1
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
2
|
Fukui Y, Fujino K, Fujimoto K. One-pot generation of gold-polymer hybrid nanoparticles using a miniemulsion reactor system. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
4
|
Choi S, Vazquez-Duhalt R, Graeve OA. Nonlinear charge regulation for the deposition of silica nanoparticles on polystyrene spherical surfaces. J Colloid Interface Sci 2022; 613:747-763. [PMID: 35066233 DOI: 10.1016/j.jcis.2022.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS We describe the deposition behavior of monodispersed silica nanoparticles on polystyrene spherical particles by using modified pairwise DLVO (Derjaguin-Landau-Verwey-Overbeek) interaction force profiles at pH values between two and twelve. Our modified model contains a new nonlinear charge regulation parameter that considers redistribution of ions, which allows us to realistically express the electrical double layer (EDL) interaction forces. EXPERIMENTS Silanol-terminated silica nanoparticles (7.6 ± 0.4 nm), l-lysine-covered silica nanoparticles (7.8 ± 0.4 nm), and polyallylamine hydrochloride-covered polystyrene (PAH/PS) particles (348 ± 1 nm) were synthesized. Then, each type of silica nanoparticle was deposited on the PAH/PS particles at a range of pH values. FINDINGS Our new regulation parameter describes the realistic redistribution of charges governed by pH, total salt concentration, ionic strength of solution, and separation distance of particles. We find that this regulation parameter can be roughly approximated from the absolute values of theoretically calculated surface charge density and potential distributions, as well as experimentally measured ζ-potentials. Morphological analysis using electron microscopy of the experimental systems shows that the modified pairwise DLVO interaction forces exceptionally describe the deposition behavior of the silica nanoparticles physically adsorbed on the PAH/PS particle substrates.
Collapse
Affiliation(s)
- Seongcheol Choi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive - MC 0411, La Jolla, CA 92093-0411, USA
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada Km. 107, C.P. 22860, Ensenada, B.C., México
| | - Olivia A Graeve
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive - MC 0411, La Jolla, CA 92093-0411, USA.
| |
Collapse
|
5
|
Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
|
7
|
Fukui Y, Fujino R, Sugaya Y, Fujimoto K. Creation of porous polymeric membranes by accumulation of water nanodroplets in a miniemulsion system. Polym J 2020. [DOI: 10.1038/s41428-020-0361-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Qiao Z, Shen M, Xiao Y, Zhu M, Mignani S, Majoral JP, Shi X. Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Fukui Y, Takamatsu H, Fujimoto K. Creation of hybrid polymer particles through morphological tuning of CaCO3 crystals in miniemulsion system. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Jin L, Wu H, Morbidelli M. Synthesis of Water-Based Dispersions of Polymer/TiO₂ Hybrid Nanospheres. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1454-1468. [PMID: 28347075 PMCID: PMC5304628 DOI: 10.3390/nano5031454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
We develop a strategy for preparing water-based dispersions of polymer/TiO₂ nanospheres that can be used to form composite materials applicable in various fields. The formed hybrid nanospheres are monodisperse and possess a hierarchical structure. It starts with the primary TiO₂ nanoparticles of about 5 nm, which first assemble to nanoclusters of about 30 nm and then are integrated into monomer droplets. After emulsion polymerization, one obtains the water-based dispersions of polymer/TiO₂ nanospheres. To achieve universal size, it is necessary to have treatments with intense turbulent shear generated in a microchannel device at different stages. In addition, a procedure combining synergistic actions of steric and anionic surfactants has been designed to warrant the colloidal stability of the process. Since the formed polymer/TiO₂ nanospheres are stable aqueous dispersions, they can be easily mixed with TiO₂-free polymeric nanoparticle dispersions to form new dispersions, where TiO₂-containing nanospheres are homogeneously distributed in the dispersions at the nanoscale, thus leading to various applications. As an example, the proposed strategy has been applied to generate polystyrene/TiO₂ nanospheres of about 100 nm in diameter.
Collapse
Affiliation(s)
- Lu Jin
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Hua Wu
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
11
|
Correction: Hood, M.A., et al. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. Materials 2014, 7, 4057-4087. MATERIALS (BASEL, SWITZERLAND) 2014; 7:7583-7614. [PMID: 28795684 PMCID: PMC5512675 DOI: 10.3390/ma7117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022]
Abstract
In [1], several sentences were repeated three times on pages 4062, 4063 and 4065. In addition, many references were incorrect. The errors were introduced by the editorial office during the editing process. We apologize for this mistake and any inconvenience this may have caused to authors and readers. The corrected manuscript is given below.[...].
