1
|
Li RN, Chen SL. Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. Chembiochem 2025; 26:e202400788. [PMID: 39508533 DOI: 10.1002/cbic.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Oxoiron(IV) complexes are key intermediates in the catalytic reactions of some non-heme diiron enzymes. These enzymes, across various subfamilies, activate dioxygen to generate high-valent diiron-oxo species, which, in turn, drive the activation of substrates and mediate a variety of challenging oxidative transformations. In this review, we summarize the structures, formation mechanisms, and functions of high-valent diiron-oxo intermediates in eight representative diiron enzymes (sMMO, RNR, ToMO, MIOX, PhnZ, SCD1, AlkB, and SznF) spanning five subfamilies. We also categorize and analyze the structural and mechanistic differences among these enzymes.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Arakawa M, Kono S, Sekine Y, Terasaki A. Reaction of size-selected iron-oxide cluster cations with methane: a model study of rapid methane loss in Mars' atmosphere. Phys Chem Chem Phys 2024; 26:14684-14690. [PMID: 38716515 DOI: 10.1039/d4cp01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
We report gas-phase reactions of free iron-oxide clusters, FenOm+, and their Ar adducts with methane in the context of chemical processes in Mars' atmosphere. Methane activation was observed to produce FenOmCH2+/FenOmCD2+ and FenOmC+, where the reactivity exhibited size and composition dependence. For example, the rate coefficients of methane activation for Fe3O+ and Fe4O+ were estimated to be 1 × 10-13 and 3 × 10-13 cm3 s-1, respectively. Based on these reaction rate coefficients, the presence of iron-oxide clusters/particles with a density as low as 107 cm-3 in Mars' atmosphere would explain the rapid loss of methane observed recently by the Curiosity rover.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Satoshi Kono
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yasuhito Sekine
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Akira Terasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Kass D, Yao S, Krause KB, Corona T, Richter L, Braun T, Mebs S, Haumann M, Dau H, Lohmiller T, Limberg C, Drieß M, Ray K. Spectroscopic Properties of a Biologically Relevant [Fe 2 (μ-O) 2 ] Diamond Core Motif with a Short Iron-Iron Distance. Angew Chem Int Ed Engl 2023; 62:e202209437. [PMID: 36541062 DOI: 10.1002/anie.202209437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Å were attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (μ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-μ-O bonds. A ≈2.5 Å Fe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (μ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.
Collapse
Affiliation(s)
- Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Shenglai Yao
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Konstantin B Krause
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Teresa Corona
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Liza Richter
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Braun
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Stefan Mebs
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Matthias Drieß
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
5
|
Kumar R, Sundararajan M, Rajaraman G. A six-coordinate high-spin Fe IVO species of cucurbit[5]uril: a highly potent catalyst for C-H hydroxylation of methane, if synthesised. Chem Commun (Camb) 2021; 57:13760-13763. [PMID: 34854853 DOI: 10.1039/d1cc06391j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DFT and ab initio DLPNO-CCSD(T) calculations predict a stable S = 2 six-coordinate FeIVO species with cucurbit[5]uril (CB[5]) as a ligand ([(CB[5])FeIVO(H2O)]2+(1)). The strong oxidising capability of 1 far exceeds even that of metalloenzymes such as sMMOs in activating inert substrates such as methane, setting the stage for a new generation of biomimetic catalysts.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
6
|
