1
|
Chen S, Li J, Zhu Q, Li Z. Theoretical kinetic studies on intramolecular H-migration reactions of peroxy radicals of diethoxymethane. Phys Chem Chem Phys 2024; 26:24676-24688. [PMID: 39282693 DOI: 10.1039/d4cp02302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Diethoxymethane (DEM), a promising carbon-neutral fuel, has high reactivity at low temperatures. The intramolecular hydrogen migration reaction of the DEM peroxy radicals can be viewed as a critical step in the low temperature oxidation mechanism of DEM. In this work, multistructural transition state theory (MS-TST) was utilized to calculate the high-pressure limit rate constants of 1,5, 1,6 and 1,7 H-migration reactions for DEM peroxy radicals. In addition to the tunneling effects and anharmonic effects, the intramolecular effects, including steric hindrance, intramolecular hydrogen bonding and conformational changes in reactants and transition states, are also considered in the rate constant calculations. The calculated energy barriers and rate constants demonstrated the substantial impact of intramolecular effects on the kinetics of H-migration reactions in DEM peroxy radicals. Specifically, the distinct configurations of transition states could potentially influence the reaction kinetics. The pressure-dependent rate constants are computed using system-specific quantum RRK theory. The calculated results show that the falloff effect of 1,5 and 1,6 H-migration reactions is more pronounced than that of the 1,7 H-migration reaction. The thermodynamics and kinetics presented in this study could be instrumental in understanding the low-temperature oxidation mechanism of DEM and might prove crucial for future research on comprehensively analyzing the autoignition behavior.
Collapse
Affiliation(s)
- Siyu Chen
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Juanqin Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Quan Zhu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Engineering Research Center of Combustion and Cooling for Aerospace Power, Ministry of Education, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zerong Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Xia Y, Long B, Liu A, Truhlar DG. Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:1216-1224. [PMID: 39431129 PMCID: PMC11489503 DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Atmospheric oxidation processes are of central importance in atmospheric climate models. It is often considered that volatile organic molecules are mainly removed by hydroxyl radical; however, the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow. Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates. These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling (DL-MS-CVT/SCT). The treatment contains beyond-CCSD(T) electronic structure calculations for transition state theory, and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory. We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F + CH2OO and HC(O)F + anti-CH3CHOO reactions. We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F + CH2OO/anti-CH3CHOO to the rate constant for HC(O)F + OH. We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride, and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH3CHOO Criegee intermediates.
Collapse
Affiliation(s)
- Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Ai Liu
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, United States
| |
Collapse
|
3
|
Nascimento JL, Junior ASL, Alves TV. The Interplay between the Temperature and Pressure on the Reaction Pathways of the Prenol Oxidation by Hydroxyl Radicals. Chemphyschem 2024; 25:e202400341. [PMID: 38878294 DOI: 10.1002/cphc.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Indexed: 07/16/2024]
Abstract
Despite prenol emerging as a next-generation biofuel, some questions about its mechanism still need to be adequately proposed to rationalize its consumption and evaluate its efficiency in spark-ignition (SI) engines. Here, we present new insights into the reaction mechanism of prenol (3-methyl-2-buten-1-ol) with OH radicals as a function of temperature and pressure. We have determined that the different temperature and pressure conditions control the preferred products. At combustion temperatures and low pressures, OH-addition adducts are suppressed, increasing the formation of α and δ allylic radicals responsible for the auto-ignition.
Collapse
Affiliation(s)
- Joel Leitão Nascimento
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia - Salvador, Bahia, 40170-115, Brazil
| | - Adalberto S L Junior
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia - Salvador, Bahia, 40170-115, Brazil
| | - Tiago Vinicius Alves
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia - Salvador, Bahia, 40170-115, Brazil
| |
Collapse
|
4
|
Yang M, Wang J. Comprehensive Multipath Variational Kinetics Study on Hydrogen Abstraction Reactions from Three Typical Dimethylcyclohexane Isomers by Hydroxyl Radicals: from the Electronic Structure to Model Applications. J Phys Chem A 2024; 128:4517-4531. [PMID: 38804972 DOI: 10.1021/acs.jpca.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cycloalkanes serve as an important class of chemical components in both fossil and alternative transportation fuels and have attracted considerable attention from the combustion community. Hydrogen abstractions from cycloalkanes by hydroxyl radicals initiate the fuel decomposition process and trigger off the subsequent chain reactions and thus play an important role in both combustion and atmospheric chemistry. The target of this study is to fill the vacancy in kinetics data toward the H-abstraction reactions by hydroxyl radical from three typical dimethylcyclohexane isomers through first-principles and direct dynamics. The rate constants involving 18 elementary reactions in total were accurately determined by the multipath canonical variational transition state theory with the multidimensional small-curvature correction for tunneling (MP-CVT/SCT), over a broad temperature range of 200-2000 K. The significant roles of multistructural torsional anharmonicity and recrossing effects were stressed per abstraction site, while the quantum tunneling effect was found to be slight at temperatures of interest in combustion. The discrepancies observed among different reaction systems at a similar abstraction site highlight the fuel molecular effects on site-specific rate constants. The comparison results of total rate constants given by different dynamics approaches prove the importance of considering the torsional anharmonicity, recrossing, and tunneling effects, and the robust feature of the simplified MS-CVT/SCT. The calculated total constants for dimethylcyclohexane isomers by OH are consistent with those measured for methylcyclohexane and 1,4-dimethylcyclohexane at low temperatures. The branching ratio analysis confirms the predominant role of the tertiary abstraction at low-to-intermediate temperatures and its growing competition with distinct secondary abstractions as temperature increases. The calculated rate constants were eventually fitted into the analytical expressions and incorporated into the kinetic models to learn about the influences on modeling performance.
Collapse
Affiliation(s)
- Mo Yang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Juan Wang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| |
Collapse
|
5
|
Gao Q, Shen C, Zhang H, Long B, Truhlar DG. Quantitative kinetics reveal that reactions of HO 2 are a significant sink for aldehydes in the atmosphere and may initiate the formation of highly oxygenated molecules via autoxidation. Phys Chem Chem Phys 2024; 26:16160-16174. [PMID: 38787752 DOI: 10.1039/d4cp00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Large aldehydes are widespread in the atmosphere and their oxidation leads to secondary organic aerosols. The current understanding of their chemical transformation processes is limited to hydroxyl radical (OH) oxidation during daytime and nitrate radical (NO3) oxidation during nighttime. Here, we report quantitative kinetics calculations of the reactions of hexanal (C5H11CHO), pentanal (C4H9CHO), and butanal (C3H7CHO) with hydroperoxyl radical (HO2) at atmospheric temperatures and pressures. We find that neither tunneling nor multistructural torsion anharmonicity should be neglected in computing these rate constants; strong anharmonicity at the transition states is also important. We find rate constants for the three reactions in the range 3.2-7.7 × 10-14 cm3 molecule-1 s-1 at 298 K and 1 atm, showing that the HO2 reactions can be competitive with OH and NO3 oxidation under some conditions relevant to the atmosphere. Our findings reveal that HO2-initiated oxidation of large aldehydes may be responsible for the formation of highly oxygenated molecules via autoxidation. We augment the theoretic studies with laboratory flow-tube experiments using an iodide-adduct time-of-flight chemical ionization mass spectrometer to confirm the theoretical predictions of peroxy radicals and the autoxidation pathway. We find that the adduct from HO2 + C5H11CHO undergoes a fast unimolecular 1,7-hydrogen shift with a rate constant of 0.45 s-1. We suggest that the HO2 reactions make significant contributions to the sink of aldehydes.
