1
|
Shahid N, Singh AK. Unravelling the kinetics of electro- and photochemical S → O linkage isomerization in Ru(II)-NHC-DMSO complexes utilised for photoinduced substitution reactions. Dalton Trans 2024; 53:12662-12675. [PMID: 39012321 DOI: 10.1039/d4dt01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Our recently reported Ru(III)-NHC complexes 1a and 1b were utilized as suitable precursors to prepare new Ru(II)-NHC-(DMSO)2 complexes 2a and 2b. Complexes 2a and 2b reacted with 2,2'-bipyridine to give complexes 3a and 3b, respectively, with substitution of only one of the DMSO ligands. All new complexes were characterized using various spectroscopic techniques and the molecular structures of 2a and 3a were determined using single-crystal X-ray diffraction technique. Complexes 2a, 2b, 3a, and 3b showed the S → O linkage isomerization of the DMSO ligand upon oxidation of the Ru centre from +II to +III, as confirmed by the thermodynamic and kinetic data obtained from cyclic voltammetry experiments. It was observed that in the bisdimethylsulfoxide complexes 2a and 2b, only one DMSO ligand isomerized, which was further corroborated by the computational studies performed to optimize the geometry of the possible linkage isomers of complexes 2a and 3a in +2 and +3 oxidation states, whereas complexes 3a and 3b showed a high preference for the O-bound isomer in the Ru(III) redox state. The role of NHC in stabilizing the mixed isomer in complexes 2a and 2b and preventing the isomerization of both DMSO ligands coordinated to the Ru centre was studied; moreover, NHC provided good solvent compatibility for photochemical S → O isomerization in all the complexes. Taking advantages of the photoinduced linkage isomerization in 2a and 2b, the synthesis of 3a and 3b was revisited and performed using 2a and 2b, respectively, following a photoinduced substitution reaction in the presence of 2,2'-bipyridine. The kinetics of the reversion from the O-bound to S-bound isomer was found to follow the DMSO-assisted intermolecular S → O isomerization pathway.
Collapse
Affiliation(s)
- Nida Shahid
- Department of Chemistry, Indian Institute of Technology-Indore, Simrol, Khandwa Road, 433552, India.
| | - Amrendra K Singh
- Department of Chemistry, Indian Institute of Technology-Indore, Simrol, Khandwa Road, 433552, India.
| |
Collapse
|
2
|
Tolbatov I, Marrone A. Reactivity of N-Heterocyclic Carbene Half-Sandwich Ru-, Os-, Rh-, and Ir-Based Complexes with Cysteine and Selenocysteine: A Computational Study. Inorg Chem 2021; 61:746-754. [PMID: 34894670 DOI: 10.1021/acs.inorgchem.1c03608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structure and the reactivity of four half-sandwich metal complexes of RuII, OsII, RhIII, and IrIII were investigated by means of density functional theory approaches. These piano-stool complexes, grouped in cym-bound complexes, RuII(cym)(dmb)Cl2, 1, and OsII(cym)(dmb)Cl2, 2, and Cp*-bound complexes, RhIII(Cp*)(dmb)Cl2, 3, and IrIII(Cp*)(dmb)Cl2, 4, with cym = η6-p-cymene, Cp* = η5-pentamethylcyclopentadienyl, and dmb = 1,3-dimethylbenzimidazol-2-ylidene, were recently proposed as anticancer metallodrugs that preferably target Cys- or Sec-containing proteins. Thus, density functional theory calculations were performed here to characterize in detail the thermodynamics and the kinetics underlining the targeting of these metallodrugs at either neutral or anionic Cys and Sec side chains. Calculations evidenced that all these complexes preferably target at Cys or Sec via chloro exchange, although cym-bound and Cp*-bound complexes resulted to be more prone to bind at neutral or anionic forms, respectively, of these soft protein sites. Further decomposition analyses of the activation free energies for the reaction between 1-4 complexes and either Cys or Sec, paralleled with the comparison among the optimized transition-state structures, allowed us to spotlight the significant role played by solvation in determining the overall reactivity and selectivity expected for these prototypical metallodrugs.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 25000 Dijon, France
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
3
|
Younus HA, Yildiz I, Ahmad N, Mohamed HS, Khabiri G, Zhang S, Verpoort F, Liu P, Zhang Y. Half‐sandwich ruthenium complex with a very low overpotential and excellent activity for water oxidation under acidic conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hussein A. Younus
- College of Materials Science and Engineering Hunan University Changsha China
- Chemistry Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Ibrahim Yildiz
- College of Arts and Sciences Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Nazir Ahmad
- Department of Chemistry Government College University Lahore Pakistan
| | - Hemdan S. Mohamed
