1
|
Kuzniak-Glanowska E, Konieczny P, Pełka R, Muzioł TM, Kozieł M, Podgajny R. Engineering of the XY Magnetic Layered System with Adeninium Cations: Monocrystalline Angle-Resolved Studies of Nonlinear Magnetic Susceptibility. Inorg Chem 2021; 60:10186-10198. [PMID: 34232628 PMCID: PMC8388120 DOI: 10.1021/acs.inorgchem.1c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An original example of modular crystal engineering involving molecular magnetic {CuII[WV(CN)8]}- bilayers and adeninium cations (AdeH+) toward the new layered molecular magnet (AdeH){CuII[WV(CN)8]}·2H2O (1) is presented. 1 crystallizes within the monoclinic C2 space group (a = 41.3174(12), b = 7.0727(3), c = 7.3180(2) Å, β = 93.119(3)°, and V = 2135 Å3). The bilayer topology is based on a stereochemical matching between the square pyramidal shape of CuII moiety and the bicapped trigonal prismatic shape of [WV(μ-CN)5(CN)3], and the separation between bilayers is significantly increased (by ∼50%; from ca. 9.5 to ca. 14.5 Å) compared to several former analogues in this family. This was achieved via a unique combination of (i) a 1D ribbonlike hydrogen bond system {AdeH+···H2O···AdeH+···}∞ exploiting planar water-assisted Hoogsteen···Sugar synthons with (ii) parallel 1D π-π stacks {AdeH+···AdeH+}∞. In-plane 2D XY magnetism is characterized by a Tc close to 33 K, Hc,in-plane = 60 Oe, and Hc,out-of-plane = 750 Oe, high values of in-plane γ critical exponents (γb = 2.34(6) for H||b and γc = 2.16(5) for H||c), and a Berezinskii-Kosterlitz-Thouless (BKT) topological phase transition, deduced from crystal-orientation-dependent scaling analysis. The obtained values of in-plane ν critical exponents, νb = 0.48(5) for H||b and νc = 0.49(3) for H||c, confirm the BKT transition (νBKT = 0.5). Full-range angle-resolved monocrystalline magnetic measurements supported by dedicated calculations indicated the occurrence of nonlinear susceptibility performance within the easy plane in a magnetically ordered state. We refer the occurrence of this phenomenon to spontaneous resolution in the C2 space group, a tandem not observed in studies on previous analogues and rarely reported in the field of molecular materials. The above magneto-supramolecular strategy may provide a novel means for the design of 2D molecular magnetic networks and help to uncover the inherent phenomena.
Collapse
Affiliation(s)
| | - Piotr Konieczny
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Robert Pełka
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Tadeusz M Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Marcin Kozieł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Chorazy S, Zakrzewski JJ, Magott M, Korzeniak T, Nowicka B, Pinkowicz D, Podgajny R, Sieklucka B. Octacyanidometallates for multifunctional molecule-based materials. Chem Soc Rev 2020; 49:5945-6001. [PMID: 32685956 DOI: 10.1039/d0cs00067a] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octacyanidometallates have been successfully employed in the design of heterometallic coordination systems offering a spectacular range of desired physical properties with great potential for technological applications. The [M(CN)8]n- ions comprise a series of complexes of heavy transition metals in high oxidation states, including NbIV, MoIV/V, WIV/V, and ReV. Since the discovery of the pioneering bimetallic {MnII4[MIV(CN)8]2} and {MnII9[MV(CN)8]6} (M = Mo, W) molecules in 2000, octacyanidometallates were fruitfully explored as precursors for the construction of diverse d-d or d-f coordination clusters and frameworks which could be obtained in the crystalline form under mild synthetic conditions. The primary interest in [M(CN)8]n--based networks was focused on their application as molecule-based magnets exhibiting long-range magnetic ordering resulting from the efficient intermetallic exchange coupling mediated by cyanido bridges. However, in the last few years, octacyanidometallate-based materials proved to offer varied and remarkable functionalities, becoming efficient building blocks for the construction of molecular nanomagnets, magnetic coolers, spin transition materials, photomagnets, solvato-magnetic materials, including molecular magnetic sponges, luminescent magnets, chiral magnets and photomagnets, SHG-active magnetic materials, pyro- and ferroelectrics, ionic conductors as well as electrochemical containers. Some of these materials can be processed into the nanoscale opening the route towards the development of magnetic, optical and electronic devices. In this review, we summarise all important achievements in the field of octacyanidometallate-based functional materials, with the particular attention to the most recent advances, and present a thorough discussion on non-trivial structural and electronic features of [M(CN)8]n- ions, which are purposefully explored to introduce desired physical properties and their combinations towards advanced multifunctional materials.
Collapse
Affiliation(s)
- Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Tomasz Korzeniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Stefańczyk O, Ohkoshi SI. Synthesis of Two-Dimensional Photomagnetic K4{[CuII(ida)]2[MIV(CN)8]}·4H2O (MIV = Mo, W) Materials. Inorg Chem 2020; 59:4292-4299. [DOI: 10.1021/acs.inorgchem.9b03076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olaf Stefańczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Three-dimensional molecular-based magnet of octacyanometalate-based tungstate(V)-cobalt(II) bimetallic assembly with TC=26K. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|