1
|
Wang Y, Unnikrishnan M, Ramsey B, El Andlosy D, Keeley AT, Murphy CJ, Gruebele M. In-Cell Association of a Bioorthogonal Tubulin. Biomacromolecules 2024; 25:1282-1290. [PMID: 38251876 DOI: 10.1021/acs.biomac.3c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Studies of proteins from one organism in another organism's cells have shown that such exogenous proteins stick more, pointing toward coevolution of the cytoplasm and protein surface to minimize stickiness. Here we flip this question around by asking whether exogenous proteins can assemble efficiently into their target complexes in a non-native cytoplasm. We use as our model system the assembly of BtubA and BtubB from Prosthecobacter hosted in human U-2 OS cells. BtubA and B evolved from eukaryotic tubulins after horizontal gene transfer, but they have low surface sequence identity with the homologous human tubulins and do not respond to tubulin drugs such as nocodazole. In U-2 OS cells, BtubA and B assemble efficiently into dimers compared to in vitro, and the wild-type BtubA and B proteins subsequently are able to form microtubules as well. We find that generic crowding effects (Ficoll 70 in vitro) contribute significantly to efficient dimer assembly when compared to sticking interactions (U-2 OS cell lysate in vitro), consistent with the notion that a generic mechanism such as crowding can be effective at driving assembly of exogenous proteins, even when protein-cytoplasm quinary structure and sticking have been modified in a non-native cytoplasm. A simple Monte Carlo model of in vitro and in-cell interactions, treating BtubA and B as sticky dipoles in a matrix of sticky or nonsticky crowders, rationalizes all the experimental trends with two adjustable parameters and reveals nucleation as the likely mechanism for the time-scale separation between dimer- and tubule formation in-cell and in vitro.
Collapse
Affiliation(s)
- Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mahima Unnikrishnan
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brooke Ramsey
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Driss El Andlosy
- Computer Science and Technologies Department, Parkland Community College, Champaign, Illinois 61821, United States
| | - Alex T Keeley
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Knab E, Davis CM. Chemical interactions modulate λ 6-85 stability in cells. Protein Sci 2023; 32:e4698. [PMID: 37313657 PMCID: PMC10288553 DOI: 10.1002/pro.4698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Because steric crowding is most effective when the crowding agent is similar in size to the molecule that it acts upon and the average macromolecule inside cells is much larger than a small protein or peptide, steric crowding is not predicted to affect their folding inside cells. On the other hand, chemical interactions should perturb in-cell structure and stability because they arise from interactions between the surface of the small protein or peptide and its environment. Indeed, previous in vitro measurements of the λ-repressor fragment, λ6-85 , in crowding matrices comprised of Ficoll or protein crowders support these predictions. Here, we directly quantify the in-cell stability of λ6-85 and distinguish the contribution of steric crowding and chemical interactions to its stability. Using a FRET-labeled λ6-85 construct, we find that the fragment is stabilized by 5°C in-cells compared to in vitro. We demonstrate that this stabilization cannot be explained by steric crowding because, as anticipated, Ficoll has no effect on λ6-85 stability. We find that the in-cell stabilization arises from chemical interactions, mimicked in vitro by mammalian protein extraction reagent (M-PER™). Comparison between FRET values in-cell and in Ficoll confirms that U-2 OS cytosolic crowding is reproduced at macromolecule concentrations of 15% w/v. Our measurements validate the cytomimetic of 15% Ficoll and 20% M-PER™ that we previously developed for protein and RNA folding studies. However, because the in-cell stability of λ6-85 is reproduced by 20% v/v M-PER™ alone, we predict that this simplified mixture could be a useful tool to predict the in-cell behaviors of other small proteins and peptides.