- Physics Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Gomaa Khabiri
- Physics Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Shiguo Zhang
- College of Materials Science and Engineering Hunan University Changsha China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Piao Liu
- Hunan LEED Electronic Ink Co., Ltd. Zhuzhou China
| | - Yan Zhang
- College of Materials Science and Engineering Hunan University Changsha China
| |
Collapse
|
4
|
Mukherjee A, Bhattacharya S. Dual utility of a single diphosphine-ruthenium complex: a precursor for new complexes and, a pre-catalyst for transfer-hydrogenation and Oppenauer oxidation. RSC Adv 2021; 11:15617-15631. [PMID: 35481203 PMCID: PMC9029466 DOI: 10.1039/d1ra01594j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
The diphosphine-ruthenium complex, [Ru(dppbz)(CO)2Cl2] (dppbz = 1,2-bis(diphenylphosphino)benzene), where the two carbonyls are mutually cis and the two chlorides are trans, has been found to serve as an efficient precursor for the synthesis of new complexes. In [Ru(dppbz)(CO)2Cl2] one of the two carbonyls undergoes facile displacement by neutral monodentate ligands (L) to afford complexes of the type [Ru(dppbz)(CO)(L)Cl2] (L = acetonitrile, 4-picoline and dimethyl sulfoxide). Both the carbonyls in [Ru(dppbz)(CO)2Cl2] are displaced on reaction with another equivalent of dppbz to afford [Ru(dppbz)2Cl2]. The two carbonyls and the two chlorides in [Ru(dppbz)(CO)2Cl2] could be displaced together by chelating mono-anionic bidentate ligands, viz. anions derived from 8-hydroxyquinoline (Hq) and 2-picolinic acid (Hpic) via loss of a proton, to afford the mixed-tris complexes [Ru(dppbz)(q)2] and [Ru(dppbz)(pic)2], respectively. The molecular structures of four selected complexes, viz. [Ru(dppbz)(CO)(dmso)Cl2], [Ru(dppbz)2Cl2], [Ru(dppbz)(q)2] and [Ru(dppbz)(pic)2], have been determined by X-ray crystallography. In dichloromethane solution, all the complexes show intense absorptions in the visible and ultraviolet regions. Cyclic voltammetry on the complexes shows redox responses within 0.71 to -1.24 V vs. SCE. [Ru(dppbz)(CO)2Cl2] has been found to serve as an excellent pre-catalyst for catalytic transfer-hydrogenation and Oppenauer oxidation.
Collapse
Affiliation(s)
- Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University Kolkata-700 032 India +91-33-24146223
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University Kolkata-700 032 India +91-33-24146223
| |
Collapse
|
5
|
Ghoshal T, Patel TM. Anticancer activity of benzoxazole derivative (2015 onwards): a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00115-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
According to the report published recently by the World Health Organization, the number of cancer cases in the world will increase to 22 million by 2030. So the anticancer drug research and development is taking place in the direction where the new entities are developed which are low in toxicity and are with improved activity. Benzoxazole and its derivative represent a very important class of heterocyclic compounds, which have a diverse therapeutic area. Recently, many active compounds synthesized are very effective; natural products isolated with benzoxazole moiety have also shown to be potent towards cancer.
Main text
In the last few years, many research groups have designed and developed many novel compounds with benzoxazole as their backbone and checked their anticancer activity. In the review article, the recent developments (mostly after 2015) made in the direction of design and synthesis of new scaffolds with very potent anticancer activity are briefly described. The effect of various heterocycles attached to the benzoxazole and their effect on the anticancer activity are thoroughly studied and recorded in the review.
Conclusion
These compiled data in the article will surely update the scientific community with the recent development in this area and will provide direction for further research in this area.
Collapse
|
6
|
High-resolution crystal structures of a “half sandwich”-type Ru(II) coordination compound bound to hen egg-white lysozyme and proteinase K. J Biol Inorg Chem 2020; 25:635-645. [DOI: 10.1007/s00775-020-01786-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 12/29/2022]
|
7
|
Younus HA, Ahmad N, Yildiz I, Zhuiykov S, Zhang S, Verpoort F. Ligand photodissociation in Ru(ii)–1,4,7-triazacyclononane complexes enhances water oxidation and enables electrochemical generation of surface active species. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02575h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ligand transformations involved in metal complexes during water oxidation (WO), such as ligand decomposition, partial oxidation, or complete dissociation have been reported, however, ligand photodissociation has not been reported yet.
