 80799 München, Germany
| |
Collapse
|
16
|
|
17
|
Celestine MJ, Joseph LS, Holder AA. Kinetics and mechanism of the oxidation of a cobaloxime by sodium hypochlorite in aqueous solution: Is it an outer-sphere mechanism? Inorganica Chim Acta 2017; 454:254-265. [PMID: 29861504 PMCID: PMC5976256 DOI: 10.1016/j.ica.2016.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The kinetics and mechanism of the oxidation of [Co(dmgBF2)2(OH2)2] (where dmgBF2 = difluoroboryldimethylglyoximato) by sodium hypochlorite (NaOCl) were investigated by stopped-flow spectrophotometry at 450 nm over the temperature range of 10 °C ≤ θ ≤ 25 °C, pH range of 5.0 ≤ pH ≤ 7.8, and at an ionic strength of 0.60 M (NaCl). The pKa1 value for [Co(dmgBF2)2(H2O)2] was calculated as 5.27 ± 0.14 at I = 0.60 (NaCl). The redox process was dependent on pH and oxidant concentration in a complex manner, that is, kobs = ((k2[H+] + k1Ka)/([H+] + Ka))[OCl-]T, where at 25.3 °C, k1 was calculated as 3.54 × 104 M-1 s-1, and k2 as 2.51 × 104 M-1 cm-1. At a constant pH value, while varying the concentration of sodium hypochlorite two rate constants were calculated, viz., k'1 = 7.56 s-1 (which corresponded to a reaction pathway independent of the NaOCl concentration) and k'2 = 2.26 × 104 M-1 s-1, which was dependent on the concentration of NaOCl. From the variation in pH, [Formula: see text], and [Formula: see text] were calculated as 58 ± 16 kJ mol-1, 46 ± 1 kJ mol-1, 34 ± 55 J mol-1 K-1, and -6 ± 4 Jmol-1 K-1, respectively. The self-exchange rate constant, k11, for sodium hypochlorite (as ClO-) was calculated to be 1.2 × 103 M-1 s-1, where an outer-sphere electron transfer mechanism was assumed. A green product, [Co(dmgBF2)2(OH2)(OH)]·1.75NaOCl, which can react with DMSO, was isolated from the reaction at pH 8.04 with a yield of 13%.
Collapse
Affiliation(s)
- Michael J. Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529-0126, USA
| | - Lorne S. Joseph
- College of Mathematics and Science, University of the Virgin Islands, 2 John Brewers Bay, St Thomas, VI 00802-9990, USA
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529-0126, USA
| |
Collapse
|
18
|
Mari C, Huang H, Rubbiani R, Schulze M, Würthner F, Chao H, Gasser G. Evaluation of Perylene Bisimide-Based RuIIand IrIIIComplexes as Photosensitizers for Photodynamic Therapy. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600516] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Mari
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Huaiyi Huang
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
- Sun Yat-Sen University; Guangzhou P. R. China
| | - Riccardo Rubbiani
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Marcus Schulze
- Institut für Organische Chemie and Center for Nanosystems Chemistry; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Hui Chao
- Sun Yat-Sen University; Guangzhou P. R. China
| | - Gilles Gasser
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
19
|
Moonshiram D, Gimbert-Suriñach C, Guda A, Picon A, Lehmann CS, Zhang X, Doumy G, March AM, Benet-Buchholz J, Soldatov A, Llobet A, Southworth SH. Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water. J Am Chem Soc 2016; 138:10586-96. [PMID: 27452370 DOI: 10.1021/jacs.6b05680] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.
Collapse
Affiliation(s)
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Alexander Guda
- International Research Center "Smart Materials", Southern Federal University , 344090 Rostov-on-Don, Russia
| | | | | | | | | | | | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Alexander Soldatov
- International Research Center "Smart Materials", Southern Federal University , 344090 Rostov-on-Don, Russia
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | |
Collapse
|
20
|
Lawrence MAW, Celestine MJ, Artis ET, Joseph LS, Esquivel DL, Ledbetter AJ, Cropek DM, Jarrett WL, Bayse CA, Brewer MI, Holder AA. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(i) and cobalt(ii) metal centres. Dalton Trans 2016; 45:10326-42. [PMID: 27244471 PMCID: PMC5973836 DOI: 10.1039/c6dt01583b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO (where py = pyridine) in acetone. The formulation of complex was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex . A spectrophotometric titration involving complex and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(ii) centre diminished the peak current at the Epc value of the Co(I/0) redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical (59)Co NMR spectroscopic data for the formation of Co(i) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(i) metal centre is more favourable than coordination to a cobalt(ii) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes and in various solvents demonstrated the dramatic effects of the axial ligand and the solvent on the turnover number of the respective catalyst.