Collapse
Affiliation(s)
- Qiao Gao
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Chuanyang Shen
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Bo Long
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
- College of Materials Science and Engineering, Guizhou Minzu university, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
| |
Collapse
|
6
|
Martínez-Bachs B, Rimola A. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study. Int J Mol Sci 2023; 24:16824. [PMID: 38069147 PMCID: PMC10706303 DOI: 10.3390/ijms242316824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Several organic chemical compounds (the so-called interstellar complex organic molecules, iCOMs) have been identified in the interstellar medium (ISM). Examples of iCOMs are formamide (HCONH2), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), or formic acid (HCOOH). iCOMs can serve as precursors of other organic molecules of enhanced complexity, and hence they are key species in chemical evolution in the ISM. The formation of iCOMs is still a subject of a vivid debate, in which gas-phase or grain-surface syntheses have been postulated. In this study, we investigate the grain-surface-formation pathways for the four above-mentioned iCOMs by transferring their primary gas-phase synthetic routes onto water ice surfaces. Our objective is twofold: (i) to identify potential grain-surface-reaction mechanisms leading to the formation of these iCOMs, and (ii) to decipher either parallelisms or disparities between the gas-phase and the grain-surface reactions. Results obtained indicate that the presence of the icy surface modifies the energetic features of the reactions compared to the gas-phase scenario, by increasing some of the energy barriers. Therefore, the investigated gas-phase mechanisms seem unlikely to occur on the icy grains, highlighting the distinctiveness between the gas-phase and the grain-surface chemistry.
Collapse
Affiliation(s)
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| |
Collapse
|
7
|
Crisci L, Di Grande S, Cavallotti C, Barone V. Toward an Accurate Black-Box Tool for the Kinetics of Gas-Phase Reactions Involving Barrier-less Elementary Steps. J Chem Theory Comput 2023; 19:7626-7639. [PMID: 37880932 PMCID: PMC10653117 DOI: 10.1021/acs.jctc.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
An enhanced computational protocol has been devised for the accurate characterization of gas-phase barrier-less reactions in the framework of the reaction-path (RP) and variable reaction coordinate variational transition-state theory. In particular, the synergistic combination of density functional theory and Monte Carlo sampling to optimize reactive fluxes led to a reliable yet effective computational workflow. A black-box strategy has been developed for selecting the most suited density functional with reference to a high-level one-dimensional reference potential. At the same time, different descriptions of hindered rotations are automatically selected, depending on the corresponding harmonic frequencies along the RP. The performance of the new tool is investigated by means of two prototypical reactions involving different degrees of static and dynamic correlation, namely, H2S + Cl and CH3 + CH3. The remarkable agreement of the computed kinetic parameters with the available experimental data confirms the accuracy and robustness of the proposed approach. Together with their intrinsic interest, these results also pave the way toward systematic investigations of gas-phase reactions involving barrier-less elementary steps by a reliable, user-friendly tool, which can be confidently used also by nonspecialists.
Collapse
Affiliation(s)
- Luigi Crisci
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Carlo Cavallotti
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, I-20131 Milano, Italy
| | - Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
8
|
Sun Y, Long B, Truhlar DG. Unimolecular Reactions of E-Glycolaldehyde Oxide and Its Reactions with One and Two Water Molecules. RESEARCH (WASHINGTON, D.C.) 2023; 6:0143. [PMID: 37435010 PMCID: PMC10332847 DOI: 10.34133/research.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023]
Abstract
The kinetics of Criegee intermediates are important for atmospheric modeling. However, the quantitative kinetics of Criegee intermediates are still very limited, especially for those with hydroxy groups. Here, we calculate rate constants for the unimolecular reaction of E-glycolaldehyde oxide [E-hydroxyethanal oxide, E-(CH2OH)CHOO], for its reactions with H2O and (H2O)2, and for the reaction of the E-(CH2OH)CHOO…H2O complex with H2O. For the highest level of electronic structure, we use W3X-L//CCSD(T)-F12a/cc-pVDZ-F12 for the unimolecular reaction and the reaction with water and W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ for the reaction with 2 water molecules. For the dynamics, we use a dual-level strategy that combines conventional transition state theory with the highest level of electronic structure and multistructural canonical variational transition state theory with small-curvature tunneling with a validated density functional for the electronic structure. This dynamical treatment includes high-frequency anharmonicity, torsional anharmonicity, recrossing effects, and tunneling. We find that the unimolecular reaction of E-(CH2OH)CHOO depends on both temperature and pressure. The calculated results show that E-(CH2OH)CHOO…H2O + H2O is the dominant entrance channel, while previous investigations only considered Criegee intermediates + (H2O)2. In addition, we find that the atmospheric lifetime of E-(CH2OH)CHOO with respect to 2 water molecules is particularly short with a value of 1.71 × 10-6 s at 0 km, which is about 2 orders of magnitude shorter than those usually assumed for Criegee intermediate reactions with water dimer. We also find that the OH group in E-(CH2OH)CHOO enhances its reactivity.
Collapse
Affiliation(s)
- Yan Sun
- Department of Physics, Guizhou University, Guiyang 550025, China
| | - Bo Long
- Department of Physics, Guizhou University, Guiyang 550025, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
9
|
Wachlmayr J, Fläschner G, Pluhackova K, Sandtner W, Siligan C, Horner A. Entropic barrier of water permeation through single-file channels. Commun Chem 2023; 6:135. [PMID: 37386127 DOI: 10.1038/s42004-023-00919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Facilitated water permeation through narrow biological channels is fundamental for all forms of life. Despite its significance in health and disease as well as for biotechnological applications, the energetics of water permeation are still elusive. Gibbs free energy of activation is composed of an enthalpic and an entropic component. Whereas the enthalpic contribution is readily accessible via temperature dependent water permeability measurements, estimation of the entropic contribution requires information on the temperature dependence of the rate of water permeation. Here, we estimate, by means of accurate activation energy measurements of water permeation through Aquaporin-1 and by determining the accurate single channel permeability, the entropic barrier of water permeation through a narrow biological channel. Thereby the calculated value for [Formula: see text] = 2.01 ± 0.82 J/(mol·K) links the activation energy of 3.75 ± 0.16 kcal/mol with its efficient water conduction rate of ~1010 water molecules/second. This is a first step in understanding the energetic contributions in various biological and artificial channels exhibiting vastly different pore geometries.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Gotthold Fläschner
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Basel, Switzerland
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17A, 1090, Vienna, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
10
|
Douroudgari H, Zarepour H, Vahedpour M, Jaberi M, Zarepour M. The atmospheric relevance of primary alcohols and imidogen reactions. Sci Rep 2023; 13:9150. [PMID: 37277419 DOI: 10.1038/s41598-023-35473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Organic alcohols as very volatile compounds play a crucial role in the air quality of the atmosphere. So, the removal processes of such compounds are an important atmospheric challenge. The main goal of this research is to discover the atmospheric relevance of degradation paths of linear alcohols by imidogen with the aid of simulation by quantum mechanical (QM) methods. To this end, we combine broad mechanistic and kinetic results to get more accurate information and to have a deeper insight into the behavior of the designed reactions. Thus, the main and necessary reaction pathways are explored by well-behaved QM methods for complete elucidation of the studying gaseous reactions. Moreover, the potential energy surfaces as a main factor are computed for easier judging of the most probable pathways in the simulated reactions. Our attempt to find the occurrence of the considered reactions in the atmospheric conditions is completed by precisely evaluating the rate constants of all elementary reactions. All of the computed bimolecular rate constants have a positive dependency on both temperature and pressure. The kinetic results show that H-abstraction from the α carbon is dominant relative to the other sites. Finally, by the results of this study, we conclude that at moderate temperatures and pressures primary alcohols can degrade with imidogen, so they can get atmospheric relevance.