Collapse
Affiliation(s)
- Hussein A. Younus
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
| | - Nazir Ahmad
- Department of Chemistry
- G. C. University Lahore
- Pakistan
| | - Ibrahim Yildiz
- College of Arts and Sciences
- Khalifa University of Science and Technology
- Abu Dhabi 127788
- United Arab Emirates
| | - Serge Zhuiykov
- Ghent University Global Campus
- Incheon 406-840
- South Korea
| | - Shiguo Zhang
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Ghent University Global Campus
| |
Collapse
|
8
|
Chemistry and reactivity of ruthenium(II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Battistin F, Siegmund D, Balducci G, Alessio E, Metzler-Nolte N. Ru(ii)-Peptide bioconjugates with the cppH linker (cppH = 2-(2'-pyridyl)pyrimidine-4-carboxylic acid): synthesis, structural characterization, and different stereochemical features between organic and aqueous solvents. Dalton Trans 2019; 48:400-414. [PMID: 30285015 DOI: 10.1039/c8dt03575j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three new Ru(ii) bioconjugates with the C-terminal hexapeptide sequence of neurotensin, RRPYIL, namely trans,cis-RuCl2(CO)2(cppH-RRPYIL-κNp) (7), [Ru([9]aneS3)(cppH-RRPYIL-κNp)(PTA)](Cl)2 (8), and [Ru([9]aneS3)Cl(cppH-RRPYIL-κNp)]Cl (11), where cppH is the asymmetric linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid, were prepared in pure form and structurally characterized in solution. The cppH linker is capable of forming stereoisomers (i.e. linkage isomers), depending on whether the nitrogen atom ortho (No) or para (Np) to the carboxylate on C4 in the pyrimidine ring binds the metal ion. Thus, one of the aims of this work was to obtain pairs of stereoisomeric conjugates and investigate their biological (anticancer, antibacterial) activity. A thorough NMR characterization clearly indicated that in all cases exclusively Np conjugates were obtained in pure form. In addition, the NMR studies showed that, whereas in DMSO-d6 each conjugate exists as a single species, in D2O two (7) or even three if not four (8 and 11) very similar stable species form (each one corresponding to an individual compound). Similar results were observed for the cppH-RRPYIL ligand alone. Overall, the NMR findings are consistent with the occurrence of a strong intramolecular stacking interaction between the phenol ring of tyrosine and the pyridyl ring of cppH. Such stacking interactions between aromatic rings are expected to be stronger in water. This interaction leads to two stereoisomeric species in the free cppH-RRPYIL ligand and in the bioconjugate 7, and is somehow modulated by the less symmetrical Ru coordination environments in 8 and 11, affording three to four very similar species.
Collapse
Affiliation(s)
- Federica Battistin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | | | | | | | | |
Collapse
|
10
|
De S, Chaudhuri SR, Panda A, Jadhav GR, Kumar RS, Manohar P, Ramesh N, Mondal A, Moorthy A, Banerjee S, Paira P, Kumar SKA. Synthesis, characterisation, molecular docking, biomolecular interaction and cytotoxicity studies of novel ruthenium(ii)–arene-2-heteroarylbenzoxazole complexes. NEW J CHEM 2019. [DOI: 10.1039/c8nj04999h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii)–arene-2-heteroarylbenzoxazole complexes were synthesized and implemented for their biological evaluation.
Collapse
Affiliation(s)
- Sourav De
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Shreya Ray Chaudhuri
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Arpita Panda
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Gajanan Rahosaheb Jadhav
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - R. Selva Kumar
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Prasanth Manohar
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology
- Vellore 632014
- India
| | - N. Ramesh
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology
- Vellore 632014
- India
| | - Ashaparna Mondal
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - Anbalagan Moorthy
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology
- Vellore 632014
- India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences
- Asansol-713301
- India
| | - Priyankar Paira
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| | - S. K. Ashok Kumar
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology
- Vellore-632014
- India
| |
Collapse
|
11
|
Ristovski S, Uzelac M, Kljun J, Lipec T, Uršič M, Zemljič Jokhadar Š, Žužek MC, Trobec T, Frangež R, Sepčić K, Turel I. Organoruthenium Prodrugs as a New Class of Cholinesterase and Glutathione-S-Transferase Inhibitors. ChemMedChem 2018; 13:2166-2176. [PMID: 30126080 DOI: 10.1002/cmdc.201800432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/17/2022]
Abstract
A small library of 17 organoruthenium compounds with the general formula [RuII (fcl)(chel)(L)]n+ (in which fcl=face capping ligand, chel=chelating bidentate ligand, and L=monodentate ligand) were screened for inhibitory activity against cholinesterases and glutathione-S-transferases of human and animal origins. Compounds were selected to include different chelating ligands (i.e., N,N-, N,O-, O,O-, S,O-) and monodentate ligands that can modulate the aquation rate of the metal species. Compounds with a labile ruthenium chloride bond that provided rapid aquation were found to inhibit both sets of enzymes in reversible competitive modes and at pharmaceutically relevant concentrations. When applied at concentrations that completely abolish the activity of human acetylcholinesterase, the lead compound [(η6 -p-cymene)Ru(pyrithionato)Cl] (C1 a) showed no undesirable physiological responses on the neuromuscular system. Finally, C1 a was not cytotoxic against non-transformed cells at pharmaceutically relevant concentrations.
