1
|
Anisur Rahman M, Turner T, Hamilton HSC, Bradley LC, Beltramo PJ. Engineering the surface patchiness and topography of polystyrene colloids: From spheres to ellipsoids. J Colloid Interface Sci 2023; 652:82-94. [PMID: 37591086 DOI: 10.1016/j.jcis.2023.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
HYPOTHESIS Colloidal surface morphology determines suspension properties and applications. While existing methods are effective at generating specific features on spherical particles, an approach extending this to non-spherical particles is currently missing. Synthesizing un-crosslinked polymer microspheres with controlled chemical patchiness would allow subsequent thermomechanical stretching to translate surface topographical features to ellipsoidal particles. EXPERIMENTS A systematic study using seeded emulsion polymerization to create polystyrene (PS) microspheres with controlled surface patches of poly(tert-butyl acrylate) (PtBA) was performed with different polymerization parameters such as concentration of tBA monomer, co-swelling agent, and initiator. Thermomechanical stretching converted seed spheres to microellipsoids. Acid catalyzed hydrolysis (ACH) was performed to remove the patch domains. Roughness was characterized before and after ACH using atomic force microscopy. FINDINGS PS spheres with controlled chemical patchiness were synthesized. A balance between two factors, domain coalescence from reduced viscosity and domain growth via monomer absorption, dictates the final PtBA) patch features. ACH mediated removal of patch domains produced either golf ball-like porous particles or multicavity particles, depending on the size of the precursor patches. Patchy microspheres were successfully stretched into microellipsoids while retaining their surface characteristics. Particle roughness is governed by the patch geometry and increases after ACH. Overall, this study provides a facile yet controllable platform for creating colloids with highly adjustable surface patterns.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taina Turner
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather S C Hamilton
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Laura C Bradley
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Zou H, Lv Y. Synthetic Strategies for Polymer Particles with Surface Concavities. Macromol Rapid Commun 2022; 43:e2200072. [PMID: 35322491 DOI: 10.1002/marc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Indexed: 11/06/2022]
Abstract
Over the past decade or so, there has been increasing interest in the synthesis of polymer particles with surface concavities, which mainly include golf ball-like, dimpled and surface-wrinkled polymer particles. Such syntheses generally can be classified into direct polymerization and post-treatment on preformed polymer particles. This review aims to provide an overview of the synthetic strategies of such particles. Some selected examples are given to present the formation mechanisms of the surface concavities. The applications and future development of these concave polymer particles are also briefly discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
3
|
Synthesis of non-spherical polymer particles using the activated swelling method. J Colloid Interface Sci 2021; 611:377-389. [PMID: 34971960 DOI: 10.1016/j.jcis.2021.11.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The preparation of particles with non-spherical shapes is a challenging endeavor, often requiring a significant ingenuity, complex experimental procedures and difficulties to obtain reproducible results. In this work we prove that monodisperse non-spherical polymer particles possessing asymmetric Janus structure can be easily produced by using an activated swelling method in combination with a control of the rate of free radical polymerization through the addition of the inhibitors 4-methoxyphenol (MEHQ) and O2. Monodisperse non cross-linked polystyrene particles, used as seeds, are activated by the addition of an initiator, which promotes their swelling ability, and then swollen with a monomers mixture (methyl methacrylate, glycidyl methacrylate and ethylene glycol dimethacrylate), before being polymerized in presence of both MEHQ and O2. Our results show that only when both MEHQ and O2 are present during the course of the polymerization, the particles shape can be controlled, from spherical to asymmetrical. A variety of particles shapes can be obtained, ranging from dimpled spheres, flattened spheres and Janus particles by varying the swelling ratio, always with excellent monodispersity and reproducibility. Finally, to provide even more complex functionalities to these non-spherical polymer particles, iron oxide nanocrystals were grown within the polymer matrix resulting in superparamagnetic particles.
