1
|
Jayabharathi J, Karthikeyan B, Vishnu B, Sriram S. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review. Phys Chem Chem Phys 2023; 25:8992-9019. [PMID: 36928479 DOI: 10.1039/d2cp05522h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Water electrolysis plays an interesting role toward hydrogen generation for overcoming global environmental crisis and solving the energy storage problem. However, there is still a deficiency of efficient electrocatalysts to overcome sluggish kinetics for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Great efforts have been employed to produce potential catalysts with low overpotential, rapid kinetics, and excellent stability for HER and OER. At present, hydrogen economy is driven by electrocatalysts with excellent characteristics; thus, systematic design strategy has become the driving force to exploit earth-abundant transition metal-based electrocatalysts toward H2 economy. In this review, the recent progress on newer materials including metals, alloys, and transition metal oxides (manganese oxides, cobalt oxides, nickel oxides, PBA-derived metal oxides, and metal complexes) as photocatalysts/electrocatalysts has been overviewed together with some methodologies for efficient water splitting. Metal-organic framework (MOF)-based electrocatalysts have been highly exploited owing to their interesting functionalities. The photovoltaic-electrocatalytic (PV-EC) process focused on harvesting high solar-to-hydrogen efficiency (STH) among various solar energy conversion as well as storage systems. Electrocatalysts/photocatalysts with high efficiency have become an urgent need for overall water splitting. Also, cutting-edge achievements in the fabrication of electrocatalysts along with theoretical consideration have been discussed.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Balakrishnan Karthikeyan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Bakthavachalam Vishnu
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Sundarraj Sriram
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| |
Collapse
|
2
|
Thierer LM, Brooks SH, Weberg AB, Cui P, Zhang S, Gau MR, Manor BC, Carroll PJ, Tomson NC. Macrocycle-Induced Modulation of Internuclear Interactions in Homobimetallic Complexes. Inorg Chem 2022; 61:6263-6280. [PMID: 35422117 PMCID: PMC9252315 DOI: 10.1021/acs.inorgchem.2c00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic route has been developed for a series of 3d homobimetallic complexes of Mn, Fe, Co, Ni, and Cu using three different pyridyldiimine and pyridyldialdimine macrocyclic ligands with ring sizes of 18, 20, and 22 atoms. Crystallographic analyses indicate that while the distances between the metals can be modulated by the size of the macrocycle pocket, the flexibility in the alkyl linkers used to construct the macrocycles enables the ligand to adjust the orientation of the PD(A)I fragments in response to the geometry of the [M2(μ-Cl)2]2+ core, particularly with respect to Jahn-Teller distortions. Analyses by UV-vis spectroscopy and SQUID magnetometry revealed deviations in the properties [M2(μ-Cl)2]2+-containing complexes bound by standard mononucleating ligands, highlighting the ability of macrocycles to use ring size to control the magnetic interactions of pseudo-octahedral, high-spin metal centers.
Collapse
Affiliation(s)
- Laura M. Thierer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sam H. Brooks
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Alexander B. Weberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Peng Cui
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Shaoguang Zhang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Brian C. Manor
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Hessels J, Masferrer‐Rius E, Yu F, Detz RJ, Klein Gebbink RJM, Reek JNH. Nickel is a Different Pickle: Trends in Water Oxidation Catalysis for Molecular Nickel Complexes. CHEMSUSCHEM 2020; 13:6629-6634. [PMID: 33090703 PMCID: PMC7756549 DOI: 10.1002/cssc.202002164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The development of novel water oxidation catalysts is important in the context of renewable fuels production. Ligand design is one of the key tools to improve the activity and stability of molecular catalysts. The establishment of ligand design rules can facilitate the development of improved molecular catalysts. In this paper it is shown that chemical oxidants can be used to probe oxygen evolution activity for nickel-based systems, and trends are reported that can improve future ligand design. Interestingly, different ligand effects were observed in comparison to other first-row transition metal complexes. For example, nickel complexes with secondary amine donors were more active than with tertiary amine donors, which is the opposite for iron complexes. The incorporation of imine donor groups in a cyclam ligand resulted in the fastest and most durable nickel catalyst of our series, achieving oxygen evolution turnover numbers up to 380 and turnover frequencies up to 68 min-1 in a pH 5.0 acetate buffer using Oxone as oxidant. Initial kinetic experiments with this catalyst revealed a first order in chemical oxidant and a half order in catalyst. This implies a rate-determining oxidation step from a dimeric species that needs to break up to generate the active catalyst. These findings lay the foundation for the rational design of molecular nickel catalysts for water oxidation and highlight that catalyst design rules are not generally applicable for different metals.