Collapse
Affiliation(s)
- Samuel Ristovski
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Monika Uzelac
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.,Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Jakob Kljun
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Tanja Lipec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Matija Uršič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Špela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
12
|
(Pyrazolyl)pyridine ruthenium(III) complexes: Synthesis, kinetics of substitution reactions with thiourea and biological studies. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Bratsos I, Alessio E. The Pivotal Role of Ru-dmso Compounds in the Discovery of Well-Behaved Precursors. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ioannis Bratsos
- Institute of Nanoscience and Nanotechnology (INN); Department of Physical Chemistry; NCSR “DEMOKRITOS”; Aghia Paraskevi Attikis 153 10 Athens Greece
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences; University of Trieste; Via L. Giorgieri 1 34127 Trieste Italy
| |
Collapse
|
14
|
Mondal A, De S, Maiti S, Sarkar B, Sk AK, Jacob R, Moorthy A, Paira P. Amberlite IR-120 (H) mediated “on water” synthesis of fluorescent Ruthenium(II)-arene 8-hydroxyquinoline complexes for cancer therapy and live cell imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:380-394. [DOI: 10.1016/j.jphotobiol.2017.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/25/2017] [Indexed: 12/26/2022]
|
15
|
Liu LJ, Wang W, Huang SY, Hong Y, Li G, Lin S, Tian J, Cai Z, Wang HMD, Ma DL, Leung CH. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(iii) metal-based compound. Chem Sci 2017; 8:4756-4763. [PMID: 28959398 PMCID: PMC5603957 DOI: 10.1039/c7sc00311k] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
Targeting protein-protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(iii) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(iii) compound 1 exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway in vitro and in vivo, and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, 1 repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the Δ-enantiomer of 1 showed superior potency in the biological assays compared to Λ-1 or racemic 1. These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Wanhe Wang
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Shi-Ying Huang
- College of Oceanology and Food Science , Quanzhou Normal University , Quanzhou 362000 , China
- Key Laboratory for the Development of Bioactive Material from Marine Algae , Quanzhou 362000 , China
| | - Yanjun Hong
- Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China .
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Jinglin Tian
- Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China .
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China .
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering , National Chung Hsing University , Taichung 402 , Taiwan .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| |
Collapse
|
16
|
Lazarević T, Rilak A, Bugarčić ŽD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem 2017; 142:8-31. [PMID: 28442170 DOI: 10.1016/j.ejmech.2017.04.007] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted.
Collapse
Affiliation(s)
- Tatjana Lazarević
- University of Kragujevac, Faculty of Medicine, S. Marković 69, 34000, Kragujevac, Serbia
| | - Ana Rilak
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| | - Živadin D Bugarčić
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| |
Collapse
|
17
|
Milutinović MM, Rilak A, Bratsos I, Klisurić O, Vraneš M, Gligorijević N, Radulović S, Bugarčić ŽD. New 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine ruthenium(II) complexes: Synthesis, characterization, interaction with DNA/BSA and cytotoxicity studies. J Inorg Biochem 2017; 169:1-12. [DOI: 10.1016/j.jinorgbio.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
|
18
|
Kasprzak M, Fabijańska M, Chęcińska L, Studzian K, Markowicz-Piasecka M, Sikora J, Mikiciuk-Olasik E, Ochocki J. Small differences in structure, a large difference in activity – Comparing a new Ru(II)-3-hydroxyiminoflavanone complex with analogous Ru(II) compounds. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Chinthala CP, Angappan S. Effect of solvent coordination on the structure of β-diketone-based vanadyl complexes and assessment of in vitro
antidiabetic activity and cytotoxicity. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Sheela Angappan
- Department of Chemistry, School of Advanced Sciences; VIT University; Vellore Tamil Nadu India
| |
Collapse
|
20
|
Kljun J, Anko M, Traven K, Sinreih M, Pavlič R, Peršič Š, Ude Ž, Codina EE, Stojan J, Lanišnik Rižner T, Turel I. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents. Dalton Trans 2016; 45:11791-800. [PMID: 27357845 DOI: 10.1039/c6dt00668j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range.
Collapse
Affiliation(s)
- Jakob Kljun
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jadhav GR, Sinha S, Chhabra M, Paira P. Synthesis of novel anticancer ruthenium–arene pyridinylmethylene scaffolds via three-component reaction. Bioorg Med Chem Lett 2016; 26:2695-700. [DOI: 10.1016/j.bmcl.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
|
22
|
Fu Y, Sanchez-Cano C, Soni R, Romero-Canelon I, Hearn JM, Liu Z, Wills M, Sadler PJ. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Trans 2016; 45:8367-8378. [PMID: 27109147 DOI: 10.1039/c6dt01242f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The rapidly growing area of catalytic ruthenium chemistry has provided new complexes with potential as organometallic anticancer agents with novel mechanisms of action. Here we report the anticancer activity of four neutral organometallic Ru(II) arene N-tosyl-1,2-diphenylethane-1,2-diamine (TsDPEN) tethered transfer hydrogenation catalysts. The enantiomers (R,R)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8) and (S,S)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8a) exhibited higher potency than cisplatin against A2780 human ovarian cancer cells. When the N-methyl was replaced by N-H, i.e. to give (R,R)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7) and (S,S)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7a), respectively, anticancer activity decreased >5-fold. Their antiproliferative activity appears to be linked to their ability to accumulate in cells, and their mechanism of action might involve inhibition of tubulin polymerisation. This appears to be the first report of the potent anticancer activity of tethered Ru(II) arene complexes, and the structure-activity relationship suggests that the N-methyl substituents are important for potency. In the National Cancer Institute 60-cancer-cell-line screen, complexes 8 and 8a exhibited higher activity than cisplatin towards a broad range of cancer cell lines. Intriguingly, in contrast to their potent anticancer properties, complexes 8/8a are poor catalysts for asymmetric transfer hydrogenation, whereas complexes 7/7a are effective asymmetric hydrogenation catalysts.