Collapse
|
4
|
Tseng HF, Liang X, Liu CT, Chiu YJ, Li JW, Hsu HH, Chang KC, Nakajima K, Chen JT. Sequential Selective Solvent On-Film Annealing: Fabrication of Monolayers of Ordered Anisotropic Polymer Particles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35731-35739. [PMID: 32633485 DOI: 10.1021/acsami.0c09870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although various strategies have been developed to prepare anisotropic polymeric particles, it remains challenging to fabricate monolayers of anisotropic polymeric particles, which can extend the applications of anisotropic particles. Here, we develop a novel and facile approach to fabricate monolayers of anisotropic polymeric particles. Monolayers of polystyrene (PS) microspheres with a mean diameter of 10 μm are deposited on glass substrates coated with poly(methyl methacrylate) films, followed by sequential selective solvent on-film annealing processes. Monolayers of anisotropic polymeric particles, such as the snowman-like PS particles, are successfully fabricated. Such unique structures possess the long-range ordering of monolayers (the structure factor) and the anisotropic geometry of individual particles (the form factor). The nanomechanical properties of the PS particles are also characterized using atomic force microscopy force volume measurements, showing a decrease in the Young's moduli of the PS particles owing to the looser packing of the polymer chains. This work provides the most facile and versatile strategy by far to fabricate monolayers of ordered anisotropic polymeric particles, which are inaccessible by other traditional means.
Collapse
Affiliation(s)
- Hsiao-Fan Tseng
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 1528552, Japan
| | - Chih-Ting Liu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Jing Chiu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), National Chiao Tung University and Academia Sinica, Hsinchu 30010, Taiwan
| | - Jia-Wei Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsun-Hao Hsu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kai-Chieh Chang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 1528552, Japan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), National Chiao Tung University and Academia Sinica, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science (CEFMS), National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
5
|
Yu B, Cong H, Peng Q, Gu C, Tang Q, Xu X, Tian C, Zhai F. Current status and future developments in preparation and application of nonspherical polymer particles. Adv Colloid Interface Sci 2018; 256:126-151. [PMID: 29705026 DOI: 10.1016/j.cis.2018.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/30/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022]
Abstract
Nonspherical polymer particles (NPPs) are nano/micro-particulates of macromolecules that are anisotropic in shape, and can be designed anisotropic in chemistry. Due to shape and surface anisotropies, NPPs bear many unique structures and fascinating properties which are distinctly different from those of spherical polymer particles (SPPs). In recent years, the research on NPPs has surprisingly blossomed in recent years, and many practical materials based on NPPs with potential applications in photonic device, material science and biomedical engineering have been generated. In this review, we give a systematic, balanced and comprehensive summary of the main aspects of NPPs related to their preparation and application, and propose perspectives for the future developments of NPPs.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Qi Tang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodan Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Tian
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhai
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Size control of cross-linked carboxy-functionalized polystyrene particles: Four orders of magnitude of dimensional versatility. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Gong J, Xu B, Tao X, Li L. Binary breath figures for straightforward and controllable self-assembly of microspherical caps. Phys Chem Chem Phys 2017; 18:13629-37. [PMID: 27139817 DOI: 10.1039/c6cp01538g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.
Collapse
Affiliation(s)
- Jianliang Gong
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Bingang Xu
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Xiaoming Tao
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Lei Li
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
8
|
McBride JM, Avendaño C. Phase behaviour and gravity-directed self assembly of hard convex spherical caps. SOFT MATTER 2017; 13:2085-2098. [PMID: 28225134 DOI: 10.1039/c6sm02678h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the phase behaviour and self-assembly of convex spherical caps using Monte Carlo simulations. This model is used to represent the main features observed in experimental colloidal particles with mushroom-cap shape [Riley et al., Langmuir, 2010, 26, 1648]. The geometry of this non-centrosymmetric convex model is fully characterized by the aspect ratio χ* defined as the spherical cap height to diameter ratio. We use NPT Monte Carlo simulations combined with free energy calculations to determine the most stable crystal structures and the phase behaviour of convex spherical caps with different aspect ratios. We find a variety of crystal structures at each aspect ratio, including plastic and dimer-based crystals; small differences in chemical potential between the structures with similar morphology suggest that convex spherical caps have the tendency to form polycrystalline phases rather than crystallising into a single uniform structure. With the exception of plastic crystals observed at large aspect ratios (χ* > 0.75), crystallisation kinetics seem to be too slow, hindering the spontaneous formation of ordered structures. As an alternative, we also present a study of directing the self-assembly of convex spherical caps via sedimentation onto solid substrates. This study contributes to show how small changes to particle shape can significantly alter the self-assembly of crystal structures, and how a simple gravity field and a template can substantially enhance the process.