Jacobs AB, Banerjee R, Deweese DE, Braun A, Babicz JT, Gee LB, Sutherlin KD, Böttger LH, Yoda Y, Saito M, Kitao S, Kobayashi Y, Seto M, Tamasaku K, Lipscomb JD, Park K, Solomon EI. Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV) 2 Intermediate Q in Methane Monooxygenase and Its Reactivity. J Am Chem Soc 2021; 143:16007-16029. [PMID: 34570980 PMCID: PMC8631202 DOI: 10.1021/jacs.1c05436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanotrophic bacteria utilize the nonheme diiron enzyme soluble methane monooxygenase (sMMO) to convert methane to methanol in the first step of their metabolic cycle under copper-limiting conditions. The structure of the sMMO Fe(IV)2 intermediate Q responsible for activating the inert C-H bond of methane (BDE = 104 kcal/mol) remains controversial, with recent studies suggesting both "open" and "closed" core geometries for its active site. In this study, we employ nuclear resonance vibrational spectroscopy (NRVS) to probe the geometric and electronic structure of intermediate Q at cryogenic temperatures. These data demonstrate that Q decays rapidly during the NRVS experiment. Combining data from several years of measurements, we derive the NRVS vibrational features of intermediate Q as well as its cryoreduced decay product. A library of 90 open and closed core models of intermediate Q is generated using density functional theory to analyze the NRVS data of Q and its cryoreduced product as well as prior spectroscopic data on Q. Our analysis reveals that a subset of closed core models reproduce these newly acquired NRVS data as well as prior data. The reaction coordinate with methane is also evaluated using both closed and open core models of Q. These studies show that the potent reactivity of Q toward methane resides in the "spectator oxo" of its Fe(IV)2O2 core, in contrast to nonheme mononuclear Fe(IV)═O enzyme intermediates that H atoms abstract from weaker C-H bonds.
Collapse
Affiliation(s)
- Ariel B. Jacobs
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Dory E. Deweese
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Jeffrey T. Babicz
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Leland B. Gee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Kyle D. Sutherlin
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Lars H. Böttger
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Makina Saito
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Shinji Kitao
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, 679-5148, Japan
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States,Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, 94025, United States
| |
Collapse
|
7
|
Schulz C, Castillo RG, Pantazis DA, DeBeer S, Neese F. Structure-Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations. J Am Chem Soc 2021; 143:6560-6577. [PMID: 33884874 PMCID: PMC8154522 DOI: 10.1021/jacs.1c01180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/22/2022]
Abstract
The determination of the diiron core intermediate structures involved in the catalytic cycle of soluble methane monooxygenase (sMMO), the enzyme that selectively catalyzes the conversion of methane to methanol, has been a subject of intense interest within the bioinorganic scientific community. Particularly, the specific geometry and electronic structure of the intermediate that precedes methane binding, known as intermediate Q (or MMOHQ), has been debated for over 30 years. Some reported studies support a bis-μ-oxo-bridged Fe(IV)2O2 closed-core conformation Fe(IV)2O2 core, whereas others favor an open-core geometry, with a longer Fe-Fe distance. The lack of consensus calls for a thorough re-examination and reinterpretation of the spectroscopic data available on the MMOHQ intermediate. Herein, we report extensive simulations based on a hybrid quantum mechanics/molecular mechanics approach (QM/MM) approach that takes into account the complete enzyme to explore possible conformations for intermediates MMOHox and MMOHQ of the sMMOH catalytic cycle. High-level quantum chemical approaches are used to correlate specific structural motifs with geometric parameters for comparison with crystallographic and EXAFS data, as well as with spectroscopic data from Mössbauer spectroscopy, Fe K-edge high-energy resolution X-ray absorption spectroscopy (HERFD XAS), and resonance Raman 16O-18O difference spectroscopy. The results provide strong support for an open-core-type configuration in MMOHQ, with the most likely topology involving mono-oxo-bridged Fe ions and alternate terminal Fe-oxo and Fe-hydroxo groups that interact via intramolecular hydrogen bonding. The implications of an open-core intermediate Q on the reaction mechanism of sMMO are discussed.