Collapse
Affiliation(s)
- Edward Knab
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
3
|
Pastore A, Temussi PA. Crowding revisited: Open questions and future perspectives. Trends Biochem Sci 2022; 47:1048-1058. [PMID: 35691783 DOI: 10.1016/j.tibs.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Although biophysical studies have traditionally been performed in diluted solutions, it was pointed out in the late 1990s that the cellular milieu contains several other macromolecules, creating a condition of molecular crowding. How crowding affects protein stability is an important question heatedly discussed over the past 20 years. Theoretical estimations have suggested a 5-20°C effect of fold stabilisation. This estimate, however, is at variance with what has been verified experimentally that proposes only a limited increase of stability, opening the question whether some of the assumptions taken for granted should be reconsidered. The present review critically analyses the causes of this discrepancy and discusses the limitations and implications of the current concept of crowding.
Collapse
Affiliation(s)
- Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| |
Collapse
|
4
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Sung HL, Nesbitt DJ. Effects of Molecular Crowders on Single-Molecule Nucleic Acid Folding: Temperature-Dependent Studies Reveal True Crowding vs Enthalpic Interactions. J Phys Chem B 2021; 125:13147-13157. [PMID: 34813337 DOI: 10.1021/acs.jpcb.1c07852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biomolecular folding in cells can be strongly influenced by spatial overlap/excluded volume interactions (i.e., "crowding") with intracellular solutes. As a result, traditional in vitro experiments with dilute buffers may not accurately recapitulate biomolecule folding behavior in vivo. In order to account for such ubiquitous excluded volume effects, biologically inert polyethylene glycol (PEG) and polysaccharides (dextran and Ficoll) are often used as in vitro crowding agents to mimic in vivo crowding conditions, with a common observation that high concentrations of these polymers stabilize the more compact biomolecule conformation. However, such an analysis can be distorted by differences in polymer interactions with the folded vs unfolded conformers, requiring temperature-dependent analysis of the thermodynamics to reliably assess competing enthalpic vs entropic contributions and thus the explicit role of excluded volume. In this work, temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) is used to characterize the thermodynamic interaction between nucleic acids and common polymer crowders PEG, dextran, and Ficoll. The results reveal that PEG promotes secondary and tertiary nucleic acid folding by simultaneously increasing the folding rate while decreasing the unfolding rate, with temperature-dependent studies confirming that the source of PEG stabilization is predominantly entropic and consistent with a true excluded volume crowding mechanism. By way of contrast, neither dextran nor Ficoll induces any significant concentration-dependent change in nucleic acid folding stability at room temperature, but instead, stabilization effects gradually appear with a temperature increase. Such a thermal response indicates that both folding enthalpies and entropies are impacted by dextran and Ficoll. A detailed thermodynamic analysis of the kinetics suggests that, instead of true entropic molecular crowding, dextran and Ficoll associate preferentially with the unfolded vs folded nucleic acid conformer as a result of larger solvent accessible surface area, thereby skewing the free energy landscapes through both significant entropic/enthalpic contributions that compete and fortuitously cancel near room temperature.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019; 119:10691-10717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
7
|
Shahid S, Hassan MI, Islam A, Ahmad F. Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: in vitro and in silico approaches. Biochim Biophys Acta Gen Subj 2017; 1861:178-197. [DOI: 10.1016/j.bbagen.2016.11.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 11/27/2022]
|
8
|
Qin S, Zhou HX. Protein folding, binding, and droplet formation in cell-like conditions. Curr Opin Struct Biol 2016; 43:28-37. [PMID: 27771543 DOI: 10.1016/j.sbi.2016.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
The many bystander macromolecules in the crowded cellular environments present both steric repulsion and weak attraction to proteins undergoing folding or binding and hence impact the thermodynamic and kinetic properties of these processes. The weak but nonrandom binding with bystander macromolecules may facilitate subcellular localization and biological function. Weak binding also leads to the emergence of a protein-rich droplet phase, which has been implicated in regulating a variety of cellular functions. All these important problems can now be addressed by realistic modeling of intermolecular interactions. Configurational sampling of concentrated protein solutions is an ongoing challenge.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
9
|
Yoshitake T, Toyooka T, Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Macromolecular crowding effect for photoreactions of LOV2 domains of Arabidopsis thaliana phototropin 1. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Affiliation(s)
- Irisbel Guzman
- Department