Collapse
Affiliation(s)
- John M McBride
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| |
Collapse
|
9
|
Khadilkar MR, Escobedo FA. Phase behavior of polyhedral nanoparticles in parallel plate confinement. SOFT MATTER 2016; 12:1506-1516. [PMID: 26659811 DOI: 10.1039/c5sm02570b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Monte Carlo simulations are used to investigate the phase behavior of hard cubes, truncated cubes, cuboctahedra and truncated octahedra when confined between two parallel hard walls. The walls are separated by a distance H* which is varied to accommodate a different number of layers, from a monolayer up to approximately 5 layers, hence allowing us to probe the transitional phase behavior as the system goes from a quasi-2D geometry to a quasi-3D bulk behavior. While our results do reveal some phases whose structures resemble those that have been observed before for such systems in 2D and 3D spaces, other phases are also detected, including buckled phases, rotator plastic phases, and solids with significant translational disorder. Ordered phases formed for H* values that are a little too narrow to accommodate an additional particle layer are particularly interesting as they tend to have complex structures. The maximum density for such frustrated phases is low compared to that of non-frustrated ones for the same system at different H*. As the asphericity in the shapes is reduced, the simulated phases show structural features that approach those of the phases that have been reported for hard spheres under similar confinement.
Collapse
|
10
|
Crassous JJ, Mihut AM, Månsson LK, Schurtenberger P. Anisotropic responsive microgels with tuneable shape and interactions. NANOSCALE 2015; 7:15971-15982. [PMID: 26367504 DOI: 10.1039/c5nr03827h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Highly monodisperse polystyrene/poly(N-isopropylmethacrylamide) (PS-PNIPMAM) core-shell composite microgels were synthesized and further nanoengineered in either ellipsoidal, faceted or bowl-shaped particles. Beside their anisotropy in shape, the microgel design enables an exquisite control of the particle conformation, size and interactions from swollen and hydrophilic to collapsed and hydrophobic using temperature as an external control variable. The post-processing procedures and the characterization of the different particles are first presented. Their potential as model systems for the investigation of the effects of anisotropic shape and interactions on the phase behavior is further demonstrated. Finally, the self-assembly of bowl-shaped composite microgel particles is discussed, where the temperature and an external AC electric field are employed to control the interactions from repulsive to attractive and from soft repulsive to dipolar, respectively.
Collapse
Affiliation(s)
- Jérôme J Crassous
- Division of Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden.
| | | | | | | |
Collapse
|
11
|
Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure. Sci Rep 2015; 5:13060. [PMID: 26268148 PMCID: PMC4535034 DOI: 10.1038/srep13060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/13/2015] [Indexed: 11/08/2022] Open
Abstract
Easy fabrication and independent control of the internal and external morphologies of core-shell microparticles still remain challenging. Core-shell microparticle comprised of a previously unknown internal anisotropic structure and a spherical shell was fabricated by microfluidic-based emulsificaiton and photopolymerization. The interfacial and spatial 3D morphology of the anisotropic structure were observed by SEM and micro-CT respectively. Meanwhile, a series of layer-by-layer scans of the anisotropic structure were obtained via the micro-CT, which enhanced the detail characterization and analysis of micro materials. The formation mechanism of the internal anisotropic structure may be attributed to solution-directed diffusion caused by the semipermeable membrane structure and chemical potential difference between inside and outside of the semipermeable membrane-like polymerized shell. The morphology evolution of the anisotropic structure was influenced and controlled by adjusting reaction parameters including polymerization degree, polymerization speed, and solute concentration difference. The potential applications of these microparticles in microrheological characterization and image enhancement were also proposed by embedding magnetic nanoparticles in the inner core.
Collapse
|
12
|
Yu B, Yuan H, Wang D, Cong H, Xu X, Yang S. Fabrication of anisotropic silica hollow microspheres using polymeric protrusion particles as templates. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3269-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yang M, Guo Y, Wu Q, Luan Y, Wang G. Synthesis and properties of amphiphilic nonspherical SPS/PS composite particles by multi-step seeded swelling polymerization. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.02.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Cong H, Wang Y, Yu B, Wang J, Jiao M. Synthesis of anisotropic TiO2 hollow microspheres using cave particles as templates and application in water treatment. NEW J CHEM 2014. [DOI: 10.1039/c3nj01302b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Fabrication of monodisperse anisotropic silica hollow microspheres using polymeric cave particles as templates. J Colloid Interface Sci 2013; 411:41-6. [DOI: 10.1016/j.jcis.2013.08.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/12/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
|