Collapse
Affiliation(s)
- Hamed Douroudgari
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| | - Hadi Zarepour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| | - Morteza Vahedpour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| | - Mahdi Jaberi
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| | - Mahdi Zarepour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| |
Collapse
|
11
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Long B, Xia Y, Truhlar DG. Quantitative Kinetics of HO 2 Reactions with Aldehydes in the Atmosphere: High-Order Dynamic Correlation, Anharmonicity, and Falloff Effects Are All Important. J Am Chem Soc 2022; 144:19910-19920. [PMID: 36264240 DOI: 10.1021/jacs.2c07994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinetics provides the fundamental parameters for elucidating sources and sinks of key atmospheric species and for atmospheric modeling more generally. Obtaining quantitative kinetics in the laboratory for the full range of atmospheric temperatures and pressures is quite difficult. Here, we use computational chemistry to obtain quantitative rate constants for the reactions of HO2 with HCHO, CH3CHO, and CF3CHO. First, we calculate the high-pressure-limit rate constants by using a dual-level strategy that combines conventional transition state theory using a high level of electronic structure wave function theory with canonical variational transition state theory including small-curvature tunneling using density functional theory. The wave-function level is beyond-CCSD(T) for HCHO and CCSD(T)-F12a (Level-A) for XCHO (X = CH3, CF3), and the density functional (Level-B) is specifically validated for these reactions. Then, we calculate the pressure-dependent rate constants by using system-specific quantum RRK theory (SS-QRRK) and also by an energy-grained master equation. The two treatments of the pressure dependence agree well. We find that the Level-A//Level-B method gives good agreement with CCSDTQ(P)/CBS. We also find that anharmonicity is an important factor that increases the rate constants of all three reactions. We find that the HO2 + HCHO reaction has a significant dependence on pressure, but the HO2 + CF3CHO reaction is almost independent of pressure. Our findings show that the HO2 + HCHO reaction makes important contribution to the sink for HCHO, and the HO2 + CF3CHO reaction is the dominant sink for CF3CHO in the atmosphere.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
13
|
Passos MO, Alves TV. Conformational influence on the thermal rate constants and product distributions of 2-butanone + H abstraction reactions. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Nascimento JL, Junior ASL, Alves TV. Prenol as a Next-Generation Biofuel or Additive: A Comprehension of the Hydrogen Abstraction Reactions by a H Atom. J Phys Chem A 2022; 126:4791-4800. [PMID: 35839446 DOI: 10.1021/acs.jpca.2c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermal rate coefficients for the hydrogen abstraction reactions of prenol (3-methyl-2-butenol) by a hydrogen atom were calculated with the multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT). The conformational search was performed with a dual-level approach, and the multistructural torsional anharmonicity effects were corrected through the rovibrational partition function calculated with the multistructural method based on a coupled torsional potential (MS-T(C)). This methodology allows us to estimate the thermal rate constants in the temperature range of 200-2500 K and fit them into two analytical expressions. Differences between the number of conformations on the torsional potential energy surfaces for prenol and the transition state decrease the thermal rate constants for the H-abstraction at the α carbon. An opposite behavior was detected for the abstractions on the δ site. The product branching ratios were calculated using single-structure and multipath approaches. The product distributions from the former are shown to be inadequate for studying the mechanism under combustion conditions. The values estimated from MP-CVT/SCT rate coefficients indicated that the radicals from (Rα) and (Rδ)/(Rδ') are formed in considerable amounts. These species are fundamental in comprehending the inhibition and promotion of the autoignition phenomena.
Collapse
Affiliation(s)
- Joel Leitão Nascimento
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia Rua Barão de Jeremoabo, 147, Salvador, Bahia 40170-115, Brazil
| | - Adalberto S Lima Junior
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia Rua Barão de Jeremoabo, 147, Salvador, Bahia 40170-115, Brazil
| | - Tiago Vinicius Alves
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia Rua Barão de Jeremoabo, 147, Salvador, Bahia 40170-115, Brazil
| |
Collapse
|
15
|
Giese TJ, Zeng J, Ekesan Ş, York DM. Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions. J Chem Theory Comput 2022; 18:4304-4317. [PMID: 35709391 PMCID: PMC9283286 DOI: 10.1021/acs.jctc.2c00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a fast, accurate, and robust approach for determination of free energy profiles and kinetic isotope effects for RNA 2'-O-transphosphorylation reactions with inclusion of nuclear quantum effects. We apply a deep potential range correction (DPRc) for combined quantum mechanical/molecular mechanical (QM/MM) simulations of reactions in the condensed phase. The method uses the second-order density-functional tight-binding method (DFTB2) as a fast, approximate base QM model. The DPRc model modifies the DFTB2 QM interactions and applies short-range corrections to the QM/MM interactions to reproduce ab initio DFT (PBE0/6-31G*) QM/MM energies and forces. The DPRc thus enables both QM and QM/MM interactions to be tuned to high accuracy, and the QM/MM corrections are designed to smoothly vanish at a specified cutoff boundary (6 Å in the present work). The computational speed-up afforded by the QM/MM+DPRc model enables free energy profiles to be calculated that include rigorous long-range QM/MM interactions under periodic boundary conditions and nuclear quantum effects through a path integral approach using a new interface between the AMBER and i-PI software. The approach is demonstrated through the calculation of free energy profiles of a native RNA cleavage model reaction and reactions involving thio-substitutions, which are important experimental probes of the mechanism. The DFTB2+DPRc QM/MM free energy surfaces agree very closely with the PBE0/6-31G* QM/MM results, and it is vastly superior to the DFTB2 QM/MM surfaces with and without weighted thermodynamic perturbation corrections. 18O and 34S primary kinetic isotope effects are compared, and the influence of nuclear quantum effects on the free energy profiles is examined.
Collapse
Affiliation(s)
- Timothy J. Giese
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jinzhe Zeng
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Wang PB, Truhlar DG, Xia Y, Long B. Temperature-dependent kinetics of the atmospheric reaction between CH 2OO and acetone. Phys Chem Chem Phys 2022; 24:13066-13073. [PMID: 35583864 DOI: 10.1039/d2cp01118b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Criegee intermediates are important oxidants produced in the ozonolysis of alkenes in the atmosphere. Quantitative kinetics of the reactions of Criegee intermediates are required for atmospheric modeling. However, the experimental studies do not cover the full relevant range of temperature and pressure. Here we report the quantitative kinetics of CH2OO + CH3C(O)CH3 by using our recently developed dual strategy that combines coupled cluster theory with high excitation levels for conventional transition state theory and well validated levels of density functional theory for direct dynamics calculations using canonical variational transition theory including tunneling. We find that the W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ electronic structure method can be used to obtain quantitative kinetics of the CH2OO + CH3C(O)CH3 reaction. Whereas previous investigations considered a one-step mechanistic pathway, we find that the CH2OO + CH3C(O)CH3 reaction occurs in a stepwise manner. This has implications for the modeling of Criegee-intermediate reactions with other ketones and with aldehydes. In the kinetics calculations, we show that recrossing effects of the conventional transition state are negligible for determining the rate constant of CH2OO + CH3C(O)CH3. The present findings reveal that the rate ratio between CH2OO + CH3C(O)CH3 and OH + CH3C(O)CH3 has a significant negative dependence on temperature such that the CH2OO + CH3C(O)CH3 reaction can contribute as a significant sink for atmospheric CH3C(O)CH3 at low temperature. The present findings should have broad implications in understanding the reactions of Criegee intermediates with carbonyl compounds and ketones in the atmosphere.