Collapse
Affiliation(s)
- Mark A W Lawrence
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Edward T Artis
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Lorne S Joseph
- University of the Virgin Islands, #2 John Brewers Bay, Charlotte Amalie, VI 00802, USA
| | - Deisy L Esquivel
- Johnson C. Smith University, 100 Beatties Ford Road, Charlotte, NC 28216, USA
| | | | - Donald M Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, USA
| | - William L Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406-0076, USA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Matthew I Brewer
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
21
|
Assessing the stability of the Co(I) species of two mononuclear dichlorocobalt compounds bearing 2,2′-bipyridine and trans-2-(2′-quiolyl)methylene-3-quinuclidione via 59Co NMR spectroscopy, electrochemical, and catalyzed proton electroreduction studies. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Queyriaux N, Jane RT, Massin J, Artero V, Chavarot-Kerlidou M. Recent Developments in Hydrogen Evolving Molecular Cobalt(II)-Polypyridyl Catalysts. Coord Chem Rev 2015; 304-305:3-19. [PMID: 26688590 PMCID: PMC4681115 DOI: 10.1016/j.ccr.2015.03.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The search for efficient noble metal-free hydrogen-evolving catalysts is the subject of intense research activity. A new family of molecular cobalt(II)-polypyridyl catalysts has recently emerged. These catalysts prove more robust under reductive conditions than other cobalt-based systems and display high activities under fully aqueous conditions. This review discusses the design, characterization, and evaluation of these catalysts for electrocatalytic and light-driven hydrogen production. Mechanistic considerations are addressed and structure-catalytic activity relationships identified in order to guide the future design of more efficient catalytic systems.
Collapse
Affiliation(s)
- N. Queyriaux
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR 5249, CEA, 17 rue des martyrs, 38054, Grenoble Cedex 9, France
| | - R. T. Jane
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR 5249, CEA, 17 rue des martyrs, 38054, Grenoble Cedex 9, France
| | - J. Massin
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR 5249, CEA, 17 rue des martyrs, 38054, Grenoble Cedex 9, France
| | - V. Artero
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR 5249, CEA, 17 rue des martyrs, 38054, Grenoble Cedex 9, France
| | - M. Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR 5249, CEA, 17 rue des martyrs, 38054, Grenoble Cedex 9, France
| |
Collapse
|
23
|
4,4′-Bipyridine axially coordinated binuclear cobaloxime complexes as molecular catalysts for light-driven hydrogen evolution. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9918-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Lawrence MA, Jackson YA, Mulder WH, Björemark PM, Håkansson M. Synthesis and Structure of a Novel Substituted Benzothiazolyl-N-phenyl-2-pyridinecarbothioamide; Kinetics of Formation and Electrochemistry of Two of its Palladium Pincer Complexes. Aust J Chem 2015. [DOI: 10.1071/ch14380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis and crystal structures of bis-N-(2,5-dimethoxyphenyl)pyridine-2,6-dicarbothioamide (dicarbothioamide I) and 6-(4,7-dimethoxy-2-benzothiazolyl)-N-(2,5-dimethoxyphenyl)-2-pyridinecarbothioamide (L1) as well as the syntheses of the palladium(ii) chloride and acetate pincer complexes are reported. The stability constant for the palladium complex formation at 25°C was found to be (2.04 ± 0.26) × 104 dm3 mol–1 and (2.30 ± 0.19) × 104 dm3 mol–1 with ΔfH = 8 ± 1 kJ mol–1, ΔfSθ = 108 ± 10 J K–1 mol–1, and ΔfH = 17 ± 4 kJ mol–1 and ΔfSθ = 140 ± 20 J K–1 mol–1 for the PdClL1 and Pd(OAc)L1, respectively. The kinetics of formation of the palladium(ii) complexes were investigated and the mechanism is proposed to be associative in nature (ΔH1‡ = 34 ± 2 kJ mol–1 and ΔS1‡ = –113 ± 8 J K–1 mol–1, and ΔH1‡ = 37 ± 3 kJ mol–1 and ΔS1‡ = –100 ± 8 J K–1 mol–1 for the PdClL1 and Pd(OAc)L1 species, respectively). The electrochemical measurements of the acetonitrile solutions revealed irreversible electron transfers consistent with the electrochemical decomposition of the ligand and its coordination complexes.