Collapse
Affiliation(s)
- Christine
E. Schulz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rebeca G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Abstract
Methanotrophic bacteria represent a potential route to methane utilization and mitigation of methane emissions. In the first step of their metabolic pathway, aerobic methanotrophs use methane monooxygenases (MMOs) to activate methane, oxidizing it to methanol. There are two types of MMOs: a particulate, membrane-bound enzyme (pMMO) and a soluble, cytoplasmic enzyme (sMMO). The two MMOs are completely unrelated, with different architectures, metal cofactors, and mechanisms. The more prevalent of the two, pMMO, is copper-dependent, but the identity of its copper active site remains unclear. By contrast, sMMO uses a diiron active site, the catalytic cycle of which is well understood. Here we review the current state of knowledge for both MMOs, with an emphasis on recent developments and emerging hypotheses. In addition, we discuss obstacles to developing expression systems, which are needed to address outstanding questions and to facilitate future protein engineering efforts.
Collapse
Affiliation(s)
- Christopher W Koo
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
9
|
Ansari M, Senthilnathan D, Rajaraman G. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe III-O-Fe IV[double bond, length as m-dash]O] 2+ species towards C-H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chem Sci 2020; 11:10669-10687. [PMID: 33209248 PMCID: PMC7654192 DOI: 10.1039/d0sc02624g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
High-valent metal-oxo species have been characterised as key intermediates in both heme and non-heme enzymes that are found to perform efficient aliphatic hydroxylation, epoxidation, halogenation, and dehydrogenation reactions. Several biomimetic model complexes have been synthesised over the years to mimic both the structure and function of metalloenzymes. The diamond-core [Fe2(μ-O)2] is one of the celebrated models in this context as this has been proposed as the catalytically active species in soluble methane monooxygenase enzymes (sMMO), which perform the challenging chemical conversion of methane to methanol at ease. In this context, a report of open core [HO(L)FeIII-O-FeIV(O)(L)]2+ (1) gains attention as this activates C-H bonds a million-fold faster compared to the diamond-core structure and has the dual catalytic ability to perform hydroxylation as well as desaturation with organic substrates. In this study, we have employed density functional methods to probe the origin of the very high reactivity observed for this complex and also to shed light on how this complex performs efficient hydroxylation and desaturation of alkanes. By modelling fifteen possible spin-states for 1 that could potentially participate in the reaction mechanism, our calculations reveal a doublet ground state for 1 arising from antiferromagnetic coupling between the quartet FeIV centre and the sextet FeIII centre, which regulates the reactivity of this species. The unusual stabilisation of the high-spin ground state for FeIV[double bond, length as m-dash]O is due to the strong overlap of with the orbital, reducing the antibonding interactions via spin-cooperation. The electronic structure features computed for 1 are consistent with experiments offering confidence in the methodology chosen. Further, we have probed various mechanistic pathways for the C-H bond activation as well as -OH rebound/desaturation of alkanes. An extremely small barrier height computed for the first hydrogen atom abstraction by the terminal FeIV[double bond, length as m-dash]O unit was found to be responsible for the million-fold activation observed in the experiments. The barrier height computed for -OH rebound by the FeIII-OH unit is also smaller suggesting a facile hydroxylation of organic substrates by 1. A strong spin-cooperation between the two iron centres also reduces the barrier for second hydrogen atom abstraction, thus making the desaturation pathway competitive. Both the spin-state as well as spin-coupling between the two metal centres play a crucial role in dictating the reactivity for species 1. By exploring various mechanistic pathways, our study unveils the fact that the bridged μ-oxo group is a poor electrophile for both C-H activation as well for -OH rebound. As more and more evidence is gathered in recent years for the open core geometry of sMMO enzymes, the idea of enhancing the reactivity via an open-core motif has far-reaching consequences.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| | - Dhurairajan Senthilnathan
- Center for Computational Chemistry , CRD , PRIST University , Vallam , Thanjavur , Tamilnadu 613403 , India
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| |
Collapse
|
10
|
Barona M, Gaggioli CA, Gagliardi L, Snurr RQ. DFT Study on the Catalytic Activity of ALD-Grown Diiron Oxide Nanoclusters for Partial Oxidation of Methane to Methanol. J Phys Chem A 2020; 124:1580-1592. [PMID: 32017850 DOI: 10.1021/acs.jpca.9b11835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using density functional theory (DFT), we studied the catalytic activity of iron oxide nanoclusters that mimic the structure of the active site in the soluble form of methane monooxygenase (sMMO) for the partial oxidation of methane to methanol. Using N2O as the oxidant, we consider a radical-rebound mechanism and a concerted mechanism for the oxidation of methane on either a bridging oxygen (Ob) or a terminal oxygen (Ot) active site. We find that the radical-rebound pathway is preferred over the concerted pathway by 40-50 kJ/mol, but the desorption of methanol and the regeneration of the oxygen site are found to be the highest barriers for the direct conversion of methane to methanol with these catalysts. As demonstrated by a population analysis, the Ox (x = b or t) site behaves as an oxygen radical during the H abstraction, and the [Fe+-Ox-] site behaves as a Lewis acid-base pair during the concerted C-H cleavage. Molecular orbital decomposition analysis further demonstrates electron transfer during the oxidation and reduction steps of the reaction. High-level multireference calculations were also carried out to further assess the DFT results. Understanding how these systems behave during the proposed reaction pathways provides new insights into how they can be tuned for methane partial oxidation.