Collapse
Affiliation(s)
- Peng-Biao Wang
- Department of Physics, Guizhou University, Guiyang, 550025, China.
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- Department of Physics, Guizhou University, Guiyang, 550025, China. .,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
17
|
Xia Y, Long B, Lin S, Teng C, Bao JL, Truhlar DG. Large Pressure Effects Caused by Internal Rotation in the s-cis-syn-Acrolein Stabilized Criegee Intermediate at Tropospheric Temperature and Pressure. J Am Chem Soc 2022; 144:4828-4838. [PMID: 35262353 DOI: 10.1021/jacs.1c12324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Criegee intermediates are important atmospheric oxidants, and quantitative kinetics for stabilized Criegee intermediates are key parameters for atmospheric modeling but are still limited. Here we report barriers and rate constants for unimolecular reactions of s-cis-syn-acrolein oxide (scsAO), in which the vinyl group makes it a prototype for Criegee intermediates produced in the ozonolysis of isoprene. We find that the MN15-L and M06-2X density functionals have CCSD(T)/CBS accuracy for the unimolecular cyclization and stereoisomerization of scsAO. We calculated high-pressure-limit rate constants by the dual-level strategy that combines (a) high-level wave function-based conventional transition-state theory (which includes coupled-cluster calculations with quasiperturbative inclusion of quadruple excitations because of the strongly multiconfigurational character of the electronic wave function) and (b) canonical variational transition-state theory with small-curvature tunneling based on a validated density functional. We calculated pressure-dependent rate constants both by system-specific quantum Rice-Ramsperger-Kassel theory and by solving the master equation. We report rate constants for unimolecular reactions of scsAO over the full range of atmospheric temperature and pressure. We found that the unimolecular reaction rates of this larger-than-previously studied Criegee intermediate depend significantly on pressure. Particularly, we found that falloff effects decrease the effective unimolecular cyclization rate constant of scsAO by about a factor of 3, but the unimolecular reaction is still the dominant atmospheric sink for scsAO at low altitudes. The large falloff caused by the inclusion of the stereoisomerization channel in the master equation calculations has broad implications for mechanistic analysis of reactions with competitive internal rotations that can produce stable rotamers.
Collapse
Affiliation(s)
- Yu Xia
- College of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang 550025, China.,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang 550025, China.,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Shiru Lin
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chong Teng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
18
|
Zhang RM, Chen W, Truhlar DG, Xu X. Master Equation Study of Hydrogen Abstraction from HCHO by OH Via a Chemically Activated Intermediate. Faraday Discuss 2022; 238:431-460. [DOI: 10.1039/d2fd00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The abstraction reaction of hydrogen from formaldehyde by OH radical plays an important role in formaldehyde oxidation. The reaction involves a bimolecular association to form a chemically activated hydrogen-bonded reaction...
Collapse
|
19
|
Ferro-Costas D, Cordeiro MNDS, Fernández-Ramos A. An integrated protocol to study hydrogen abstraction reactions by atomic hydrogen in flexible molecules: application to butanol isomers. Phys Chem Chem Phys 2022; 24:3043-3058. [DOI: 10.1039/d1cp03928h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work presents a protocol designed to study hydrogen abstraction reactions by atomic hydrogen in molecules with multiple conformations.
Collapse
Affiliation(s)
- David Ferro-Costas
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M. Natália D. S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Antonio Fernández-Ramos
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Passos MO, Lins IA, Venâncio MF, Alves TV. Differences in the torsional anharmonicity between reactant and transition state: the case of 3-butenal + H abstraction reactions. Phys Chem Chem Phys 2021; 23:25414-25423. [PMID: 34751697 DOI: 10.1039/d1cp03981d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal rate coefficients for the hydrogen-abstraction reactions of 3-butenal by a hydrogen atom were obtained applying multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT). Torsional anharmonicity due to the hindered rotors was taken into account by calculating the rovibrational partition function using the extended two-dimensional torsional (E2DT) method. For comparison, rovibrational partition functions were also estimated using the multistructural method with torsional anharmonicity based on a coupled torsional potential (MS-T(C)). By contrast, with (E)-2-butenal reactions, the abstraction reactions of 3-butenal proceed via five reaction channels (R1)-(R5). In a conformational search, 45 distinguishable structures of transition states were found, including enantiomers, which were separated into six conformational reaction channels (CRCs). The individual reactive paths were constructed, the recrossing and semiclassical transmission coefficients estimated, and the multipath rate constants were obtained. High torsional barriers between the wells of CRC2/CRC6 indicate a harmonic behavior. Consequently, a difference between the torsional anharmonicity of 3-butenal and the transition states is responsible for the increase in the thermal rate constants for channel (R2). Analysis of the contributions of each conformer of the transition state shows an important contribution of the high-energy rotamers in the total flux of (R1)-(R5). After fitting the rate constants in a four-parameter equation, the activation energy estimation showed a strong temperature dependence.
Collapse
Affiliation(s)
- Maiara Oliveira Passos
- Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
| | - Igor Araujo Lins
- Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
| | - Mateus Fernandes Venâncio
- Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
| | - Tiago Vinicius Alves
- Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
21
|
Zhang D, Cao Y, Zhang P, Liang J, Xue K, Xia Y, Qi Z. Investigation of the thermal decomposition mechanism of glycerol: the combination of a theoretical study based on the Minnesota functional and experimental support. Phys Chem Chem Phys 2021; 23:20466-20477. [PMID: 34498629 DOI: 10.1039/d1cp01526e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multiple thermal decomposition channels of glycerol are calculated at the M06-2X-D3/6-311+G(d,p) level. In addition, the CAM-B3LYP and ωB97X-D functionals are used to show the functional influence on the free energy barrier. For the highly competitive primary channels, the DLPNO-CCSD(T)/CBS method is applied for the energy calculations. The results show that the dominant paths are: (1) breakage of the C-C, C-O, and O-H bonds of glycerol successively to form carbonyl and alkene, and then generation of water, formaldehyde, and acetaldehyde; (2) glycerol undergoing an intramolecular dehydration reaction and producing 3-hydroxypropionaldehyde; it has two subsequent reactions: ① C-C bond fracture occurring to form formaldehyde, acetaldehyde, and water; and ② intramolecular dehydration forming acrolein and water. The ΔG1 is 65.6 kcal mol-1 while the ΔG2 is 65.5 kcal mol-1 at 101 kPa and 298 K, and fitted rate equations are 1.09 × 1013 exp[65.6 × 103/RT] s-1 and 8.07 × 1012 exp[65.4 × 103/RT] s-1, respectively. Besides, UPLC and TG-GC/MS are applied complementarily to investigate the anaerobic pyrolysis products of glycerol at different temperatures. The experimental results are consistent with theoretical calculations.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Yi Cao
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, Jiangsu, 210019, P. R. China.
