1
|
Koone JC, Dashnaw CM, Gonzalez M, Shaw BF. A method for quantifying how the activity of an enzyme is affected by the net charge of its nearest crowded neighbor. Protein Sci 2022. [PMCID: PMC9601770 DOI: 10.1002/pro.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The electrostatic effects of protein crowding have not been systematically explored. Rather, protein crowding is generally studied with co‐solvents or crowders that are electrostatically neutral, with no methods to measure how the net charge (Z) of a crowder affects protein function. For example, can the activity of an enzyme be affected electrostatically by the net charge of its neighbor in crowded milieu? This paper reports a method for crowding proteins of different net charge to an enzyme via semi‐random chemical crosslinking. As a proof of concept, RNase A was crowded (at distances ≤ the Debye length) via crosslinking to different heme proteins with Z = +8.50 ± 0.04, Z = +6.39 ± 0.12, or Z = −10.30 ± 1.32. Crosslinking did not disrupt the structure of proteins, according to amide H/D exchange, and did not inhibit RNase A activity. For RNase A, we found that the electrostatic environment of each crowded neighbor had significant effects on rates of RNA hydrolysis. Crowding with cationic cytochrome c led to increases in activity, while crowding with anionic “supercharged” cytochrome c or myoglobin diminished activity. Surprisingly, electrostatic crowding effects were amplified at high ionic strength (I = 0.201 M) and attenuated at low ionic strength (I = 0.011 M). This salt dependence might be caused by a unique set of electric double layers at the dimer interspace (maximum distance of 8 Å, which cannot accommodate four layers). This new method of crowding via crosslinking can be used to search for electrostatic effects in protein crowding.
Collapse
Affiliation(s)
- Jordan C. Koone
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Mayte Gonzalez
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| |
Collapse
|
2
|
Zhu J, Pan J, Ma C, Zhang G, Liu G. Specific Ion Effects on the Enzymatic Degradation of Polymeric Marine Antibiofouling Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11157-11166. [PMID: 31347852 DOI: 10.1021/acs.langmuir.9b01740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is expected that the widely dispersed ions in seawater would have strong influence on the performance of polymeric marine antibiofouling materials through the modulation of enzymatic degradation of the materials. In this work, poly(ε-caprolactone)-based polyurethane and poly(triisopropylsilyl methacrylate-co-2-methylene-1,3-dioxepane) have been employed as model systems to explore the specific ion effects on the enzymatic degradation of polymeric marine antibiofouling materials. Our study demonstrates that the specific ion effects on the enzymatic degradation of the polymer films are closely correlated with the ion-specific enzymatic hydrolysis of the ester. In the presence of different cations, the effectiveness of the enzyme to degrade the polymer films is dominated by the direct specific interactions between the cations and the negatively charged enzyme molecules. In the presence of different anions, the kosmotropic anions give rise to a high enzyme activity in the degradation of polymer films induced by the salting-out effect, whereas the chaotropic anions lead to a low enzyme activity in the degradation of the polymer films owing to the salting-in effect. This work highlights the opportunities available for the use of specific ion effects to modulate the enzymatic degradation of polymeric antibiofouling materials in the marine environment.
Collapse
Affiliation(s)
- Jie Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Jiansen Pan
- Faculty of Materials Science and Engineering , South China University of Technology , 510640 Guangzhou , P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , 510640 Guangzhou , P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , 510640 Guangzhou , P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
3
|
Slochower DR, Gilson MK. Motor-like Properties of Nonmotor Enzymes. Biophys J 2019; 114:2174-2179. [PMID: 29742410 DOI: 10.1016/j.bpj.2018.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular motors are thought to generate force and directional motion via nonequilibrium switching between energy surfaces. Because all enzymes can undergo such switching, we hypothesized that the ability to generate rotary motion and torque is not unique to highly adapted biological motor proteins but is instead a common feature of enzymes. We used molecular dynamics simulations to compute energy surfaces for hundreds of torsions in three enzymes-adenosine kinase, protein kinase A, and HIV-1 protease-and used these energy surfaces within a kinetic model that accounts for intersurface switching and intrasurface probability flows. When substrate is out of equilibrium with product, we find computed torsion rotation rates up ∼140 cycles s-1, with stall torques up to ∼2 kcal mol-1 cycle-1, and power outputs up to ∼50 kcal mol-1 s-1. We argue that these enzymes are instances of a general phenomenon of directional probability flows on asymmetric energy surfaces for systems out of equilibrium. Thus, we conjecture that cyclic probability fluxes, corresponding to rotations of torsions and higher-order collective variables, exist in any chiral molecule driven between states in a nonequilibrium manner; we call this the "Asymmetry-Directionality" conjecture. This is expected to apply as well to synthetic chiral molecules switched in a nonequilibrium manner between energy surfaces by light, redox chemistry, or catalysis.