Collapse
Affiliation(s)
- Melissa Barona
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Carlo Alberto Gaggioli
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute , University of Minnesota-Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute , University of Minnesota-Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
11
|
|
12
|
Emami M, Bikas R, Noshiranzadeh N, Sanchiz J, Ślepokura K, Lis T. Synthesis, characterization and magnetic properties of phenoxido bridged dinuclear iron(III) complex with bis(phenolate) ligand. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Cutsail GE, Banerjee R, Zhou A, Que L, Lipscomb JD, DeBeer S. High-Resolution Extended X-ray Absorption Fine Structure Analysis Provides Evidence for a Longer Fe···Fe Distance in the Q Intermediate of Methane Monooxygenase. J Am Chem Soc 2018; 140:16807-16820. [PMID: 30398343 DOI: 10.1021/jacs.8b10313] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite decades of intense research, the core structure of the methane C-H bond breaking diiron(IV) intermediate, Q, of soluble methane monooxygenase remains controversial, with conflicting reports supporting either a "diamond" diiron core structure or an open core structure. Early extended X-ray absorption fine structure (EXAFS) data assigned a short 2.46 Å Fe-Fe distance to Q (Shu et al. Science 1997, 275, 515 ) that is inconsistent with several theoretical studies and in conflict with our recent high-resolution Fe K-edge X-ray absorption spectroscopy (XAS) studies (Castillo et al. J. Am. Chem. Soc. 2017, 139, 18024 ). Herein, we revisit the EXAFS of Q using high-energy resolution fluorescence-detected extended X-ray absorption fine structure (HERFD-EXAFS) studies. The present data show no evidence for a short Fe-Fe distance, but rather a long 3.4 Å diiron distance, as observed in open core synthetic model complexes. The previously reported 2.46 Å feature plausibly arises from a background metallic iron contribution from the experimental setup, which is eliminated in HERFD-EXAFS due to the increased selectivity. Herein, we explore the origin of the short diiron feature in partial-fluorescent yield EXAFS measurements and discuss the diagnostic features of background metallic scattering contribution to the EXAFS of dilute biological samples. Lastly, differences in sample preparation and resultant sample inhomogeneity in rapid-freeze quenched samples for EXAFS analysis are discussed. The presented approaches have broad implications for EXAFS studies of all dilute iron-containing samples.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ang Zhou
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lawrence Que
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
14
|
Light-controlled switching of the spin state of iron(III). Nat Commun 2018; 9:4750. [PMID: 30420598 PMCID: PMC6232099 DOI: 10.1038/s41467-018-07023-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Controlled switching of the spin state of transition metal ions, particularly of FeII and FeIII, is a prerequisite to achieve selectivity, efficiency, and catalysis in a number of metalloenzymes. Here we report on an iron(III) porphyrin with a photochromic axial ligand which, upon irradiation with two different wavelengths reversibly switches its spin state between low-spin (S = 1/2) and high-spin (S = 5/2) in solution (DMSO-acetone, 2:598). The switching efficiency is 76% at room temperature. The system is neither oxygen nor water sensitive, and no fatigue was observed after more than 1000 switching cycles. Concomitant with the spin-flip is a change in redox potential by ~60 mV. Besides serving as a simple model for the first step of the cytochrome P450 catalytic cycle, the spin switch can be used to switch the spin-lattice relaxation time T1 of the water protons by a factor of 15. Controlled switching of the spin state of transition metal ions is key in many enzymatic reactions, but difficult to replicate in synthetic systems. Here the authors report on an iron(III) porphyrin with a photochromic axial ligand that, in solution, reversibly switches between low-spin and high-spin upon irradiation with two different wavelengths.