Collapse
Affiliation(s)
- Ying Fu
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lazić D, Arsenijević A, Puchta R, Bugarčić ŽD, Rilak A. DNA binding properties, histidine interaction and cytotoxicity studies of water soluble ruthenium(ii) terpyridine complexes. Dalton Trans 2016; 45:4633-46. [PMID: 26855406 DOI: 10.1039/c5dt04132e] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, two representatives of previously synthesized ruthenium(ii) terpyridine complexes, i.e., [Ru(Cl-tpy)(en)Cl][Cl] (1) and [Ru(Cl-tpy)(dach)Cl][Cl] (2), were chosen and a detailed study of the kinetic parameters of their reactivity toward l-histidine (l-His), using the UV-Vis and (1)H NMR techniques, was developed. The inner molecular rearrangement from N3-coordinated l-His to the N1 bound isomer, observable in the NMR data, was corroborated by DFT calculations favoring N1 coordination by nearly 4 kcal mol(-1). These two ruthenium(ii) terpyridine complexes were investigated for their interactions with DNA employing UV-Vis spectroscopy, DNA viscosity measurements and fluorescence quenching measurements. The high binding constants obtained in the DNA binding studies (Kb = 10(4)-10(5) M(-1)) suggest a strong binding of the complexes to calf thymus (CT) DNA. Competitive studies with ethidium bromide (EB) showed that the complexes can displace DNA-bound EB, suggesting strong competition with EB (Ksv = 1.5-2.5 × 10(4) M(-1)). In fact, the results indicate that these complexes can bind to DNA covalently and non-covalently. In order to gain insight of the behavior of a neutral compound, besides the four previously synthesized cationic complexes [Ru(Cl-tpy)(en)Cl][Cl] (1), [Ru(Cl-tpy)(dach)Cl][Cl] (2), [Ru(Cl-tpy)(bpy)Cl][Cl] (3) and [Ru(tpy)Cl3] (P2), a new complex, [Ru(Cl-tpy)(pic)Cl] (4), was used in the biological studies. Their cytotoxicity was investigated against three different tumor cell lines, i.e., A549 (human lung carcinoma cell line), HCT116 (human colon carcinoma cell line), and CT26 (mouse colon carcinoma cell line), by the MTT assay. Complexes 1 and 2 showed higher activity than complexes 3, 4 and P2 against all the selected cell lines. The results on in vitro anticancer activity confirmed that only compounds that hydrolyze the monodentate ligand at a reasonable rate show moderate activity, provided that the chelate ligand is a hydrogen bond donor.
Collapse
Affiliation(s)
- Dejan Lazić
- Faculty of Medicine, Centre for Molecular Medicine and Stem Cell Research, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | | | | | | | | |
Collapse
|
24
|
Kottukulam Subran S, Banerjee S, Mondal A, Paira P. Amberlite IR-120(H)-mediated “on water” synthesis of novel anticancer ruthenium(ii)–p-cymene 2-pyridinylbenzothiazole (BTZ), 2-pyridinylbenzoxazole (BOZ) & 2-pyridinylbenzimidazole (BIZ) scaffolds. NEW J CHEM 2016. [DOI: 10.1039/c6nj02049f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A class of novel Ru(ii)–p-cymene BTZ, BOZ & BIZ complexes have been synthesized “on water” using Amberlite IR-120(H) resin and their anticancer activities were evaluated.
Collapse
Affiliation(s)
| | - Swagata Banerjee
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore-632014
- India
| | - Ashaparna Mondal
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore-632014
- India
| | - Priyankar Paira
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore-632014
- India
| |
Collapse
|
25
|
Adeniyi AA, Ajibade PA. Development of ruthenium-based complexes as anticancer agents: toward a rational design of alternative receptor targets. REV INORG CHEM 2016. [DOI: 10.1515/revic-2015-0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractIn the search for novel anticancer agents, the development of metal-based complexes that could serve as alternatives to cisplatin and its derivatives has received considerable attention in recent years. This becomes necessary because, at present, cisplatin and its derivatives are the only coordination complexes being used as anticancer agents in spite of inherent serious side effects and their limitation against metastasized platinum-resistant cancer cells. Although many metal ions have been considered as possible alternatives to cisplatin, the most promising are ruthenium (Ru) complexes and two Ru compounds, KP1019 and NAMI-A, which are currently in phase II clinical trials. The major obstacle against the rational design of these compounds is the fact that their mode of action in relation to their therapeutic activities and selectivity is not fully understood. There is an urgent need to develop novel metal-based anticancer agents, especially Ru-based compounds, with known mechanism of actions, probable targets, and pharmacodynamic activity. In this paper, we review the current efforts in developing metal-based anticancer agents based on promising Ru complexes and the development of compounds targeting receptors and then examine the future prospects.
