1
|
Silva SR, Souza-Silva G, Moreira CPDS, Vasconcelos OMDSR, Silveira MR, Barbosa FAR, Magalhães SMS, Mol MPG. Biodegradation of the Antiretroviral Tenofovir Disoproxil by a Cyanobacteria/Bacterial Culture. TOXICS 2024; 12:729. [PMID: 39453149 PMCID: PMC11510927 DOI: 10.3390/toxics12100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Tenofovir disoproxil fumarate (TDF) is an antiretroviral drug extensively used by people living with HIV. The TDF molecule is hydrolysed in vivo and liberates tenofovir, the active part of the molecule. Tenofovir is a very stable drug and the discharge of its residues into the environment can potentially lead to risk for aquatic species. This study evaluated the TDF biodegradation and removal by cultures of Microcystis novacekii with the bacteria Pseudomonas pseudoalcaligenes. Concentrations of TDF of 12.5, 25.0, and 50.0 mg/L were used in this study. The process occurred in two stages. In the first 72 h, TDF was de-esterified, forming the tenofovir monoester intermediate by abiotic and enzymatic processes associated in an extracellular medium. In a second step, the monoester was removed from the culture medium by intracellular processes. The tenofovir or other by-products of TDF were not observed in the test conditions. At the end of the experiment, 88.7 to 94.1% of TDF and its monoester derivative were removed from the culture medium over 16 days. This process showed higher efficiency of TDF removal at the concentration of 25 mg/L. Tenofovir isoproxil monoester has partial antiviral activity and has shown to be persistent, maintaining a residual concentration after 16 days in the culture medium, therefore indicating the need to continue research on methods for total removal of this product from the aquatic environment.
Collapse
Affiliation(s)
- Sandra Regina Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 30510010, Brazil; (S.R.S.); (G.S.-S.); (M.R.S.); (F.A.R.B.); (S.M.S.M.)
| | - Gabriel Souza-Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 30510010, Brazil; (S.R.S.); (G.S.-S.); (M.R.S.); (F.A.R.B.); (S.M.S.M.)
| | - Carolina Paula de Souza Moreira
- Fundação Ezequiel Dias, Departamento de Pesquisa e Desenvolvimento, Belo Horizonte 30510010, Brazil; (C.P.d.S.M.); (O.M.d.S.R.V.)
| | | | - Micheline Rosa Silveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 30510010, Brazil; (S.R.S.); (G.S.-S.); (M.R.S.); (F.A.R.B.); (S.M.S.M.)
| | - Francisco Antonio Rodrigues Barbosa
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 30510010, Brazil; (S.R.S.); (G.S.-S.); (M.R.S.); (F.A.R.B.); (S.M.S.M.)
| | - Sergia Maria Starling Magalhães
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 30510010, Brazil; (S.R.S.); (G.S.-S.); (M.R.S.); (F.A.R.B.); (S.M.S.M.)
| | - Marcos Paulo Gomes Mol
- Fundação Ezequiel Dias, Departamento de Pesquisa e Desenvolvimento, Belo Horizonte 30510010, Brazil; (C.P.d.S.M.); (O.M.d.S.R.V.)