Collapse
|
15
|
Szécsényi Á, Li G, Gascon J, Pidko EA. Unraveling reaction networks behind the catalytic oxidation of methane with H 2O 2 over a mixed-metal MIL-53(Al,Fe) MOF catalyst. Chem Sci 2018; 9:6765-6773. [PMID: 30310609 PMCID: PMC6113888 DOI: 10.1039/c8sc02376j] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Reaction paths underlying the catalytic oxidation of methane with H2O2 over an Fe containing MIL-53(Al) metal-organic framework were studied by periodic DFT calculations. Not only the activation of methane, but the full reaction network was considered, which includes the formation of the active site, the overoxidation of methane to CO2 and the decomposition of H2O2 to H2O and O2. Calculations indicate that the activation barrier for the initial activation of the Fe sites upon reaction with H2O2 is comparable to that of the subsequent C-H activation and also of the reaction steps involved in the undesirable overoxidation processes. The pronounced selectivity of the oxidation reaction over MIL-53(Al,Fe) towards the target mono-oxygenated CH3OH and CH3OOH products is attributed to the limited coordination freedom of the Fe species encapsulated in the extended octahedral [AlO6] structure-forming chains, which effectively prevents the direct overoxidation paths prior to product desorption from the active sites. Importantly, our computational analysis reveals that the active sites for the desired methane oxidation are able to much more efficiently promote the direct catalytic H2O2 decomposition reaction, rendering thus the current combination of the active site and the reactants undesirable for the prospective methane valorization process.
Collapse
Affiliation(s)
- Ágnes Szécsényi
- Inorganic Systems Engineering Group , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands . ; Tel: +31 1527 81938
- Catalysis Engineering , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , the Netherlands
| | - Guanna Li
- Inorganic Systems Engineering Group , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands . ; Tel: +31 1527 81938
- Catalysis Engineering , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , the Netherlands
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group , Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands . ; Tel: +31 1527 81938
| |
Collapse
|
16
|
Russell MJ. Green Rust: The Simple Organizing 'Seed' of All Life? Life (Basel) 2018; 8:E35. [PMID: 30150570 PMCID: PMC6161180 DOI: 10.3390/life8030035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/28/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023] Open
Abstract
Korenaga and coworkers presented evidence to suggest that the Earth's mantle was dry and water filled the ocean to twice its present volume 4.3 billion years ago. Carbon dioxide was constantly exhaled during the mafic to ultramafic volcanic activity associated with magmatic plumes that produced the thick, dense, and relatively stable oceanic crust. In that setting, two distinct and major types of sub-marine hydrothermal vents were active: ~400 °C acidic springs, whose effluents bore vast quantities of iron into the ocean, and ~120 °C, highly alkaline, and reduced vents exhaling from the cooler, serpentinizing crust some distance from the heads of the plumes. When encountering the alkaline effluents, the iron from the plume head vents precipitated out, forming mounds likely surrounded by voluminous exhalative deposits similar to the banded iron formations known from the Archean. These mounds and the surrounding sediments, comprised micro or nano-crysts of the variable valence FeII/FeIII oxyhydroxide known as green rust. The precipitation of green rust, along with subsidiary iron sulfides and minor concentrations of nickel, cobalt, and molybdenum in the environment at the alkaline springs, may have established both the key bio-syntonic disequilibria and the means to properly make use of them-the elements needed to effect the essential inanimate-to-animate transitions that launched life. Specifically, in the submarine alkaline vent model for the emergence of life, it is first suggested that the redox-flexible green rust micro- and nano-crysts spontaneously precipitated to form barriers to the complete mixing of carbonic ocean and alkaline hydrothermal fluids. These barriers created and maintained steep ionic disequilibria. Second, the hydrous interlayers of green rust acted as engines that were powered by those ionic disequilibria and drove essential endergonic reactions. There, aided by sulfides and trace elements acting as catalytic promoters and electron transfer agents, nitrate could be reduced to ammonia and carbon dioxide to formate, while methane may have been oxidized to methyl and formyl groups. Acetate and higher carboxylic acids could then have been produced from these C1 molecules and aminated to amino acids, and thence oligomerized to offer peptide nests to phosphate and iron sulfides, and secreted to form primitive amyloid-bounded structures, leading conceivably to protocells.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Chemistry and Astrobiology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA.