Collapse
|
26
|
|
27
|
Nikolić S, Opsenica DM, Filipović V, Dojčinović B, Aranđelović S, Radulović S, Grgurić-Šipka S. Strong in Vitro Cytotoxic Potential of New Ruthenium–Cymene Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stefan Nikolić
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dejan M. Opsenica
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Vuk Filipović
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Biljana Dojčinović
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sanja Grgurić-Šipka
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
28
|
Rilak A, Puchta R, Bugarčić ŽD. Mechanism of the reactions of ruthenium(II) polypyridyl complexes with thiourea, sulfur-containing amino acids and nitrogen-containing heterocycles. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
do Nascimento RR, Lima FCDA, Gonçalves MB, Errico LA, Rentería M, Petrilli HM. Metal coordination study at Ag and Cd sites in crown thioether complexes through DFT calculations and hyperfine parameters. J Mol Model 2015; 21:97. [PMID: 25814377 DOI: 10.1007/s00894-015-2642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Structural and electronic properties of [C12H24S6X], [C13H26S6OX], and [C14H28S6OX] (X: Ag(+), Cd(2+)) crown thioether complexes were investigated within the framework of the density functional theory (DFT) using the projector augmented wave (PAW) method. The theoretical results were compared with time-differential perturbed γ-γ angular correlations (TDPAC) experiments reported in the literature using the (111)Ag→(111)Cd probe. In the case of X=Ag(+), a refinement of the structure was performed and the predicted equilibrium structures compared with available X-ray diffraction experimental data. Structural distortions induced by replacing Ag(+) with Cd(2+) were investigated as well as the electric-field gradient (EFG) tensor at the Cd(2+) sites. Our results suggest that the EFG at Cd(2+) sites corresponds to the Ag(+) coordination sphere structure, i.e., before the structural relaxations of the molecule with X=Cd(2+) are completed. The results are discussed in terms of the characteristics of the TDPAC (111)Ag→(111)Cd probe and the time window of the measurement, and provide an interesting tool with which to probe molecular relaxations.
Collapse
Affiliation(s)
- Rafael R do Nascimento
- Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R, Nr.187, Cidade Universitária, CP 66318, 05508-090, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Copper(II) and platinum(II) compounds with pyrene-appended dipicolylamine ligand: syntheses, crystal structures and biological evaluation. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0473-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Yuan Z, Shen X, Huang J. Syntheses, crystal structures and antimicrobial activities of Cu(ii), Ru(ii), and Pt(ii) compounds with an anthracene-containing tripodal ligand. RSC Adv 2015. [DOI: 10.1039/c4ra09168j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three new Cu(ii), Ru(ii), and Pt(ii) compounds of an anthracene-containing tripodal ligand were synthesized. Their crystal structures was determined by a single-crystal X-ray diffraction method and their antimicrobial activities were investigated.
Collapse
Affiliation(s)
- Zeli Yuan
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
- School of Pharmacy
| | - Xiaomin Shen
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | | |
Collapse
|
32
|
Traven K, Sinreih M, Stojan J, Seršen S, Kljun J, Bezenšek J, Stanovnik B, Turel I, Rižner TL. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3. Chem Biol Interact 2014; 234:349-59. [PMID: 25446855 DOI: 10.1016/j.cbi.2014.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022]
Abstract
The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes.
Collapse
Affiliation(s)
- Katja Traven
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Maša Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Sara Seršen
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Jure Bezenšek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Branko Stanovnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia.