| | - Pan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Jiankang Liang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, P. R. China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| |
Collapse
|
22
|
Feng Y, Zhu J, Wang S, Yu L, He Z, Qian Y, Lu X. Theoretical and Experimental Study of 3-Pentanol Autoignition: Ab Initio Calculation, Shock Tube Experiments, and Kinetic Modeling. J Phys Chem A 2021; 125:5976-5989. [PMID: 34213330 DOI: 10.1021/acs.jpca.1c02713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Pentanol is a potential alternative fuel or a green fuel additive for modern engines. The H-abstraction reactions from 3-pentanol by H, CH3, HO2, and OH radicals are significant in the 3-pentanol oxidation process. However, corresponding rate constants are forced to rely on either analogy from sec-butanol or estimation from alkanes due to a lack of direct experimental and theoretical study. In this work, stationary points on the potential energy surfaces (PESs) were calculated with the high-level DLPNO-CCSD(T)/CBS(T-Q)//M06-2X/cc-pVTZ method, which is further used to benchmark against the CBS-QB3 method. Then, the high-pressure limit rate constants for target reactions, over a broad range of temperature (400-2000 K), were calculated with the phase-space theory and conventional transition state theory. A comparison was made between the calculated rate constants and the values available in Carbonnier et al. [ Proc. Combust. Inst. 2019, 37(1), 477-484]. The rate constants for the above H-abstraction reactions in the Carbonnier model were updated with the calculated results, followed by a modification based on the computed results of 3-pentanol + HO2 to obtain the revised model. Validation against the shock tube (ST) and the jet-stirred reactor (JSR) measurements from the literature proved the revised model an optimal one. Furthermore, using an ST, ignition delay times (IDTs) for the 3-pentanol/air mixtures were measured spanning a temperature range of 920-1450 K, pressures of 6, 10, and 20 bar, and equivalence ratios of 0.5, 1.0, and 1.5. Generally, IDTs decrease with increasing temperature and reflected shock pressure. Improved predictions to present experimental data were obtained by using the revised model as compared with the Carbonnier model. Finally, sensitivity analysis was conducted using the revised model to gain an in-depth comprehension of the 3-pentanol autoignition.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| | - Jizhen Zhu
- Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| | - Sixu Wang
- Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| | - Liang Yu
- Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| | - Zhuoyao He
- Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| | - Yong Qian
- Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| | - Xingcai Lu
- Key Laboratory for Power Machinery and Engineering of M. O. E, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| |
Collapse
|
23
|
Viegas LP. Simplified Protocol for the Calculation of Multiconformer Transition State Theory Rate Constants Applied to Tropospheric OH-Initiated Oxidation Reactions. J Phys Chem A 2021; 125:4499-4512. [PMID: 33902279 DOI: 10.1021/acs.jpca.1c00683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical kinetics plays a fundamental role in the understanding and modeling of tropospheric chemical processes, one of the most important being the atmospheric degradation of volatile organic compounds. These potentially harmful molecules are emitted into the troposphere by natural and anthropogenic sources and are chemically removed by undergoing oxidation processes, most frequently initiated by reaction with OH radicals, the atmosphere's "detergent". Obtaining the respective rate constants is therefore of critical importance, with calculations based on transition state theory (TST) often being the preferred choice. However, for molecules with rich conformational variety, a single-conformer method such as lowest-conformer TST is unsuitable while state-of-the-art TST-based methodologies easily become unmanageable. In this Feature Article, the author reviews his own cost-effective protocol for the calculation of bimolecular rate constants of OH-initiated reactions in the high-pressure limit based on multiconformer transition state theory. The protocol, which is easily extendable to other oxidation reactions involving saturated organic molecules, is based on a variety of freeware and open-source software and tested against a series of oxidation reactions of hydrofluoropolyethers, computationally very challenging molecules with potential environmental relevance. The main features, advantages and disadvantages of the protocol are presented, along with an assessment of its predictive utility based on a comparison with experimental rate constants.
Collapse
Affiliation(s)
- Luís P Viegas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, Buildings 1630-1632, Aarhus 8000, Denmark
| |
Collapse
|
24
|
Shchepanovska D, Shannon RJ, Curchod BFE, Glowacki DR. Nonadiabatic Kinetics in the Intermediate Coupling Regime: Comparing Molecular Dynamics to an Energy-Grained Master Equation. J Phys Chem A 2021; 125:3473-3488. [PMID: 33880919 DOI: 10.1021/acs.jpca.1c01260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose and test an extension of the energy-grained master equation (EGME) for treating nonadiabatic (NA) hopping between different potential energy surfaces, which enables us to model the competition between stepwise collisional relaxation and kinetic processes which transfer population between different electronic states of the same spin symmetry. By incorporating Zhu-Nakamura theory into the EGME, we are able to treat NA passages beyond the simple Landau-Zener approximation, along with the corresponding treatments of zero-point energy and tunneling probability. To evaluate the performance of this NA-EGME approach, we carried out detailed studies of the UV photodynamics of the volatile organic compound C6-hydroperoxy aldehyde (C6-HPALD) using on-the-fly ab initio molecular dynamics and trajectory surface hopping. For this multichromophore molecule, we show that the EGME is able to capture important aspects of the dynamics, including kinetic timescales, and diabatic trapping. Such an approach provides a promising and efficient strategy for treating the long-time dynamics of photoexcited molecules in regimes which are difficult to capture using atomistic on-the-fly molecular dynamics.
Collapse
Affiliation(s)
| | - Robin J Shannon
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - David R Glowacki
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Intangible Realities Laboratory, University of Bristol, Bristol BS8 1UB, U.K.,Department of Computer Science, University of Bristol, Bristol BS8 1UB, U.K
| |
Collapse
|
25
|
Church JR, Vaida V, Skodje RT. Kinetic Study of Gas-Phase Reactions of Pyruvic Acid with HO 2. J Phys Chem A 2021; 125:2232-2242. [PMID: 33705144 DOI: 10.1021/acs.jpca.0c10475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase reactions between pyruvic acid (PA) and HO2 radicals were examined using ab initio quantum chemistry and transition state theory. The rate coefficients were determined over a temperature range of 200-400 K including tunneling contributions. Six potential reaction pathways were identified. The two hydrogen abstraction reactions yielding the H2O2 product were found to have high barriers. The HO2 radical was also found to have a catalytic effect on the intramolecular hydrogen transfer reactions occurring by three distinct routes. These hydrogen-shift reactions are very interesting mechanistically although they are highly endothermic. The only reaction that contributes significantly to the consumption of PA is a multistep pathway involving a peroxy-radical intermediate, PA + HO2 → CH3COOH + OH + CO2. This exothermic process has potential atmospheric relevance because it produces an OH radical as a product. Atmospheric models currently have difficulty predicting accurate OH concentrations for certain atmospheric conditions, such as environments free of NOx and the nocturnal boundary layer. Reactions of this sort, although not necessary with PA, may account for a portion of this deficit. The present study helps settle the issue of the relative roles of reaction and photolysis in consumption of PA in the troposphere.