Collapse
Affiliation(s)
- Joeri Hessels
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Eduard Masferrer‐Rius
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Fengshou Yu
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Remko J. Detz
- Current address: TNO Energy Transition, Energy Transition StudiesRadarweg 601043 NTAmsterdamThe Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
4
|
Winter A, Schubert US. Metal‐Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem 2020. [DOI: 10.1002/cctc.201902290] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
5
|
Deka H, Kumar A, Patra S, Awasthi MK, Singh SK. Synthesis, structure and catalytic activity of manganese(ii) complexes derived from bis(imidazole)methane-based ligands. Dalton Trans 2020; 49:757-763. [PMID: 31850439 DOI: 10.1039/c9dt03886h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New mononuclear manganese(ii) complexes [Mn(κ2-L1)(OAc)2] ([Mn]-1), [Mn(κ2-L2)(OAc)2] ([Mn]-2) and [Mn(κ2-L3)(OAc)2] ([Mn]-3) with imidazole based ligands {4,4'-(phenylmethylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L1), {(4,4'-((2-methoxy phenyl)methylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L2) and {4,4'-((2-chlorophenyl) methylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L3) are synthesized and fully characterized by a variety of techniques. Furthermore, the molecular structures of complexes [Mn]-1 and [Mn]-2 are established by single crystal X-ray structure analysis. The synthesized manganese(ii) complexes exhibited efficient catalytic oxidative coupling of primary amines in air under solvent-free conditions to the corresponding imines in moderate to good yields.
Collapse
Affiliation(s)
- Hemanta Deka
- Catalysis Group, Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, M.P., India.
| | | | | | | | | |
Collapse
|
6
|
Zhang Y, Jia AQ, Zhang JJ, Xin Z, Zhang QF. Construction of {Mn[Ph2P(O)NP(O)Ph2]2} units with mono- and bi-pyridines: Syntheses, molecular structures, and spectroscopic properties of manganese(II) complexes with tetraphenylimidodiphosphinates. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Antony R, Marimuthu R, Vishnoi P, Murugavel R. Ethoxysilane appended M(II) complexes and their SiO2/MCM-41 supported forms as catalysts for efficient oxidation of secondary alcohols. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Najafpour MM. From manganese complexes to nano-sized manganese oxides as water-oxidizing catalysts for artificial photosynthetic systems: Insights from the Zanjan team. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Singh A, Fekete M, Gengenbach T, Simonov AN, Hocking RK, Chang SLY, Rothmann M, Powar S, Fu D, Hu Z, Wu Q, Cheng YB, Bach U, Spiccia L. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts. CHEMSUSCHEM 2015; 8:4266-4274. [PMID: 26617200 DOI: 10.1002/cssc.201500835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 06/05/2023]
Abstract
We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential.
Collapse
Affiliation(s)
- Archana Singh
- School of Chemistry, Monash University, Victoria, 3800, Australia.
- Australian Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia.
- Advanced Materials and Processing Research Institute, CSIR, Bhopal, India.
| | - Monika Fekete
- School of Chemistry, Monash University, Victoria, 3800, Australia
- Australian Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | | | - Alexandr N Simonov
- School of Chemistry, Monash University, Victoria, 3800, Australia
- Australian Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | - Rosalie K Hocking
- School of Chemistry, Monash University, Victoria, 3800, Australia
- Australian Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
- School of Chemistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Shery L Y Chang
- School of Chemistry, Monash University, Victoria, 3800, Australia
| | - Mathias Rothmann
- Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia
| | - Satvasheel Powar
- School of Chemistry, Monash University, Victoria, 3800, Australia
| | - Dongchuan Fu
- Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia
| | - Zheng Hu
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Qiang Wu
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yi-Bing Cheng
- Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Udo Bach
- Manufacturing Flagship, CSIRO, Clayton, Victoria, 3168, Australia
- Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria, 3168, Australia
| | - Leone Spiccia
- School of Chemistry, Monash University, Victoria, 3800, Australia.
- Australian Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia.