of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Department
of Chemistry, Department of Physics, Center for the Physics of Living
Cells, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Liu Y, Prigozhin M, Schulten K, Gruebele M. Observation of complete pressure-jump protein refolding in molecular dynamics simulation and experiment. J Am Chem Soc 2014; 136:4265-72. [PMID: 24437525 PMCID: PMC3985862 DOI: 10.1021/ja412639u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 11/29/2022]
Abstract
Density is an easily adjusted variable in molecular dynamics (MD) simulations. Thus, pressure-jump (P-jump)-induced protein refolding, if it could be made fast enough, would be ideally suited for comparison with MD. Although pressure denaturation perturbs secondary structure less than temperature denaturation, protein refolding after a fast P-jump is not necessarily faster than that after a temperature jump. Recent P-jump refolding experiments on the helix bundle λ-repressor have shown evidence of a <3 μs burst phase, but also of a ~1.5 ms "slow" phase of refolding, attributed to non-native helical structure frustrating microsecond refolding. Here we show that a λ-repressor mutant is nonetheless capable of refolding in a single explicit solvent MD trajectory in about 19 μs, indicating that the burst phase observed in experiments on the same mutant could produce native protein. The simulation reveals that after about 18.5 μs of conformational sampling, the productive structural rearrangement to the native state does not occur in a single swift step but is spread out over a brief series of helix and loop rearrangements that take about 0.9 μs. Our results support the molecular time scale inferred for λ-repressor from near-downhill folding experiments, where transition-state population can be seen experimentally, and also agrees with the transition-state transit time observed in slower folding proteins by single-molecule spectroscopy.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| | - Maxim
B. Prigozhin
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| | - Klaus Schulten
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| | - Martin Gruebele
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| |
Collapse
|
12
|
Guzman I, Gelman H, Tai J, Gruebele M. The extracellular protein VlsE is destabilized inside cells. J Mol Biol 2013; 426:11-20. [PMID: 24013077 DOI: 10.1016/j.jmb.2013.08.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/25/2022]
Abstract
We use U2OS cells as in vivo "test tubes" to study how the same cytoplasmic environment has opposite effects on the stability of two different proteins. Protein folding stability and kinetics were compared by fast relaxation imaging, which combines a temperature jump with fluorescence microscopy of FRET (Förster resonance energy transfer)-labeled proteins. While the stability of the cytoplasmic enzyme PGK (phosphoglycerate kinase) increases in cells, the stability of the cell surface antigen VlsE, which presumably did not evolve for stability inside cells, decreases. VlsE folding also slows down more than PGK folding in cells, relative to their respective aqueous buffer kinetics. Our FRET measurements provide evidence that VlsE is more compact inside cells than in aqueous buffer. Two kinetically distinct protein populations exist inside cells, making a connection with previous in vitro crowding studies. In addition, we confirm previous studies showing that VlsE is stabilized by 150mg/mL of the carbohydrate crowder Ficoll, even though it is destabilized in the cytoplasm relative to aqueous buffer. We propose two mechanisms for the observed destabilization of VlsE in U2OS cells: long-range interactions competing with crowding or shape-dependent crowding favoring more compact states inside the cell over the elongated aqueous buffer native state.
Collapse
Affiliation(s)
- Irisbel Guzman
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Hannah Gelman
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | - Jonathan Tai
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Martin Gruebele
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois, Urbana, IL 61801, USA; Department of Physics, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Wirth AJ, Gruebele M. Quinary protein structure and the consequences of crowding in living cells: leaving the test-tube behind. Bioessays 2013; 35:984-93. [PMID: 23943406 DOI: 10.1002/bies.201300080] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the importance of weak protein-protein interactions has been understood since the 1980s, scant attention has been paid to this "quinary structure". The transient nature of quinary structure facilitates dynamic sub-cellular organization through loose grouping of proteins with multiple binding partners. Despite our growing appreciation of the quinary structure paradigm in cell biology, we do not yet understand how the many forces inside the cell--the excluded volume effect, the "stickiness" of the cytoplasm, and hydrodynamic interactions--perturb the weakest functional protein interactions. We discuss the unresolved problem of how the forces in the cell modulate quinary structure, and to what extent the cell has evolved to exert control over the weakest biomolecular interactions. We conclude by highlighting the new experimental and computational tools coming on-line for in vivo studies, which are a critical next step if we are to understand quinary structure in its native environment.