| |
Collapse
|
17
|
|
18
|
Liu YF, Du L. Theoretical Study of the Oxidation of Methane to Methanol by the [CuIICuII(μ-O)2CuIII(7-N-Etppz)]1+ Complex. Inorg Chem 2018; 57:3261-3271. [DOI: 10.1021/acs.inorgchem.8b00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yan Fang Liu
- The Key Laboratory of Biobased Materials, The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Likai Du
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
19
|
Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. J Am Chem Soc 2017; 139:18024-18033. [PMID: 29136468 PMCID: PMC5729100 DOI: 10.1021/jacs.7b09560] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kα high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) provides a powerful tool for overcoming the limitations of conventional XAS to identify the electronic structure and coordination environment of metalloprotein active sites. Herein, Fe Kα HERFD XAS is applied to the diiron active site of soluble methane monooxygenase (sMMO) and to a series of high-valent diiron model complexes, including diamond-core [FeIV2(μ-O)2(L)2](ClO4)4] (3) and open-core [(O═FeIV-O-FeIV(OH)(L)2](ClO4)3 (4) models (where, L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) (TPA*)). Pronounced differences in the HERFD XAS pre-edge energies and intensities are observed for the open versus closed Fe2O2 cores in the model compounds. These differences are reproduced by time-dependent density functional theory (TDDFT) calculations and allow for the pre-edge energies and intensity to be directly correlated with the local active site geometric and electronic structure. A comparison of the model complex HERFD XAS data to that of MMOHQ (the key intermediate in methane oxidation) is supportive of an open-core structure. Specifically, the large pre-edge area observed for MMOHQ may be rationalized by invoking an open-core structure with a terminal FeIV═O motif, though further modulations of the core structure due to the protein environment cannot be ruled out. The present study thus motivates the need for additional experimental and theoretical studies to unambiguously assess the active site conformation of MMOHQ.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Caleb J. Allpress
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Gregory T. Rohde
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Ansari A, Ansari M, Singha A, Rajaraman G. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C−H and O−H Bond Activation. Chemistry 2017; 23:10110-10125. [DOI: 10.1002/chem.201701059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Azaj Ansari
- Department of Chemistry; CUH Haryana; Haryana 123031 India
| | | | - Asmita Singha
- Department of Chemistry; IIT Bombay; Mumbai 400076 India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai, Maharashtra 400076 India
| |
Collapse
|
21
|
Ross MO, Rosenzweig AC. A tale of two methane monooxygenases. J Biol Inorg Chem 2017; 22:307-319. [PMID: 27878395 PMCID: PMC5352483 DOI: 10.1007/s00775-016-1419-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Methane monooxygenase (MMO) enzymes activate O2 for oxidation of methane. Two distinct MMOs exist in nature, a soluble form that uses a diiron active site (sMMO) and a membrane-bound form with a catalytic copper center (pMMO). Understanding the reaction mechanisms of these enzymes is of fundamental importance to biologists and chemists, and is also relevant to the development of new biocatalysts. The sMMO catalytic cycle has been elucidated in detail, including O2 activation intermediates and the nature of the methane-oxidizing species. By contrast, many aspects of pMMO catalysis remain unclear, most notably the nuclearity and molecular details of the copper active site. Here, we review the current state of knowledge for both enzymes, and consider pMMO O2 activation intermediates suggested by computational and synthetic studies in the context of existing biochemical data. Further work is needed on all fronts, with the ultimate goal of understanding how these two remarkable enzymes catalyze a reaction not readily achieved by any other metalloenzyme or biomimetic compound.