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Namura K, Suzuki H. Synthesis, Structure, and Reactivity of Mixed-Ligand Dinuclear Ruthenium Polyhydrido Complexes Supported by 1,4,7-Trimethyl-1,4,7-triazacyclononane and Bulky Phosphine Ligands. Organometallics 2014. [DOI: 10.1021/om500018j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyo Namura
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroharu Suzuki
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
34
|
Rilak A, Bratsos I, Zangrando E, Kljun J, Turel I, Bugarčić ŽD, Alessio E. New water-soluble ruthenium(II) terpyridine complexes for anticancer activity: synthesis, characterization, activation kinetics, and interaction with guanine derivatives. Inorg Chem 2014; 53:6113-26. [PMID: 24884156 DOI: 10.1021/ic5005215] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the aim of assessing whether ruthenium(II) compounds with meridional geometry might be utilized as potential antitumor agents, a series of new, water-soluble, monofunctional ruthenium(II) complexes of the general formula mer-[Ru(L3)(N-N)X][Y]n (where L3 = 2,2':6',2″-terpyridine (tpy) or 4'-chloro-2,2':6',2″-terpyridine (Cl-tpy), N-N = 1,2-diaminoethane (en), 1,2-diaminocyclohexane (dach), or 2,2'-bipyridine (bpy); X = Cl or dmso-S; Y = Cl, PF6, or CF3SO3; n = 1 or 2, depending on the nature of X) were synthesized. All complexes were fully characterized by elemental analysis and spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), and for three of them, i.e., [Ru(Cl-tpy)(bpy)Cl][Cl] (3Cl), [Ru(Cl-tpy)(en)(dmso-S)][Y]2 [Y = PF6 (6PF6), CF3SO3 (6OTf)] and [Ru(Cl-tpy)(bpy)(dmso-S)][CF3SO3]2 (8OTf), the X-ray structure was also determined. The new terpyridine complexes, with the exception of 8, are well soluble in water (>25 mg/mL). (1)H and (31)P NMR spectroscopy studies performed on the three selected complexes [Ru(Cl-tpy)(N-N)Cl](+) [N-N = en (1), dach (2), and bpy (3)] demonstrated that, after hydrolysis of the Cl ligand, they are capable of interacting with guanine derivatives [i.e., 9-methylguanine (9MeG) or guanosine-5'-monophosphate (5'-GMP)] through N7, forming monofunctional adducts with rates and extents that depend strongly on the nature of N-N: 1 ≈ 2 ≫ 3. In addition, compound 1 shows high selectivity toward 5'-GMP compared to adenosine-5'-monophosphate (5'-AMP), in a competition experiment. Quantitative kinetic investigations on 1 and 2 were performed by means of UV/visible spectroscopy. Overall, the complexes with bidentate aliphatic diamines proved to be superior to those with bpy in terms of solubility and reactivity (i.e., release of Cl(-) and capability to bind guanine derivatives). Contrary to the chlorido compounds, the corresponding dmso derivatives proved to be inert (viz., they do not release the monodentate ligand) in aqueous media.
Collapse
Affiliation(s)
- Ana Rilak
- Faculty of Science, University of Kragujevac , R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | |
Collapse
|
35
|
Marques J, Silva V, Silva A, Marques M, Braga S. Ru(II) trithiacyclononane 5-(2-hydroxyphenyl)-3-[(4-methoxystyryl)pyrazole], a complex with facile synthesis and high cytotoxicity against PC-3 and MDA-MB-231 cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/2164232x.2013.873992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- J. Marques
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - V.L.M. Silva
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - A.M.S. Silva
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M.P.M. Marques
- “Molecular Physical-Chemistry” R&D Group, Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - S.S. Braga
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
36
|
Mitra R, Samuelson AG. Mitigating UVA light induced reactivity of 6-thioguanine through formation of a Ru(ii) half-sandwich complex. RSC Adv 2014. [DOI: 10.1039/c4ra02960g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Half-sandwich ruthenium complexes of 6-thioguanine.
Collapse
Affiliation(s)
- Raja Mitra
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012, India
| | - Ashoka G. Samuelson
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012, India
| |
Collapse
|
37
|
Ivanović I, Jovanović KK, Gligorijević N, Radulović S, Arion VB, Sheweshein KSA, Tešić ŽL, Grgurić-Šipka S. Ruthenium(II)–arene complexes with substituted picolinato ligands: Synthesis, structure, spectroscopic properties and antiproliferative activity. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Liao X, Lu J, Ying P, Zhao P, Bai Y, Li W, Liu M. DNA binding, antitumor activities, and hydroxyl radical scavenging properties of novel oxovanadium(IV) complexes with substituted isoniazid. J Biol Inorg Chem 2013; 18:975-84. [DOI: 10.1007/s00775-013-1046-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/01/2013] [Indexed: 12/29/2022]
|
39
|
Lin GJ, Jiang GB, Xie YY, Huang HL, Liang ZH, Liu YJ. Cytotoxicity, apoptosis, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential, and Western blotting analysis of ruthenium(II) complexes. J Biol Inorg Chem 2013; 18:873-82. [DOI: 10.1007/s00775-013-1032-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/10/2013] [Indexed: 01/04/2023]
|
40
|
Finazzi I, Bratsos I, Gianferrara T, Bergamo A, Demitri N, Balducci G, Alessio E. Photolabile RuIIHalf-Sandwich Complexes Suitable for Developing “Caged” Compounds: Chemical Investigation and Unexpected Dinuclear Species with Bridging Diamine Ligands. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Kljun J, Bratsos I, Alessio E, Psomas G, Repnik U, Butinar M, Turk B, Turel I. New uses for old drugs: attempts to convert quinolone antibacterials into potential anticancer agents containing ruthenium. Inorg Chem 2013; 52:9039-52. [PMID: 23886077 DOI: 10.1021/ic401220x] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Continuing the study of the physicochemical and biological properties of ruthenium-quinolone adducts, four novel complexes with the general formula [Ru([9]aneS3)(dmso-κS)(quinolonato-κ(2)O,O)](PF6), containing the quinolones levofloxacin (1), nalidixic acid (2), oxolinic acid (3), and cinoxacin (4), were prepared and characterized in solid state as well as in solution. Contrary to their organoruthenium analogues, these complexes are generally relatively stable in aqueous solution as substitution of the dimethylsulfoxide (dmso) ligand is slow and not quantitative, and a minor release of the quinolonato ligand is observed only in the case of 4. The complexes bind to serum proteins displaying relatively high binding constants. DNA binding was studied using UV-vis spectroscopy, cyclic voltammetry, and performing viscosity measurements of CT DNA solutions in the presence of complexes 1-4. These experiments show that the ruthenium complexes interact with DNA via intercalation. Possible electrostatic interactions occur in the case of compound 4, which also shows the most pronounced rate of hydrolysis. Compounds 2 and 4 also exhibit a weak inhibition of cathepsins B and S, which are involved in the progression of a number of diseases, including cancer. Furthermore, complex 2 displayed moderate cytotoxicity when tested on the HeLa cell line.