Collapse
|
25
|
Cedeno D, Krawicz A, Doak P, Yu M, Neaton JB, Moore GF. Using Molecular Design to Control the Performance of Hydrogen-Producing Polymer-Brush-Modified Photocathodes. J Phys Chem Lett 2014; 5:3222-3226. [PMID: 26276336 DOI: 10.1021/jz5016394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Attachment of difluoroborylcobaloxime catalysts to a polymer-brush-modified GaP semiconductor allows improved hydrogen production levels and photoelectrochemical performance under aqueous acidic conditions (pH = 4.5) as compared to the performance of electrodes without catalyst treatment. The catalytic assembly used in this work incorporates a boron difluoride (BF2) capping group on the glyoximate ligand of the catalyst, a synthetic modification previously used to enhance the stability of nonsurface-attached complexes toward acid hydrolysis and to shift the cobalt reduction potentials of the complex to less negative, and thus technologically more relevant, values. The pH-dependent photoresponses of the cobaloxime- and difluoroborylcobaloxime- modified semiconductors are shown to be consistent with those from analogous studies using non-surface-attached cobaloxime catalysts as well as catalysts supported on conductive electrodes. Thus, this work illustrates the potential to control and optimize the properties of visible-light-absorbing semiconductors using polymeric overcoating techniques coupled with the principles of synthetic molecular design.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey B Neaton
- □Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Gary F Moore
- ∇Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
26
|
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem Soc Rev 2014; 43:1660-733. [DOI: 10.1039/c3cs60027k] [Citation(s) in RCA: 519] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Chowdhury S, Majumder S, Bhattacharya A, Mitra P, Naskar JP. Copper(II) thiocyanate complexes of 2-(2-pyridinyl)-benzthiazole: synthesis, structure, redox behavior, thermal aspects, and DFT calculations. J COORD CHEM 2013. [DOI: 10.1080/00958972.2013.839784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Smita Majumder
- Department of Chemistry, Tripura University, Suryamaninagar, India
| | | | - Partha Mitra
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| | - Jnan Prakash Naskar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India
| |
Collapse
|
28
|
Atom transfer radical polymerization on the interior of the P22 capsid and incorporation of photocatalytic monomer crosslinks. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Holder AA, Taylor P, Magnusen AR, Moffett ET, Meyer K, Hong Y, Ramsdale SE, Gordon M, Stubbs J, Seymour LA, Acharya D, Weber RT, Smith PF, Dismukes GC, Ji P, Menocal L, Bai F, Williams JL, Cropek DM, Jarrett WL. Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes. Dalton Trans 2013; 42:11881-99. [PMID: 23783642 PMCID: PMC3751419 DOI: 10.1039/c3dt50547b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2·1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2·3H2O 2 (where tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2·5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2·6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4'',4''' tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]·H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and (51)V NMR spectroscopic studies were also used to assess the stability of the chloride salts of complexes 3 and 4 in aqueous media at pH 7.19. This research illustrates the potential for using mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes to fight skin cancer.
Collapse
Affiliation(s)
- Alvin A. Holder
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Patrick Taylor
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Anthony R. Magnusen
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Erick T. Moffett
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Kyle Meyer
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, U.S.A
| | - Yiling Hong
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, U.S.A
| | - Stuart E. Ramsdale
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Michelle Gordon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Javelyn Stubbs
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Luke A. Seymour
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Dhiraj Acharya
- Department of Biological Sciences, The University of Southern Mississippi, MS 39406, U.S.A
| | - Ralph T. Weber
- EPR Division Bruker BioSpin, 44 Manning Road, Billerica, MA 01821, U.S.A
| | - Paul F. Smith
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - G. Charles Dismukes
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Ping Ji
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Laura Menocal
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, MS 39406, U.S.A
| | - Jennie L. Williams
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Donald M. Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, U.S.A
| | - William L. Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406-0076, U.S.A
| |
Collapse
|
30
|
Rank M, Zabel M, Winter RF. Pyridine vs. Bipyridine Coordination in PtCl2Complexes of 4-tButyl-4'-(4-pyridinyl)-2, 2'-bipyridine. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Kelley P, Day MW, Agapie T. Hydrogen Evolution Catalyzed by Aluminum-Bridged Cobalt Diglyoximate Complexes. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Varma S, Castillo CE, Stoll T, Fortage J, Blackman AG, Molton F, Deronzier A, Collomb MN. Efficient photocatalytic hydrogen production in water using a cobalt(iii) tetraaza-macrocyclic catalyst: electrochemical generation of the low-valent Co(i) species and its reactivity toward proton reduction. Phys Chem Chem Phys 2013; 15:17544-52. [DOI: 10.1039/c3cp52641k] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|