Collapse
Affiliation(s)
- Matthew O Ross
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
22
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Lawton TJ, Rosenzweig AC. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion. J Am Chem Soc 2016; 138:9327-40. [PMID: 27366961 PMCID: PMC5242187 DOI: 10.1021/jacs.6b04568] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Kodera M, Ishiga S, Tsuji T, Sakurai K, Hitomi Y, Shiota Y, Sajith PK, Yoshizawa K, Mieda K, Ogura T. Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C-H Bonds. Chemistry 2016; 22:5924-36. [PMID: 26970337 DOI: 10.1002/chem.201600048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/12/2022]
Abstract
Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is toluene<ethylbenzene≈cumene<trans-β-methylstyrene. The rate constants increased proportionally to the substrate concentration at low substrate concentration. At high substrate concentration, however, the rate constants converge to the same value regardless of the kind of substrate. This is explained by a two-step mechanism in which anti-μ-oxodioxodiiron(IV) is formed by syn-to-anti transformation of the syn-dioxo form and reacts with substrates as the oxidant. The anti-dioxo form is 620 times more reactive in the C-H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 .
Collapse
Affiliation(s)
- Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan.
| | - Shin Ishiga
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Tomokazu Tsuji
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Katsutoshi Sakurai
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - P K Sajith
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kaoru Mieda
- Department of Life Science, University of Hyogo, Kouto 2-1, Ako-gun Kamigori-cho Hyogo, 678-1297, Japan
| | - Takashi Ogura
- Department of Life Science, University of Hyogo, Kouto 2-1, Ako-gun Kamigori-cho Hyogo, 678-1297, Japan
| |
Collapse
|
25
|
Das B, Al-Hunaiti A, Haukka M, Demeshko S, Meyer S, Shteinman AA, Meyer F, Repo T, Nordlander E. Catalytic Oxidation of Alkanes and Alkenes by H2O2with a μ-Oxido Diiron(III) Complex as Catalyst/Catalyst Precursor. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Ling L, Liu K, Li X, Li Y. General Reaction Mode of Hypervalent Iodine Trifluoromethylation Reagent: A Density Functional Theory Study. ACS Catal 2015. [DOI: 10.1021/cs501892s] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lin Ling
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Kun Liu
- College
of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xinqian Li
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yuxue Li
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
27
|
Ansari M, Vyas N, Ansari A, Rajaraman G. Oxidation of methane by an N-bridged high-valent diiron–oxo species: electronic structure implications on the reactivity. Dalton Trans 2015; 44:15232-43. [DOI: 10.1039/c5dt01060h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methane activation by dinuclear high-valent iron–oxo species: do we need two metals to activate such inert bonds? Our theoretical study using DFT methods where electronic structure details and mechanistic aspects are established answers this intriguing question.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Nidhi Vyas
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Azaj Ansari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
28
|
Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I. The drive to life on wet and icy worlds. ASTROBIOLOGY 2014; 14:308-43. [PMID: 24697642 PMCID: PMC3995032 DOI: 10.1089/ast.2013.1110] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/02/2014] [Indexed: 05/22/2023]
Abstract