| |
Collapse
|
2
|
Peng W, Fu Y, Jia B, Sun X, Wang Y, Deng Z, Lin S, Liang R. Metabolism analysis of 17α-ethynylestradiol by Pseudomonas citronellolis SJTE-3 and identification of the functional genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127045. [PMID: 34488099 DOI: 10.1016/j.jhazmat.2021.127045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Synthetic estrogens are the most hazardous and persistent environmental estrogenic contaminants, with few reports on their biodegradation. Pseudomonas citronellolis SJTE-3 degraded natural steroids efficiently and metabolized 17α-ethynylestradiol (EE2) with the addition of different easily used energy sources (glucose, peptone, ethanol, yeast extract, fulvic acid and ammonia). Over 92% of EE2 (1 mg/L) and 55% of EE2 (10 mg/L) in culture were removed in seven days with the addition of 0.1% ethanol, and the EE2-biotransforming efficiency increased with the increasing ethanol concentrations. Two novel intermediate metabolites of EE2 (C22H22O and C18H34O2) were identified with high-performance liquid chromatography (HPLC) and GC-Orbitrap/MS. Comparative analysis and genome mining revealed strain SJTE-3 contained a unique genetic basis for EE2 metabolism, and the putative EE2-degrading genes exhibited dispersed distribution. The EE2 metabolism of strain SJTE-3 was inducible and the transcription of eight genes were significantly induced by EE2. Three genes (sdr3, yjcH and cyp2) encoding a short-chain dehydrogenase, a membrane transporter and a cytochrome P450 hydroxylase, respectively, were vital for EE2 metabolism in strain SJTE-3; their over-expression accelerated EE2 metabolic processes and advanced the generation of intermediate metabolites. This work could promote the study of bacterial EE2 metabolism mechanisms and facilitate efficient bioremediation for EE2 pollution.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ben Jia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
3
|
Palma TL, Shylova A, Costa MC. Isolation and characterization of bacteria from activated sludge capable of degrading 17α-ethinylestradiol, a contaminant of high environmental concern. MICROBIOLOGY-SGM 2021; 167. [PMID: 33656438 DOI: 10.1099/mic.0.001038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l-1 EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides. The results of biodegradation assays showed that Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l-1 EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.
Collapse
Affiliation(s)
- Tânia Luz Palma
- Faculdade de Ciências e Tecnologia, University of Algarve, Campus de Gambelas, building 8, 8005-139 Faro, Portugal.,Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, building 7, 8005-139 Faro, Portugal
| | - Anastasiia Shylova
- Faculdade de Ciências e Tecnologia, University of Algarve, Campus de Gambelas, building 8, 8005-139 Faro, Portugal
| | - Maria Clara Costa
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, building 7, 8005-139 Faro, Portugal.,Faculdade de Ciências e Tecnologia, University of Algarve, Campus de Gambelas, building 8, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Palma TL, Magno G, Costa MC. Biodegradation of Paracetamol by Some Gram-Positive Bacterial Isolates. Curr Microbiol 2021; 78:2774-2786. [PMID: 34085101 DOI: 10.1007/s00284-021-02543-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Bacterial isolates with the capacity to remove paracetamol were selected from an activated sludge sample collected in an oxidation ditch of a wastewater treatment plant. Among these, twelve bacterial isolates were selected according to their capacity to grow in the presence of paracetamol. They were identified using the colony morphotype procedure and by 16S rRNA gene sequencing analysis, but only four of them showed the ability to utilise paracetamol as the sole carbon source in the presence of a nitrogen supply. Those four bacterial isolates were assigned to species of the genera Bacillus, [Brevibacterium], Corynebacterium and Enterococcus. Bacterial isolates were cultured in liquid mineral salt medium (MSM) spiked with 200 mg/L of paracetamol at 28 °C in the dark. In cultures inoculated with [Brevibacterium] frigoritolerans, Corynebacterium nuruki and Enterococcus faecium, removal of 97 ± 4%, 97 ± 6% and 86.9 ± 0.8% of paracetamol at 200 mg/L were obtained, respectively, while in the presence of a species belonging to Bacillus cereus group removal of the drug below the limits of detection was attained with evidence of mineralisation, after 144 h of incubation. During the degradation process, the metabolites 4-aminophenol, hydroquinone and 2-hexenoic acid were detected. As far as we know, these species are herein first-time described as paracetamol degraders.
Collapse
Affiliation(s)
- Tânia L Palma
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal.,Faculdade de Ciências E Tecnologias, University of Algarve, Campus de Gambelas, building 8, 8005-139, Faro, Portugal
| | - Gustavo Magno
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal.,Universidade Federal de Itajubá - Instituto de Recursos Naturais, Itajubá, Brazil
| | - Maria C Costa
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal. .,Faculdade de Ciências E Tecnologias, University of Algarve, Campus de Gambelas, building 8, 8005-139, Faro, Portugal.
| |
Collapse
|