Collapse
Affiliation(s)
- David R Slochower
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California.
| |
Collapse
|
4
|
Hey JC, Doyle EJ, Chen Y, Johnston RL. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0154. [PMID: 29431682 PMCID: PMC5805918 DOI: 10.1098/rsta.2017.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
We present putative global minima for the micro-hydrated sulfite SO32-(H2O) N and chlorate ClO3-(H2O) N systems in the range 3≤N≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤N≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems.This article is part of the theme issue 'Modern theoretical chemistry'.
Collapse
Affiliation(s)
- John C Hey
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Emily J Doyle
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Yuting Chen
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Roy L Johnston
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Hey JC, Smeeton LC, Oakley MT, Johnston RL. Isomers and Energy Landscapes of Perchlorate-Water Clusters and a Comparison to Pure Water and Sulfate-Water Clusters. J Phys Chem A 2016; 120:4008-15. [PMID: 27223243 DOI: 10.1021/acs.jpca.6b01495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrated ions are crucially important in a wide array of environments, from biology to the atmosphere, and the presence and concentration of ions in a system can drastically alter its behavior. One way in which ions can affect systems is in their interactions with proteins. The Hofmeister series ranks ions by their ability to salt-out proteins, with kosmotropes, such as sulfate, increasing their stability and chaotropes, such as perchlorate, decreasing their stability. We study hydrated perchlorate clusters as they are strongly chaotropic and thus exhibit different properties than sulfate. In this study we simulate small hydrated perchlorate clusters using a basin-hopping geometry optimization search with empirical potentials. We compare topological features of these clusters to data from both computational and experimental studies of hydrated sulfate ions and draw some conclusions about ion effects in the Hofmeister series. We observe a patterning conferred to the water molecules within the cluster by the presence of the perchlorate ion and compare the magnitude of this effect to that observed in previous studies involving sulfate. We also investigate the influence of the overall ionic charge on the low-energy structures adopted by these clusters.
Collapse
Affiliation(s)
- John C Hey
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| | - Lewis C Smeeton
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| | - Mark T Oakley
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| | - Roy L Johnston
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
6
|
Xu Y, Hua Z, Zhang J, Yang J, Cao Z, Zhang D, He L, J. Craig VS, Zhang G, Liu G. Mimicking enzymatic systems: modulation of the performance of polymeric organocatalysts by ion-specific effects. Chem Commun (Camb) 2016; 52:3392-5. [DOI: 10.1039/c5cc09959e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of polymeric organocatalysts can be modulated by ion-specific effects based on the lessons learned from natural enzymatic systems.
Collapse
|
7
|
Ganguly P, Hajari T, van der Vegt NFA. Molecular Simulation Study on Hofmeister Cations and the Aqueous Solubility of Benzene. J Phys Chem B 2014; 118:5331-9. [DOI: 10.1021/jp5011154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pritam Ganguly
- Center of
Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Timir Hajari
- Center of
Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Center of
Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Abstract
Hofmeister effects are part of a larger story--one in which the devil is perhaps in the details, but which promises to give us a much deeper understanding of how the solvent is a part of cell and molecular biology.
Collapse
|
9
|
Štěpánková V, Paterová J, Damborský J, Jungwirth P, Chaloupková R, Heyda J. Cation-Specific Effects on Enzymatic Catalysis Driven by Interactions at the Tunnel Mouth. J Phys Chem B 2013; 117:6394-402. [DOI: 10.1021/jp401506v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veronika Štěpánková
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Masaryk University, Kamenice
5/A13, 625 00 Brno, Czech Republic
- International Clinical Research
Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jana Paterová
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Damborský
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Masaryk University, Kamenice
5/A13, 625 00 Brno, Czech Republic
- International Clinical Research
Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radka Chaloupková
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Masaryk University, Kamenice
5/A13, 625 00 Brno, Czech Republic
| | - Jan Heyda
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|