Collapse
Affiliation(s)
- Jonathan R Church
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Veronica Vaida
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Rex T Skodje
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
26
|
Ford J, Seritan S, Zhu X, Sakano MN, Islam MM, Strachan A, Martínez TJ. Nitromethane Decomposition via Automated Reaction Discovery and an Ab Initio Corrected Kinetic Model. J Phys Chem A 2021; 125:1447-1460. [PMID: 33569957 DOI: 10.1021/acs.jpca.0c09168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We explore the systematic construction of kinetic models from in silico reaction data for the decomposition of nitromethane. Our models are constructed in a computationally affordable manner by using reactions discovered through accelerated molecular dynamics simulations using the ReaxFF reactive force field. The reaction paths are then optimized to determine reaction rate parameters. We introduce a reaction barrier correction scheme that combines accurate thermochemical data from density functional theory with ReaxFF minimal energy paths. We validate our models across different thermodynamic regimes, showing predictions of gas phase CO and NO concentrations and high-pressure induction times that are similar to experimental data. The kinetic models are analyzed to find fundamental decomposition reactions in different thermodynamic regimes.
Collapse
Affiliation(s)
- Jason Ford
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Stefan Seritan
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Xiaolei Zhu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Michael N Sakano
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Md Mahbub Islam
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
27
|
Passos MO, Lins IA, Alves TV. Rate coefficients and product branching ratios for (E)-2-butenal + H reactions. Phys Chem Chem Phys 2020; 22:14246-14254. [PMID: 32555895 DOI: 10.1039/d0cp02142c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal rate constants for the hydrogen abstraction reactions of (E)-2-butenal by hydrogen atoms were calculated, for the first time, using the multipath canonical variational theory with small-curvature tunneling (MP-CVT/SCT). After a torsional potential energy surface exploration, ten conformations of the transition states (including the mirror images) were found and separated into four conformational reaction channels (CRCs). Individual energy paths of each CRC were built, recrossing and quantum tunneling effects estimated, and the thermal rate constants obtained. Due to the hindered rotors, the torsional anharmonicity was incorporated in the rate coefficient through the calculations of the rovibrational partition functions using the extended two-dimensional torsional method (E2DT). For comparison, the one-well (1W-CVT/SCT) and harmonic multipath (MP-CVT/SCT) thermal rate constants were also estimated. In addition, kinetic Monte Carlo (KMC) simulations were performed to predict the product branching ratios. For all kinetic approaches, the formation of products of (R1) is predominant. Compared to the harmonic multipath estimation, the percentage of reaction (R4) increases by approximately 9% when the torsional anharmonicity is taken into account. For the reactions (R2) and (R3), the product branching ratio is slightly decreased when compared with the harmonic simulation.
Collapse
Affiliation(s)
- Maiara Oliveira Passos
- Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
| | - Igor Araujo Lins
- Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
| | - Tiago Vinicius Alves
- Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
28
|
Water Catalysis of the Reaction of Methanol with OH Radical in the Atmosphere is Negligible. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Torres E, Jaffe RL, Schwenke D, Magin TE. Coarse-grain cross sections for rovibrational excitation and dissociation of the N2-N system. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Wu J, Gao LG, Varga Z, Xu X, Ren W, Truhlar DG. Water Catalysis of the Reaction of Methanol with OH Radical in the Atmosphere is Negligible. Angew Chem Int Ed Engl 2020; 59:10826-10830. [DOI: 10.1002/anie.202001065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Junjun Wu
- Department of Mechanical and Automation Engineering & Shenzhen Research Institute The Chinese University of Hong Kong New Territories Hong Kong SAR China
| | - Lu Gem Gao
- Center for Combustion Energy Department of Energy and Power Engineering Key Laboratory for Thermal Science and Power Engineering of Ministry of Education Tsinghua University Beijing China
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute University of Minnesota Minneapolis USA
| | - Xuefei Xu
- Center for Combustion Energy Department of Energy and Power Engineering Key Laboratory for Thermal Science and Power Engineering of Ministry of Education Tsinghua University Beijing China
| | - Wei Ren
- Department of Mechanical and Automation Engineering & Shenzhen Research Institute The Chinese University of Hong Kong New Territories Hong Kong SAR China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute University of Minnesota Minneapolis USA
| |
Collapse
|
31
|
Association of Cl with C 2H 2 by unified variable-reaction-coordinate and reaction-path variational transition-state theory. Proc Natl Acad Sci U S A 2020; 117:5610-5616. [PMID: 32123079 DOI: 10.1073/pnas.1920018117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barrierless unimolecular association reactions are prominent in atmospheric and combustion mechanisms but are challenging for both experiment and kinetics theory. A key datum for understanding the pressure dependence of association and dissociation reactions is the high-pressure limit, but this is often available experimentally only by extrapolation. Here we calculate the high-pressure limit for the addition of a chlorine atom to acetylene molecule (Cl + C2H2→C2H2Cl). This reaction has outer and inner transition states in series; the outer transition state is barrierless, and it is necessary to use different theoretical frameworks to treat the two kinds of transition state. Here we study the reaction in the high-pressure limit using multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) at the outer transition state and reaction-path variational transition state theory (RP-VTST) at the inner turning point; then we combine the results with the canonical unified statistical (CUS) theory. The calculations are based on a density functional validated against the W3X-L method, which is based on coupled cluster theory with single, double, and triple excitations and a quasiperturbative treatment of connected quadruple excitations [CCSDT(Q)], and the computed rate constants are in good agreement with some of the experimental results. The chlorovinyl (C2H2Cl) adduct has two isomers that are equilibrium structures of a double-well C≡C-H bending potential. Two procedures are used to calculate the vibrational partition function of chlorovinyl; one treats the two isomers separately and the other solves the anharmonic energy levels of the double well. We use these results to calculate the standard-state free energy and equilibrium constant of the reaction.
Collapse
|
32
|
Wu J, Gao LG, Ren W, Truhlar DG. Anharmonic kinetics of the cyclopentane reaction with hydroxyl radical. Chem Sci 2020; 11:2511-2523. [PMID: 34084417 PMCID: PMC8157450 DOI: 10.1039/c9sc05632g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Cyclopentane is one of the major constituents of transportation fuels, especially jet fuel and diesel, and also is a volatile organic compound with a significant presence in the atmosphere. Hydrogen abstraction from cyclopentane by hydroxyl radical plays a significant role in combustion and atmospheric chemistry. In this work we study the kinetics of this reaction at 200-2000 K using direct dynamics calculations in which the potential energy surface is obtained by quantum mechanical electronic structure calculations. The forward and reverse barrier heights and reaction energies obtained by the CCSD(T)-F12a/jun-cc-pVTZ coupled cluster calculations are used as a benchmark to select an accurate electronic structure method among 36 combinations of exchange-correlation functional and basis set. The selected M06-2X/MG3S method shows the best performance with a mean unsigned deviation from the benchmark of only 0.22 kcal mol-1 for reaction energies and barrier heights. A quadratic-quartic function is adopted to describe the ring bending potential of cyclopentane, and the quartic anharmonicity in the bending mode is treated by a one-dimensional Schrödinger equation using both Wentzel-Kramers-Brillouin (WKB) and Fourier Grid Hamiltonian (FGH) methods. The torsional anharmonicity in the transition state is treated in turn by the free rotor approximation, the one-dimensional hindered rotor approximation, and the multi-structural torsional anharmonicity method. Rate constants of the title reaction are computed by canonical variational transition state theory including tunneling by the multi-dimensional small-curvature tunneling approximation (CVT/SCT). The final rate constants include the quasiharmonic, quadratic-quartic, and torsional anharmonicity. Our calculations are in excellent agreement with all the experimental data available at both combustion and atmospheric temperatures with a deviation of less than 30%.