Collapse
Affiliation(s)
- Anna Jean Wirth
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
14
|
Zhou HX, Qin S. Simulation and Modeling of Crowding Effects on the Thermodynamic and Kinetic Properties of Proteins with Atomic Details. Biophys Rev 2013; 5:207-215. [PMID: 23710260 DOI: 10.1007/s12551-013-0101-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent experimental studies of protein folding and binding under crowded solutions suggest that crowding agents exert subtle influences on the thermodynamic and kinetic properties of the proteins. While some of the crowding effects can be understood qualitatively from simple models of the proteins, quantitative rationalization of these effects requires an atomistic representation of the protein molecules in modeling their interactions with crowders. A computational approach, known as postprocessing, has opened the door for atomistic modeling of crowding effects. This review summarizes the applications of the postprocessing approach for studying crowding effects on the thermodynamics and kinetics of protein folding, conformational transition, and binding. The integration of atomistic modeling with experiments in crowded solutions promises new insight into biochemical processes in cellular environments.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
15
|
Zhou HX. Influence of crowded cellular environments on protein folding, binding, and oligomerization: biological consequences and potentials of atomistic modeling. FEBS Lett 2013; 587:1053-61. [PMID: 23395796 DOI: 10.1016/j.febslet.2013.01.064] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 02/05/2023]
Abstract
Recent experiments inside cells and in cytomimetic conditions have demonstrated that the crowded environments found therein can significantly reshape the energy landscapes of individual protein molecules and their oligomers. The resulting shifts in populations of conformational and oligomeric states have numerous biological consequences, e.g., concerning the efficiency of replication and transcription, the development of aggregation-related diseases, and the efficacy of small-molecule drugs. Some of the effects of crowding can be anticipated from hard-particle theoretical models, but the in vitro and in vivo measurements indicate that these effects are often subtle and complex. These observations, coupled with recent computational studies at the atomistic level, suggest that the latter detailed modeling may be required to yield a quantitative understanding on the influence of crowded cellular environments.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
16
|
Zhou HX. Polymer crowders and protein crowders act similarly on protein folding stability. FEBS Lett 2013; 587:394-7. [PMID: 23353683 DOI: 10.1016/j.febslet.2013.01.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 11/29/2022]
Abstract
Recently a polymer crowder and two protein crowders were found to have opposite effects on the folding stability of chymotrypsin inhibitor 2 (CI2), suggesting that they interact differently with CI2. Here we propose that all the macromolecular crowders act similarly, with an entropic component favoring the folded state and an enthalpic component favoring the unfolded state. The net effect is destabilizing below a crossover temperature but stabilizing above it. This general trend is indeed observed in recent experiments and hints experimental temperature as a reason for the opposite crowding effects of the polymer and protein crowders.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
17
|
Wang Y, Sarkar M, Smith AE, Krois AS, Pielak GJ. Macromolecular crowding and protein stability. J Am Chem Soc 2012; 134:16614-8. [PMID: 22954326 DOI: 10.1021/ja305300m] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An understanding of cellular chemistry requires knowledge of how crowded environments affect proteins. The influence of crowding on protein stability arises from two phenomena, hard-core repulsions and soft (i.e., chemical) interactions. Most efforts to understand crowding effects on protein stability, however, focus on hard-core repulsions, which are inherently entropic and stabilizing. We assessed these phenomena by measuring the temperature dependence of NMR-detected amide proton exchange and used these data to extract the entropic and enthalpic contributions of crowding to the stability of ubiquitin. Contrary to expectations, the contribution of chemical interactions is large and in many cases dominates the contribution from hardcore repulsions. Our results show that both chemical interactions and hard-core repulsions must be considered when assessing the effects of crowding and help explain previous observations about protein stability and dynamics in cells.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|