1
|
Kapoor V, Singh AK, Lewis CD, Deore S, Hallahan DE. Exploiting Radiation Induction of Antigens in Cancer: Targeted Drug Delivery. Int J Mol Sci 2022; 23:ijms23063041. [PMID: 35328459 PMCID: PMC8953554 DOI: 10.3390/ijms23063041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Therapeutic antibodies used to treat cancer are effective in patients with advanced-stage disease. For example, antibodies that activate T-lymphocytes improve survival in many cancer subtypes. In addition, antibody–drug conjugates effectively target cytotoxic agents that are specific to cancer. This review discusses radiation-inducible antigens, which are stress-regulated proteins that are over-expressed in cancer. These inducible cell surface proteins become accessible to antibody binding during the cellular response to genotoxic stress. The lead antigens are induced in all histologic subtypes and nearly all advanced-stage cancers, but show little to no expression in normal tissues. Inducible antigens are exploited by using therapeutic antibodies that bind specifically to these stress-regulated proteins. Antibodies that bind to the inducible antigens GRP78 and TIP1 enhance the efficacy of radiotherapy in preclinical cancer models. The conjugation of cytotoxic drugs to the antibodies further improves cancer response. This review focuses on the use of radiotherapy to control the cancer-specific binding of therapeutic antibodies and antibody–drug conjugates.
Collapse
Affiliation(s)
- Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Abhay K. Singh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
| | - Calvin D. Lewis
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Sapna Deore
- Medical Guidance Systems LLC, St. Louis, MO 63110, USA;
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
- Correspondence: ; Tel.: +314-362-9700; Fax: +314-747-5498
| |
Collapse
|
2
|
Lewis CD, Singh AK, Hsu FF, Thotala D, Hallahan DE, Kapoor V. Targeting a Radiosensitizing Antibody-Drug Conjugate to a Radiation-Inducible Antigen. Clin Cancer Res 2021; 27:3224-3233. [PMID: 34074654 DOI: 10.1158/1078-0432.ccr-20-1725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE We recently discovered that anti-TIP1 antibody activates endocytosis in cancer cells, which facilitates retention of antibody and dissociation of a conjugated drug. To improve the pharmacokinetics and cancer specificity of radiosensitizing drugs, we utilized antibody-drug conjugates (ADCs) that bind specifically to radiation-inducible antigen, TIP1, on non-small cell lung cancer (NSCLC). This approach exploits the long circulation time of antibodies to deliver a radiosensitizing drug to cancer each day during radiotherapy. EXPERIMENTAL DESIGN Antibodies to TIP1 were prioritized based on affinity, cancer-specific binding, and internalization. The lead antibody, 7H5, was conjugated with a cytotoxic drug MMAE because of its ability to radiosensitize cancer. Cytotoxicity, colony formation, and tumor growth studies were performed with 7H5-VcMMAE in combination with radiation. RESULTS 7H5 showed a high affinity to recombinant TIP1 protein and radiation-inducible TIP1 on the cancer cell surface. 7H5 undergoes endocytosis in NSCLC cells in vitro. We obtained an average drug-to-antibody ratio (DAR) of 4.25 for 7H5-VcMMAE. A 70% reduction in viable cells was observed following 7H5-VcMMAE treatment compared with 7H5 alone in both A549 and H1299 cells. 7H5-VcMMAE sensitized NSCLC cells to radiation, thereby significantly decreasing the surviving fraction. The ADC combined with radiation showed a prolonged delay in tumor growth and improved survival in A549 and H1299 tumor models. CONCLUSIONS Targeting radiation-inducible TIP1 with a radiosensitizing ADC is a promising strategy to enhance the therapeutic efficacy of NSCLC. This novel approach of targeting with ADCs to radiation-inducible antigens will lead to clinical trials in lung cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Calvin D Lewis
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Abhay K Singh
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Dinesh Thotala
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Dennis E Hallahan
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Vaishali Kapoor
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
3
|
Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020; 27:587-595. [PMID: 32901205 PMCID: PMC7471523 DOI: 10.1007/s10989-020-10108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Phage display is an effective and powerful technique that provides a route to discovery unique peptides targeting to tumor cells. Specifically binding peptides are considered as the valuable target directing molecule fragments with potential efficiency to improve the current tumor clinic, and offer new approaches for tumor prevention, diagnosis and treatment. We focus on the recent advances in the isolation of tumor-targeting peptides by biopanning methods, with particular emphasis on molecular imaging, and pharmaceutical targeting therapy.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Zhan
- 518 Hospital of PLA, Xi'an, 710043 Shaanxi China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| |
Collapse
|
4
|
Yan H, Kapoor V, Nguyen K, Akers WJ, Li H, Scott J, Laforest R, Rogers B, Thotala D, Hallahan D. Anti-tax interacting protein-1 (TIP-1) monoclonal antibody targets human cancers. Oncotarget 2017; 7:43352-43362. [PMID: 27270318 PMCID: PMC5190028 DOI: 10.18632/oncotarget.9713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/13/2016] [Indexed: 02/04/2023] Open
Abstract
Radiation-inducible neo-antigens are proteins expressed on cancer cell surface after exposure to ionizing radiation (IR). These neo-antigens provide opportunities to specifically target cancers while sparing normal tissues. Tax interacting protein-1 (TIP-1) is induced by irradiation and is translocated to the surface of cancer cells. We have developed a monoclonal antibody, 2C6F3, against TIP-1. Epitope mapping revealed that 2C6F3 binds to the QPVTAVVQRV epitope of the TIP-1 protein. 2C6F3 binds to the surface of lung cancer (A549, LLC) and glioma (D54, GL261) cell lines. 2C6F3 binds specifically to TIP-1 and ELISA analysis showed that unconjugated 2C6F3 efficiently blocked binding of radiolabeled 2C6F3 to purified TIP-1 protein. To study in vivo tumor binding, we injected near infrared (NIR) fluorochrome-conjugated 2C6F3 via tail vein in mice bearing subcutaneous LLC and GL261 heterotopic tumors. The NIR images indicated that 2C6F3 bound specifically to irradiated LLC and GL261 tumors, with little or no binding in un-irradiated tumors. We also determined the specificity of 2C6F3 to bind tumors in vivo using SPECT/CT imaging. 2C6F3 was conjugated with diethylene triamine penta acetic acid (DTPA) chelator and radiolabeled with 111Indium (111In). SPECT/CT imaging revealed that 111In-2C6F3 bound more to the irradiated LLC tumors compared to un-irradiated tumors. Furthermore, injection of DTPA-2C6F3 labeled with the therapeutic radioisotope, 90Y, (90Y-DTPA-2C6F3) significantly delayed LLC tumor growth. 2C6F3 mediated antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP) in vitro. In conclusion, the monoclonal antibody 2C6F3 binds specifically to TIP-1 on cancer and radio-immunoconjugated 2C6F3 improves tumor control.
Collapse
Affiliation(s)
- Heping Yan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kim Nguyen
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Walter J Akers
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hua Li
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jalen Scott
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Buck Rogers
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dennis Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Neoantigen activation, protein translocation and targeted drug delivery in combination with radiotherapy. Ther Deliv 2016; 7:377-85. [PMID: 27250535 DOI: 10.4155/tde-2016-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Concurrent chemo and radiation therapies are commonly used to treat locally advanced cancer. Despite improved efficacy, failure rates remain high due to healthy organ toxicity caused by chemo-radiotherapy. Recent technological advances such as nanoparticle encapsulation of anticancer agents, locally controlled irradiation and concurrent use of radio- and nano-medicines are providing innovative solutions for overcoming the limitations of systemic and local treatment toxicities. In this mini-review, we discuss the roles of radiotherapy in generating new therapeutic targets and altering the tumor microenvironment, and we propose their future applications in drug delivery in combination with radiotherapy.
Collapse
|