Collapse
Affiliation(s)
- Junjun Wu
- Department of Mechanical and Automation Engineering, Shenzhen Research Institute, The Chinese University of Hong Kong New Territories Hong Kong SAR China
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota Minneapolis USA
| | - Lu Gem Gao
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota Minneapolis USA
- Center for Combustion Energy, Department of Energy and Power Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University Beijing China
| | - Wei Ren
- Department of Mechanical and Automation Engineering, Shenzhen Research Institute, The Chinese University of Hong Kong New Territories Hong Kong SAR China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota Minneapolis USA
| |
Collapse
|
33
|
Kannath S, Adamczyk P, Ferro-Costas D, Fernández-Ramos A, Major DT, Dybala-Defratyka A. Role of Microsolvation and Quantum Effects in the Accurate Prediction of Kinetic Isotope Effects: The Case of Hydrogen Atom Abstraction in Ethanol by Atomic Hydrogen in Aqueous Solution. J Chem Theory Comput 2020; 16:847-859. [PMID: 31904954 PMCID: PMC7588029 DOI: 10.1021/acs.jctc.9b00774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Hydrogen abstraction from ethanol
by atomic hydrogen in aqueous
solution is studied using two theoretical approaches: the multipath
variational transition state theory (MP-VTST) and a path-integral
formalism in combination with free-energy perturbation and umbrella
sampling (PI-FEP/UM). The performance of the models is compared to
experimental values of H kinetic isotope effects (KIE). Solvation
models used in this study ranged from purely implicit, via mixed–microsolvation
treated quantum mechanically via the density functional theory (DFT)
to fully explicit representation of the solvent, which was incorporated
using a combined quantum mechanical-molecular mechanical (QM/MM) potential.
The effects of the transition state conformation and the position
of microsolvating water molecules interacting with the solute on the
KIE are discussed. The KIEs are in good agreement with experiment
when MP-VTST is used together with a model that includes microsolvation
of the polar part of ethanol by five or six water molecules, emphasizing
the importance of explicit solvation in KIE calculations. Both, MP-VTST
and PI-FEP/UM enable detailed characterization of nuclear quantum
effects accompanying the hydrogen atom transfer reaction in aqueous
solution.
Collapse
Affiliation(s)
- Suraj Kannath
- Institute of Applied Radiation Chemistry, Faculty of Chemistry , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - Paweł Adamczyk
- Institute of Applied Radiation Chemistry, Faculty of Chemistry , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - David Ferro-Costas
- LAQV@REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal.,Center for Research in Biological Chemistry and Molecular Materials (CIQUS) , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Antonio Fernández-Ramos
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS) , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| |
Collapse
|
34
|
Tan XF, Zhang L, Long B. New mechanistic pathways for the formation of organosulfates catalyzed by ammonia and carbinolamine formation catalyzed by sulfuric acid in the atmosphere. Phys Chem Chem Phys 2020; 22:8800-8807. [DOI: 10.1039/c9cp06297a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfuric acid exerts a remarkable catalytic role in the H2SO4 + HCHO + NH3 reaction that leads to the formation of carbinolamine.
Collapse
Affiliation(s)
- Xing-Feng Tan
- School of Mechatronics Engineering
- Guizhou Minzu University
- Guiyang
- China
| | - Lin Zhang
- Department of Physics
- Guizhou University
- Guiyang
- China
| | - Bo Long
- School of Materials Science and Engineering, Guizhou Minzu University
- Guiyang
- China
| |
Collapse
|
35
|
Fleming DG, Arseneau DJ, Cottrell SP, Peck JNT. Rate constants and kinetic isotope effects for H-atom abstraction reactions by muonium in the Mu + propane and Mu + n-butane reactions from 300 K to 435 K: challenges for theory. Phys Chem Chem Phys 2020; 22:6326-6334. [DOI: 10.1039/c9cp06822h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports measurements of the temperature dependence of the rate constants for H-atom abstraction reactions from propane and n-butane by the light isotopic H-atom muonium (Mu), kMu(T), over temperatures in the range 300 K to 435 K.
Collapse
Affiliation(s)
- Donald G. Fleming
- TRIUMF and Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | | | | |
Collapse
|
36
|
Soler J, González-Lafont À, Lluch JM. A protocol to obtain multidimensional quantum tunneling corrections derived from QM(DFT)/MM calculations for an enzyme reaction. Phys Chem Chem Phys 2020; 22:27385-27393. [DOI: 10.1039/d0cp05265e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The multidimensional small-curvature tunneling (SCT) method with Electrostatic Embedding calculations is a compromise between an accessible computational cost and the attainment of an accurate enough estimation of tunneling for an enzyme reaction.
Collapse
Affiliation(s)
- Jordi Soler
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
| | - Àngels González-Lafont
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autònoma de Barcelona
| | - José M. Lluch
- Departament de Química Universitat Autònoma de Barcelona
- Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autònoma de Barcelona
| |
Collapse
|
37
|
Xing L, Wang Z, Truhlar DG. Multistructural Anharmonicity Controls the Radical Generation Process in Biofuel Combustion. J Am Chem Soc 2019; 141:18531-18543. [PMID: 31637914 DOI: 10.1021/jacs.9b09194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The OH radical plays an important role in combustion, and isopentanol (3-methylbutan-1-ol) is a promising sustainable fuel additive and second-generation biofuel. The abstractions of H atoms from fuel molecules are key initiation steps for chain branching in combustion chemistry. In comparison with the more frequently studied ethanol, isopentanol has a longer carbon chain that allows a greater number of products, and experimental work is unavailable for the branching fractions to the various products. However, the site-dependent kinetics of isopentanol with OH radicals are usually experimentally unavailable. Alcohol oxidation by OH is also important in the atmosphere, and in the present study we calculate the rate constants and branching fractions of the hydrogen abstraction reaction of isopentanol by OH radical in a broad temperature range of 298-2400 K, covering temperatures important for atmospheric chemistry and those important for combustion. The calculations are done by multipath variational transition state theory (MP-VTST). With a combination of electronic structure calculations, we determine previously missing thermochemical data. With MP-VTST, a multidimensional tunneling approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we carried out more realistic rate constant calculations than can be computed by conventional single-structure harmonic transition state theory or by the empirical relations that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated, and we show that recrossing, tunneling, and multiple structures are all essential for accurate work. We conclude that the multiple structure anharmonicity is the most important correction to conventional transition state theory for this reaction, although recrossing effects and tunneling are by no means insignificant and the tunneling depends significantly on the path. The thermodynamic and kinetics data determined in this work are indispensable for the gas-phase degradation of alcohols in the atmosphere and for the detailed understanding and prediction of ignition mechanisms of biofuels in combustion.
Collapse
Affiliation(s)
- Lili Xing
- Energy and Power Engineering Institute , Henan University of Science and Technology , Luoyang , Henan 471003 , China.,Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minnesota 55455-0431 , United States
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei , Anhui 230029 , PR China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minnesota 55455-0431 , United States
| |
Collapse
|
38
|
Angelastro A, Ruiz-Pernía JJ, Tuñón I, Moliner V, Luk LYP, Allemann RK. Loss of Hyperconjugative Effects Drives Hydride Transfer during Dihydrofolate Reductase Catalysis. ACS Catal 2019; 9:10343-10349. [PMID: 32051770 PMCID: PMC7007191 DOI: 10.1021/acscatal.9b02839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Indexed: 02/06/2023]
Abstract
![]()
Hydride transfer
is widespread in nature and has an essential role
in applied research. However, the mechanisms of how this transformation
occurs in living organisms remain a matter of vigorous debate. Here,
we examined dihydrofolate reductase (DHFR), an enzyme that catalyzes
hydride from C4′ of NADPH to C6 of 7,8-dihydrofolate (H2F). Despite many investigations of the mechanism of this reaction,
the contribution of polarization of the π-bond of H2F in driving hydride transfer remains unclear. H2F was
stereospecifically labeled with deuterium β to the reacting
center, and β-deuterium kinetic isotope effects were measured.