Collapse
Affiliation(s)
- Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gamble AJ, Lynam JM, Thatcher RJ, Walton PH, Whitwood AC. cis-1,3,5-Triaminocyclohexane as a facially capping ligand for ruthenium(II). Inorg Chem 2013; 52:4517-27. [PMID: 23517123 DOI: 10.1021/ic302819j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reaction of cis-[RuCl2(DMSO-S)3(DMSO-O)] with cis-1,3,5-triaminocyclohexane (tach) results in the formation of [RuCl(tach)(DMSO-S)2]Cl, a valuable precursor for a wide range of other tach-containing Ru complexes. Reaction of [RuCl(tach)(DMSO-S)2]Cl with the chelating nitrogen-based ligands (N-N = bipyridine, phenanthroline, and ethylenediamine) affords [Ru(N-N)(DMSO-S)2(tach)][Cl]2. A similar reaction between [RuCl(tach)(DMSO-S)]Cl with the chelating phosphorus-based ligands (P-P = dppm, dppe, dppp, dppb, dppv, and dppben) leads to the formation of [RuCl(P-P)(tach)]Cl. The structures of 10 examples of the tach-containing complexes have been determined by single crystal X-ray diffraction. An examination of the structural metrics obtained from these studies indicates that the tach ligand is a strong sigma donor. In addition, the presence of the NH2 groups in the tach ligand allow for participation in hydrogen bonding further modulating the coordinative properties of the ligand.
Collapse
Affiliation(s)
- Aimee J Gamble
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | |
Collapse
|
43
|
Ragazzon G, Bratsos I, Alessio E, Salassa L, Habtemariam A, McQuitty RJ, Clarkson GJ, Sadler PJ. Design of photoactivatable metallodrugs: Selective and rapid light-induced ligand dissociation from half-sandwich [Ru([9]aneS3)(N–N′)(py)]2+ complexes. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Rilak A, Bratsos I, Zangrando E, Kljun J, Turel I, Bugarčić ŽD, Alessio E. Factors that influence the antiproliferative activity of half sandwich Ru(II)-[9]aneS3 coordination compounds: activation kinetics and interaction with guanine derivatives. Dalton Trans 2012; 41:11608-18. [PMID: 22903512 DOI: 10.1039/c2dt31225e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Half sandwich Ru(II)-[9]aneS3 complexes ([9]aneS3 = 1,4,7-trithiacyclononane) are being studied for their antiproliferative activity. We investigated here the activation kinetics of three such complexes, namely [Ru([9]aneS3)(en)Cl](PF(6)) (1), [Ru([9]aneS3)(bpy)Cl](PF(6)) (2) and [Ru([9]aneS3)(pic)Cl] (3) (en = 1,2-diaminoethane, pic = picolinate), and their interaction with DNA model bases. The aim of the study was to assess how they are affected by the nature and charge of the chelating ligand. The model reactions of 1-3 with the guanine derivatives 9-methylguanine (9MeG), guanosine (Guo), and guanosine 5'-monophosphate (5'-GMP) were studied by NMR spectroscopy. All reactions lead, although with different rates and to different extents, to the formation of monofunctional adducts with the guanine derivatives N7-bonded to the Ru center. Two products, the complexes [Ru([9]aneS3)(en)(9MeG-N7)](PF(6))(2) (4) and [Ru([9]aneS3)(pic)(9MeG-N7)](PF(6)) (10), were structurally characterized also by X-ray crystallography. The structure of 4 is stabilized by strong intramolecular H-bonding between an NH of en and the carbonyl O6 of 9MeG. The kinetics of aquation and anation of complexes 2 and 3, as well as the kinetics and the mechanism of the reaction of complexes 1-3 with the biologically more relevant 5'-GMP ligand were studied by UV-Vis spectroscopy. The rate of the reaction of 1-3 with 5'-GMP depends on the nature of the chelating ligand rather than on the charge of the complex, decreasing in the order 3≈2 > 1. The measured enthalpies and entropies of activation (ΔH(≠) > 0, ΔS(≠) < 0) support an associative mechanism for the substitution process.
Collapse
Affiliation(s)
- Ana Rilak
- Faculty of Science, University of Kragujevac, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | |
Collapse
|