| |
Collapse
|
10
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Nanolayered manganese oxide/C(60) composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Trans 2015; 43:12058-64. [PMID: 24984108 DOI: 10.1039/c4dt00599f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For the first time, we considered Mn oxide/C60 composites as water-oxidizing catalysts. The composites were synthesized by easy and simple procedures, and characterized by some methods. The water-oxidizing activities of these composites were also measured in the presence of cerium(iv) ammonium nitrate. We found that the nanolayered Mn oxide/C60 composites show promising activity toward water oxidation.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
11
|
Najafpour MM, Amini E. Nano-sized Mn oxides on halloysite or high surface area montmorillonite as efficient catalysts for water oxidation with cerium(iv) ammonium nitrate: support from natural sources. Dalton Trans 2015; 44:15441-9. [DOI: 10.1039/c5dt02336j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used halloysite, a nano-sized natural mineral and high surface area montmorillonite as supports for nano-sized Mn oxides to synthesize efficient water-oxidising catalysts.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Emad Amini
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
12
|
Najafpour MM, Heidari S, Amini E, Khatamian M, Carpentier R, Allakhverdiev SI. Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:124-39. [DOI: 10.1016/j.jphotobiol.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/22/2023]
|
13
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Mn oxide/nanodiamond composite: a new water-oxidizing catalyst for water oxidation. RSC Adv 2014. [DOI: 10.1039/c4ra06181k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we reported nanosized Mn oxide/nanodiamond composites as water-oxidizing compounds.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | - Mahnaz Abasi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601, Japan
- PRESTO
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276, Russia
- Institute of Basic Biological Problems
| |
Collapse
|
14
|
Najafpour MM, Amini M, Hołyńska M, Zare M, Amini E. A hexanuclear manganese(ii) complex: synthesis, characterization and catalytic activity toward organic sulfide oxidation. NEW J CHEM 2014. [DOI: 10.1039/c4nj01159g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A hexanuclear [MnII6] wheel-like assembly with naphthalene-1,8-dicarboxylate and 1,10-phenanthroline was reported. The compound acts as a catalyst toward organic sulfide oxidation.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | - Mojtaba Amini
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh, Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie
- Wissenschaftliches Zentrum für Materialwissenschaften
- Philipps-Universität Marburg
- D-35043 Marburg, Germany
| | - Maryam Zare
- Department of Basic Sciences
- Golpayegan University of Technology
- Golpayegan, Iran
| | - Emad Amini
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| |
Collapse
|
15
|
Najafpour MM, Abbasi Isaloo M, Abasi M, Hołyńska M. Manganese oxide as a water-oxidizing catalyst: from the bulk to Ångström-scale. NEW J CHEM 2014. [DOI: 10.1039/c3nj01393f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Shevela D, Messinger J. Studying the oxidation of water to molecular oxygen in photosynthetic and artificial systems by time-resolved membrane-inlet mass spectrometry. FRONTIERS IN PLANT SCIENCE 2013; 4:473. [PMID: 24324477 PMCID: PMC3840314 DOI: 10.3389/fpls.2013.00473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/01/2013] [Indexed: 05/03/2023]
Abstract
Monitoring isotopic compositions of gaseous products (e.g., H2, O2, and CO2) by time-resolved isotope-ratio membrane-inlet mass spectrometry (TR-IR-MIMS) is widely used for kinetic and functional analyses in photosynthesis research. In particular, in combination with isotopic labeling, TR-MIMS became an essential and powerful research tool for the study of the mechanism of photosynthetic water-oxidation to molecular oxygen catalyzed by the water-oxidizing complex of photosystem II. Moreover, recently, the TR-MIMS and (18)O-labeling approach was successfully applied for testing newly developed catalysts for artificial water-splitting and provided important insight about the mechanism and pathways of O2 formation. In this mini-review we summarize these results and provide a brief introduction into key aspects of the TR-MIMS technique and its perspectives for future studies of the enigmatic water-splitting chemistry.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Department of Chemistry, Chemistry Biology Centre, Umeå UniversityUmeå, Sweden
| | - Johannes Messinger
- Department of Chemistry, Chemistry Biology Centre, Umeå UniversityUmeå, Sweden
| |
Collapse
|
17
|
|
18
|
Najafpour MM, Kompany-Zareh M, Zahraei A, Jafarian Sedigh D, Jaccard H, Khoshkam M, Britt RD, Casey WH. Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights. Dalton Trans 2013; 42:14603-11. [DOI: 10.1039/c3dt51406d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Najafpour MM, Leonard KC, Fan FRF, Tabrizi MA, Bard AJ, King'ondu CK, Suib SL, Haghighi B, Allakhverdiev SI. Nano-size layered manganese–calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum. Dalton Trans 2013; 42:5085-91. [DOI: 10.1039/c3dt32864c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Najafpour MM, Nemati Moghaddam A, Sakha Y. A simple mathematical model for manganese oxide-coated montmorillonite as a catalyst for water oxidation: from nano to macro sized manganese oxide. Dalton Trans 2013; 42:11012-20. [DOI: 10.1039/c3dt50972a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Najafpour MM, Sedigh DJ, Pashaei B, Nayeri S. Water oxidation by nano-layered manganese oxides in the presence of cerium(iv) ammonium nitrate: important factors and a proposed self-repair mechanism. NEW J CHEM 2013. [DOI: 10.1039/c3nj00372h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Najafpour MM, Sedigh DJ. Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 2013; 42:12173-8. [DOI: 10.1039/c3dt51345a] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|