1
|
Deck KEV, Brittain WDG. Synthesis of metal-binding amino acids. Org Biomol Chem 2024. [PMID: 39364570 DOI: 10.1039/d4ob01326c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The ability for amino acid residues to bind metals underpins the functions of metalloproteins to conduct a plethora of critical processes in living organisms as well as unnatural applications in the fields of catalysis, sensing and medicinal chemistry. The capability to access metal-binding peptides heavily relies on the ability to generate appropriate building blocks. This review outlines recently developed strategies for the synthesis of metal binding non-proteinogenic amino acids. The chemistries to access, as well as to incorporate these amino acids into peptides is presented herein.
Collapse
Affiliation(s)
- Katherine E V Deck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
2
|
Microwave assisted synthesis of rhodium(+Ⅰ) N-heterocyclic carbene complexes and their cytotoxicity against tumor cell lines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Lenzen K, Planchestainer M, Feller I, Padrosa DR, Paradisi F, Albrecht M. Minimalistic peptidic scaffolds harbouring an artificial carbene-containing amino acid modulate reductase activity. Chem Commun (Camb) 2021; 57:9068-9071. [PMID: 34498652 PMCID: PMC8427656 DOI: 10.1039/d1cc03158a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the boom of new artificial metalloenzymes, we developed an Fmoc-protected histidinium salt (Hum) as N-heterocyclic carbene precursor. Hum was placed via solid-phase peptide synthesis into short 7-mer peptides. Upon iridation, the metallo-peptidic construct displayed activity in catalytic hydrogenation that outperforms small molecule analogues and which is dependent on the peptide sequence, a typical feature of metalloenzymes.
Collapse
Affiliation(s)
- Karst Lenzen
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Matteo Planchestainer
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Isabelle Feller
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
4
|
Daubit IM, Sullivan MP, John M, Goldstone DC, Hartinger CG, Metzler-Nolte N. A Combined Spectroscopic and Protein Crystallography Study Reveals Protein Interactions of Rh I(NHC) Complexes at the Molecular Level. Inorg Chem 2020; 59:17191-17199. [PMID: 33180473 DOI: 10.1021/acs.inorgchem.0c02438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While most Rh-N-heterocyclic carbene (NHC) complexes currently investigated in anticancer research contain a Rh(III) metal center, an increasing amount of research is focusing on the cytotoxic activity and mode of action of square-planar [RhCl(COD)(NHC)] (where COD = 1,5-cyclooctadiene) which contains a Rh(I) center. The enzyme thioredoxin reductase (TrxR) and the protein albumin have been proposed as potential targets, but the molecular processes taking place upon protein interaction remain elusive. Herein, we report the preparation of peptide-conjugated and its nonconjugated parent [RhCl(COD)(NHC)] complexes, an in-depth investigation of both their stability in solution, and a crystallographic study of protein interaction. The organorhodium compounds showed a rapid loss of the COD ligand and slow loss of the NHC ligand in aqueous solution. These ligand exchange reactions were reflected in studies on the interaction with hen egg white lysozyme (HEWL) as a model protein in single-crystal X-ray crystallographic investigations. Upon treatment of HEWL with an amino acid functionalized [RhCl(COD)(NHC)] complex, two distinct rhodium adducts were found initially after 7 d of incubation at His15 and after 4 weeks also at Lys33. In both cases, the COD and chlorido ligands had been substituted with aqua and/or hydroxido ligands. While the histidine (His) adduct also indicated a loss of the NHC ligand, the lysine (Lys) adduct retained the NHC core derived from the amino acid l-histidine. In either case, an octahedral coordination environment of the metal center indicates oxidation to Rh(III). This investigation gives the first insight on the interaction of Rh(I)(NHC) complexes and proteins at the molecular level.
Collapse
Affiliation(s)
- Isabelle M Daubit
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Milena John
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
5
|
Jakob CHG, Dominelli B, Hahn EM, Berghausen TO, Pinheiro T, Marques F, Reich RM, Correia JDG, Kühn FE. Antiproliferative Activity of Functionalized Histidine-derived Au(I) bis-NHC Complexes for Bioconjugation. Chem Asian J 2020; 15:2754-2762. [PMID: 32592289 PMCID: PMC7689731 DOI: 10.1002/asia.202000620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Indexed: 12/23/2022]
Abstract
A series of histidine derived Au(I) bis-NHC complexes bearing different ester, amide and carboxylic acid functionalities as well as wingtip substituents is synthesized and characterized. The stability in aqueous media, in vitro cytotoxicity in a set of cancer cell lines (MCF7, PC3 and A2780/A2780cisR) along with the cellular uptake are evaluated. Stability tests suggest hydrolysis of the ester within 8 h, which might lead to deactivation. Furthermore, the bis-NHC system shows a sufficient stability against cysteine and the thiol containing peptide GSH. The benzyl ester and amide show the highest activity comparable to the benchmark compound cisplatin, with the ester only displaying a slightly lower cytotoxicity than the amide. A cellular uptake study revealed that the benzyl ester and the amide could have different intracellular distribution profiles but both complexes induce perturbations of the cellular physiological processes. The simple modifiability and high stability of the complexes provides a promising system for upcoming post modifications to enable targeted cancer therapy.