Our experimental results combined with analysis derived from QM/MM
simulations reveal that hydride transfer is triggered by polarization
at the C6 of H2F. The σ Cβ–H
bonds contribute to the buildup of the cationic character during the
chemical transformation, and hyperconjugation influences the formation
of the transition state. Our findings provide key insights into the
hydride transfer mechanism of the DHFR-catalyzed reaction, which is
a target for antiproliferative drugs and a paradigmatic model in mechanistic
enzymology.
Collapse
Affiliation(s)
- Antonio Angelastro
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | | | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
39
|
Shan X, Burd TAH, Clary DC. New Developments in Semiclassical Transition-State Theory. J Phys Chem A 2019; 123:4639-4657. [DOI: 10.1021/acs.jpca.9b01987] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Shan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Timothy A. H. Burd
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
40
|
Xu L, Tsona NT, Tang S, Li J, Du L. Role of (H 2O) n ( n = 1-2) in the Gas-Phase Reaction of Ethanol with Hydroxyl Radical: Mechanism, Kinetics, and Products. ACS OMEGA 2019; 4:5805-5817. [PMID: 31459732 PMCID: PMC6648320 DOI: 10.1021/acsomega.9b00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/14/2019] [Indexed: 06/10/2023]
Abstract
The effect of water on the hydrogen abstraction mechanism and product branching ratio of CH3CH2OH + •OH reaction has been investigated at the CCSD(T)/aug-cc-pVTZ//BH&HLYP/aug-cc-pVTZ level of theory, coupled with the reaction kinetics calculations, implying the harmonic transition-state theory. Depending on the hydrogen sites in CH3CH2OH, the bared reaction proceeds through three elementary paths, producing CH2CH2OH, CH3CH2O, and CH3CHOH and releasing a water molecule. Thermodynamic and kinetic results indicate that the formation of CH3CHOH is favored over the temperature range of 216.7-425.0 K. With the inclusion of water, the reaction becomes quite complex, yielding five paths initiated by three channels. The products do not change compared with the bared reaction, but the preference for forming CH3CHOH drops by up to 2%. In the absence of water, the room temperature rate coefficients for the formation of CH2CH2OH, CH3CH2O, and CH3CHOH are computed to be 5.2 × 10-13, 8.6 × 10-14, and 9.0 × 10-11 cm3 molecule-1 s-1, respectively. The effective rate coefficients of corresponding monohydrated and dihydrated reactions are 3-5 and 6-8 orders of magnitude lower than those of the unhydrated reaction, indicating that water has a decelerating effect on the studied reaction. Overall, the characterized effects of water on the thermodynamics, kinetics, and products of the CH3CH2OH + •OH reaction will facilitate the understanding of the fate of ethanol and secondary pollutants derived from it.
Collapse
Affiliation(s)
- Li Xu
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Narcisse T. Tsona
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Shanshan Tang
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Junyao Li
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
41
|
Tuñón I, Williams IH. The transition state and cognate concepts. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.apoc.2019.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Long B, Bao JL, Truhlar DG. Kinetics of the Strongly Correlated CH3O + O2 Reaction: The Importance of Quadruple Excitations in Atmospheric and Combustion Chemistry. J Am Chem Soc 2018; 141:611-617. [DOI: 10.1021/jacs.8b11766] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
43
|
Xing L, Bao JL, Wang Z, Wang X, Truhlar DG. Relative Rates of Hydrogen Shift Isomerizations Depend Strongly on Multiple-Structure Anharmonicity. J Am Chem Soc 2018; 140:17556-17570. [DOI: 10.1021/jacs.8b09381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minnesota 55455-0431, United States
| | - Zhandong Wang
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Xuetao Wang
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minnesota 55455-0431, United States
| |
Collapse
|
44
|
Roberto-Neto O, Alves TV. Multipath VTST rate constants for D + methyl formate reactions: Importance of torsional anharmonicity and conformational flexibility for combustion chemistry. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Kaipara R, Rajakumar B. Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation. J Phys Chem A 2018; 122:8433-8445. [DOI: 10.1021/acs.jpca.8b06603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Revathy Kaipara
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - B. Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
46
|
Cheramangalath Balan R, Rajakumar B. Photo Oxidation Reaction Kinetics of Ethyl Propionate with Cl Atom and Formation of Propionic Acid. J Phys Chem A 2018; 122:8274-8285. [DOI: 10.1021/acs.jpca.8b05215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - B. Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
47
|
Ferro-Costas D, Martínez-Núñez E, Rodríguez-Otero J, Cabaleiro-Lago E, Estévez CM, Fernández B, Fernández-Ramos A, Vázquez SA. Influence of Multiple Conformations and Paths on Rate Constants and Product Branching Ratios. Thermal Decomposition of 1-Propanol Radicals. J Phys Chem A 2018; 122:4790-4800. [DOI: 10.1021/acs.jpca.8b02949] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Ocaña AJ, Blázquez S, Ballesteros B, Canosa A, Antiñolo M, Albaladejo J, Jiménez E. Gas phase kinetics of the OH + CH 3CH 2OH reaction at temperatures of the interstellar medium (T = 21-107 K). Phys Chem Chem Phys 2018; 20:5865-5873. [PMID: 29417104 PMCID: PMC5975950 DOI: 10.1039/c7cp07868d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol, CH3CH2OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH3CH2OH (k(T)) between 21 and 107 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(107 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10-11 (T/300 K)-(0.71±0.10) cm3 molecule-1 s-1. In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (∼10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10-11 cm3 molecule-1 s-1 at 100 K and around 1 × 10-10 cm3 molecule-1 s-1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.
Collapse
Affiliation(s)
- A J Ocaña
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 1B, 13071 Ciudad Real, Spain.
| | | | | | | | | | | | | |
Collapse
|
49
|
Gao LG, Zheng J, Fernández-Ramos A, Truhlar DG, Xu X. Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures. J Am Chem Soc 2018; 140:2906-2918. [DOI: 10.1021/jacs.7b12773] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Gem Gao
- Center
for Combustion Energy and Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Jingjing Zheng
- Gaussian, Inc., 340 Quinnipiac
Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Antonio Fernández-Ramos
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), c/Jenaro de la Fuente s/n, Campus
Vida, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xuefei Xu
- Center
for Combustion Energy and Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Bao JL, Zhang X, Truhlar DG. Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation. Phys Chem Chem Phys 2018; 18:16659-70. [PMID: 27273734 DOI: 10.1039/c6cp02765b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion, atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition state theory with small-curvature tunneling, combined with the Lindemann-Hinshelwood mechanism, to model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling. Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental values over a wide range of pressures and temperatures. The present validation of our methodology, which is able to include variational transition state effects, multidimensional tunneling based on the directly calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity, together with state-of-the-art reaction-path-based direct dynamics calculations, is important because the method is less empirical than models routinely used for generating full mechanisms, while also being simpler in key respects than full master equation treatments and the full reduced falloff curve and modified strong collision methods of Troe.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China. and Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
| |
Collapse
|