This paper presents a reformulation of the submarine alkaline hydrothermal theory for the emergence of life in response to recent experimental findings. The theory views life, like other self-organizing systems in the Universe, as an inevitable outcome of particular disequilibria. In this case, the disequilibria were two: (1) in redox potential, between hydrogen plus methane with the circuit-completing electron acceptors such as nitrite, nitrate, ferric iron, and carbon dioxide, and (2) in pH gradient between an acidulous external ocean and an alkaline hydrothermal fluid. Both CO2 and CH4 were equally the ultimate sources of organic carbon, and the metal sulfides and oxyhydroxides acted as protoenzymatic catalysts. The realization, now 50 years old, that membrane-spanning gradients, rather than organic intermediates, play a vital role in life's operations calls into question the idea of "prebiotic chemistry." It informs our own suggestion that experimentation should look to the kind of nanoengines that must have been the precursors to molecular motors-such as pyrophosphate synthetase and the like driven by these gradients-that make life work. It is these putative free energy or disequilibria converters, presumably constructed from minerals comprising the earliest inorganic membranes, that, as obstacles to vectorial ionic flows, present themselves as the candidates for future experiments. Key Words: Methanotrophy-Origin of life. Astrobiology 14, 308-343. The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. (Fuchs, 2011 ) Further significant progress with the tightly membrane-bound H(+)-PPase family should lead to an increased insight into basic requirements for the biological transport of protons through membranes and its coupling to phosphorylation. (Baltscheffsky et al., 1999 ).
Collapse
|
29
|
Stoian SA, Xue G, Bominaar EL, Que L, Münck E. Spectroscopic and theoretical investigation of a complex with an [O═Fe(IV)-O-Fe(IV)═O] core related to methane monooxygenase intermediate Q. J Am Chem Soc 2014; 136:1545-58. [PMID: 24380398 DOI: 10.1021/ja411376u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous efforts to model the diiron(IV) intermediate Q of soluble methane monooxygenase have led to the synthesis of a diiron(IV) TPA complex, 2, with an O=Fe(IV)-O-Fe(IV)-OH core that has two ferromagnetically coupled Sloc = 1 sites. Addition of base to 2 at -85 °C elicits its conjugate base 6 with a novel O═Fe(IV)-O-Fe(IV)═O core. In frozen solution, 6 exists in two forms, 6a and 6b, that we have characterized extensively using Mössbauer and parallel mode EPR spectroscopy. The conversion between 2 and 6 is quantitative, but the relative proportions of 6a and 6b are solvent dependent. 6a has two equivalent high-spin (Sloc = 2) sites, which are antiferromagnetically coupled; its quadrupole splitting (0.52 mm/s) and isomer shift (0.14 mm/s) match those of intermediate Q. DFT calculations suggest that 6a assumes an anti conformation with a dihedral O═Fe-Fe═O angle of 180°. Mössbauer and EPR analyses show that 6b is a diiron(IV) complex with ferromagnetically coupled Sloc = 1 and Sloc = 2 sites to give total spin St = 3. Analysis of the zero-field splittings and magnetic hyperfine tensors suggests that the dihedral O═Fe-Fe═O angle of 6b is ∼90°. DFT calculations indicate that this angle is enforced by hydrogen bonding to both terminal oxo groups from a shared water molecule. The water molecule preorganizes 6b, facilitating protonation of one oxo group to regenerate 2, a protonation step difficult to achieve for mononuclear Fe(IV)═O complexes. Complex 6 represents an intriguing addition to the handful of diiron(IV) complexes that have been characterized.
Collapse
Affiliation(s)
- Sebastian A Stoian
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | |
Collapse
|
30
|
Yoshizawa K. Quantum Chemical Studies on Dioxygen Activation and Methane Hydroxylation by Diiron and Dicopper Species as well as Related Metal–Oxo Species. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20130127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|