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Bruno Dominelli
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Eva M. Hahn
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Tobias O. Berghausen
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Teresa Pinheiro
- Institute for Bioengineering and BiosciencesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais 11049-001LisboaPortugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias NuclearesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCTN, Estrada Nacional 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Robert M. Reich
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - João D. G. Correia
- Centro de Ciências e Tecnologias NuclearesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCTN, Estrada Nacional 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| |
Collapse
|
6
|
Daubit IM, Wolf J, Metzler-Nolte N. Rhodium(I) and Iridium(I) N-Heterocyclic carbene complexes of imidazolium functionalized amino acids and peptides. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Application of 1,2,3-triazolylidene nickel complexes for the catalytic oxidation of n-octane. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Daubit IM, Metzler-Nolte N. On the interaction of N-heterocyclic carbene Ir+I complexes with His and Cys containing peptides. Dalton Trans 2019; 48:13662-13673. [DOI: 10.1039/c9dt01338e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the interaction of an [Ir(+i)(COD)(NHC)Cl] complex with model peptides a chelating motif with a particularly interesting bimetallic peptide-bridged Ir(+iii)–NHC motif was identified with loss of the COD and Cl ligands and oxidation of the metal.
Collapse
Affiliation(s)
- Isabelle Marie Daubit
- Faculty of Chemistry and Biochemistry
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
9
|
Young AJ, Serpell CJ, Chin JM, Reithofer MR. Optically active histidin-2-ylidene stabilised gold nanoparticles. Chem Commun (Camb) 2017; 53:12426-12429. [DOI: 10.1039/c7cc07602a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of histidine-derived NHC-stabilised chiroptical gold nanoparticles.
Collapse
Affiliation(s)
- Adam J. Young
- Gray Centre for Advanced Materials
- School of Mathematics and Physical Sciences
- University of Hull
- Hull
- UK
| | | | - Jia Min Chin
- Gray Centre for Advanced Materials
- School of Mathematics and Physical Sciences
- University of Hull
- Hull
- UK
| | - Michael R. Reithofer
- Gray Centre for Advanced Materials
- School of Mathematics and Physical Sciences
- University of Hull
- Hull
- UK
| |
Collapse
|
10
|
Albada B, Metzler-Nolte N. Organometallic–Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. Chem Rev 2016; 116:11797-11839. [DOI: 10.1021/acs.chemrev.6b00166] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nils Metzler-Nolte
- Inorganic
Chemistry I − Bioinorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780-D Bochum, Germany
| |
Collapse
|
11
|
Schmitt F, Donnelly K, Muenzner JK, Rehm T, Novohradsky V, Brabec V, Kasparkova J, Albrecht M, Schobert R, Mueller T. Effects of histidin-2-ylidene vs. imidazol-2-ylidene ligands on the anticancer and antivascular activity of complexes of ruthenium, iridium, platinum, and gold. J Inorg Biochem 2016; 163:221-228. [PMID: 27491634 DOI: 10.1016/j.jinorgbio.2016.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Couples of N-heterocyclic carbene complexes of ruthenium, iridium, platinum, and gold, each differing only in the carbene ligand being either 1,3-dimethylimidazol-2-ylidene (IM) or 1,3-dimethyl-N-boc-O-methylhistidin-2-ylidene (HIS), were assessed for their antiproliferative effect on seven cancer cell lines, their interaction with DNA, their cell cycle interference, and their vascular disrupting properties. In MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays only the platinum complexes were cytotoxic at single-digit micromolar IC50 concentrations with the (HIS)Pt complex being on average twice as active as the (IM)Pt complex. The former was highly efficacious against cisplatin-resistant HT-29 colon carcinoma cells where the latter had no effect. Both Pt complexes were accumulated by cancer cells and bound to double-helical DNA equally well. Only the (HIS)Pt complex modified the electrophoretic mobility of circular DNA in vitro due to the HIS ligand causing greater morphological changes to the DNA. Both platinum complexes induced accumulation of 518A2 melanoma cells in G2/M and S phase of the cell cycle. A disruption of blood vessels in the chorioallantoic membrane of fertilized chicken eggs was observed for both platinum complexes and the (IM)gold complex. The (HIS)platinum complex was as active as cisplatin in tumor xenografted mice while being tolerated better. We found that the HIS ligand may augment the cytotoxicity of certain antitumoral metal fragments in two ways: by acting as a transmembrane carrier increasing the cellular accumulation of the complex, and by initiating a pronounced distortion and unwinding of DNA. We identified a new (HIS)platinum complex which was highly cytotoxic against cancer cells including cisplatin-resistant ones.
Collapse
Affiliation(s)
- Florian Schmitt
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kate Donnelly
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Julienne K Muenzner
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Tobias Rehm
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Vojtech Novohradsky
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Martin Albrecht
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Thomas Mueller
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, 06120 Halle-Saale, Germany
| |
Collapse
|
12
|
Drost RM, Broere DLJ, Hoogenboom J, de Baan SN, Lutz M, de Bruin B, Elsevier CJ. Allylpalladium(II) Histidylidene Complexes and Their Application in
Z
‐Selective Transfer Semihydrogenation of Alkynes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruben M. Drost
- Molecular Inorganic Chemistry, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, the Netherlands, http://hims.uva.nl/research/research‐groups/content/molecular‐ inorganic‐chemistry/molecular‐inorganic‐chemistry.html
| | - Daniël L. J. Broere
- Homogeneous Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Jorin Hoogenboom
- Molecular Inorganic Chemistry, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, the Netherlands, http://hims.uva.nl/research/research‐groups/content/molecular‐ inorganic‐chemistry/molecular‐inorganic‐chemistry.html
| | - Simone N. de Baan
- Molecular Inorganic Chemistry, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, the Netherlands, http://hims.uva.nl/research/research‐groups/content/molecular‐ inorganic‐chemistry/molecular‐inorganic‐chemistry.html
| | - Martin Lutz
- Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - B. de Bruin
- Homogeneous Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - C. J. Elsevier
- Molecular Inorganic Chemistry, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, the Netherlands, http://hims.uva.nl/research/research‐groups/content/molecular‐ inorganic‐chemistry/molecular‐inorganic‐chemistry.html
| |
Collapse
|
13
|
Lázaro G, Fernández-Alvarez FJ, Munárriz J, Polo V, Iglesias M, Pérez-Torrente JJ, Oro LA. Orthometallation of N-substituents at the NHC ligand of [Rh(Cl)(COD)(NHC)] complexes: its role in the catalytic hydrosilylation of ketones. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01556h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Orthometallation of one N-substituent of the NHC ligand in Rh-NHC species affords hydrido-bridged binuclear rhodium(iii) complexes which have proven to be resting states in catalytic ketone hydrosilylation reactions.
Collapse
Affiliation(s)
- Guillermo Lázaro
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
- Spain
| | - Francisco J. Fernández-Alvarez
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
- Spain
| | - Julen Munárriz
- Departamento de Química Física – Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)
- Universidad de Zaragoza
- Facultad de Ciencias
- 50009 Zaragoza
- Spain
| | - Víctor Polo
- Departamento de Química Física – Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)
- Universidad de Zaragoza
- Facultad de Ciencias
- 50009 Zaragoza
- Spain
| | - Manuel Iglesias
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
- Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
- Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
- Spain
| |
Collapse
|
14
|
Wei Y, Petronilho A, Mueller-Bunz H, Albrecht M. Mesoionic Triazolylidene Nickel Complexes: Synthesis, Ligand Lability, and Catalytic C–C Bond Formation Activity. Organometallics 2014. [DOI: 10.1021/om500593s] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yingfei Wei
- School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ana Petronilho
- School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helge Mueller-Bunz
- School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin Albrecht
- School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Monney A, Nastri F, Albrecht M. Peptide-tethered monodentate and chelating histidylidene metal complexes: synthesis and application in catalytic hydrosilylation. Dalton Trans 2013; 42:5655-60. [PMID: 23440059 DOI: 10.1039/c3dt50424g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Nδ,Nε-dimethylated histidinium salt (His*) was tethered to oligopeptides and metallated to form Ir(III) and Rh(I) NHC complexes. Peptide-based histidylidene complexes containing only alanine, Ala-Ala-His*-[M] and Ala-Ala-Ala-His*-[M] were synthesised ([M] = Rh(cod)Cl, Ir(Cp*)Cl2), as well as oligopeptide complexes featuring a potentially chelating methionine and tyrosine residue, Met-Ala-Ala-His*-Rh(cod)Cl and Tyr-Ala-Ala-His*-Rh(cod)Cl. Chelation of the methionine-containing histidylidene ligand was induced by halide abstraction from the rhodium centre, while tyrosine remained non-coordinating under identical conditions. High catalytic activities in hydrosilylation were achieved with all peptide-based rhodium complexes. The cationic S(Met),C(His*)-bidentate peptide rhodium catalyst outperformed the monodentate neutral peptide complexes and constitutes one of the most efficient rhodium carbene catalysts for hydrosilylation, providing new opportunities for the use of peptides as N-heterocyclic carbene ligands in catalysis.
Collapse
Affiliation(s)
- Angèle Monney
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
16
|
Monney A, Albrecht M. Transition metal bioconjugates with an organometallic link between the metal and the biomolecular scaffold. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Monney A, Albrecht M. A chelating tetrapeptide rhodium complex comprised of a histidylidene residue: biochemical tailoring of an NHC-Rh hydrosilylation catalyst. Chem Commun (Camb) 2013; 48:10960-2. [PMID: 23032940 DOI: 10.1039/c2cc35491h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coupling of a histidinium salt with a MetAlaAla amino acid sequence followed by metallation with [RhCl(cod)](2) yields a rhodium(I) NHC complex with a pending peptide residue. Methionine chelation, induced by chloride abstraction from the metal coordination sphere, affords an efficient hydrosilylation catalyst precursor comprised of a peptidic macrocyclic chelate backbone.
Collapse
Affiliation(s)
- Angèle Monney
- School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|