Collapse
|
12
|
Qi D, Cao Z, Ziener U. Recent advances in the preparation of hybrid nanoparticles in miniemulsions. Adv Colloid Interface Sci 2014; 211:47-62. [PMID: 24951391 DOI: 10.1016/j.cis.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/31/2014] [Accepted: 06/01/2014] [Indexed: 01/20/2023]
Abstract
In this review, we summarize recent advances in the synthesis of hybrid nanoparticles in miniemulsions since 2009. These hybrid nanoparticles include organic-inorganic, polymeric, and natural macromolecule/synthetic polymer hybrid nanoparticles. They may be prepared through encapsulation of inorganic components or natural macromolecules by miniemulsion (co)polymerization, simultaneous polymerization of vinyl monomers and vinyl-containing inorganic precursors, precipitation of preformed polymers in the presence of inorganic constituents through solvent displacement techniques, and grafting polymerization onto, from or through natural macromolecules. Characterization, properties, and applications of hybrid nanoparticles are also discussed.
Collapse
|
13
|
Chu Y, Wang Z, Pan Q. Constructing robust liquid marbles for miniaturized synthesis of graphene/Ag nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8378-8386. [PMID: 24724809 DOI: 10.1021/am501268g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Miniaturized synthesis is attracting much attention due to many potential applications; a challenge remains in exploring versatile microreactors capable of producing pure products. In this study, we reported a kind of thermally robust liquid marbles and their application for miniaturized synthesis of graphene/Ag nanocomposite. The liquid marbles were constructed by using superhydrophobic Fe3O4/C microsheets as encapsulating agents. Results revealed that the morphology of the encapsulating agent as well as the humidity of atmosphere strongly affected the robustness of liquid marbles at elevated temperature. The resulting graphene/Ag nanocomposite showed one of the best catalytic characteristics for 4-nitroaniline reduction among the reported catalysts. The findings of this study not only offer an alternative insight into the stability of liquid marbles at elevated temperature but also provide a facile strategy for miniaturized synthesis.
Collapse
Affiliation(s)
- Ying Chu
- School of Chemical Engineering and Technology, Harbin Institute of Technology , Harbin 150001, Heilongjiang, P. R. China
| | | | | |
Collapse
|
14
|
Hood MA, Mari M, Muñoz-Espí R. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4057-4087. [PMID: 28788665 PMCID: PMC5453225 DOI: 10.3390/ma7054057] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/12/2014] [Accepted: 05/09/2014] [Indexed: 01/05/2023]
Abstract
This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ.
Collapse
Affiliation(s)
- Matthew A Hood
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | - Margherita Mari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | - Rafael Muñoz-Espí
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| |
Collapse
|
15
|
Shi J, Shi J, Feng D, Yue P, Cao S. Stimuli-responsive hybrid composites based on CaCO3 microparticles and smart polyelectrolytes for controllable drug delivery. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1160-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Fukui Y, Nakada S, Fujimoto K. Preparation of nanometre-sized spiral mineral via controlled mineralization using a gel particle as a template. RSC Adv 2014. [DOI: 10.1039/c3ra45763j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Li Z, Xing L, Xiang J, Liang X, Zhao C, Sai H, Li F. Morphology controlling of calcium carbonate by self-assembled surfactant micelles on PET substrate. RSC Adv 2014. [DOI: 10.1039/c4ra02694b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present work, spherical and hexagonal CaCO3 were fabricated on different surfactant micelle-modified PET substrates at liquid–liquid interfaces. The results revealed a same nanoparticle-mediate self-organization process in which the surfactants act not only as regulators but also as templates.
Collapse
Affiliation(s)
- Zhenyou Li
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing, 100049 China
| | - Li Xing
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing, 100049 China
| | - Junhui Xiang
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing, 100049 China
| | - Xiaohong Liang
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024, China
| | - Chunlin Zhao
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing, 100049 China
| | - Huazheng Sai
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing, 100049 China
| | - Fei Li
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing, 100049 China
| |
Collapse
|
18
|
Shi J, Qi W, Du C, Shi J, Cao S. Micro/nanohybrid hierarchical poly(N-isopropylacrylamide)/calcium carbonate composites for smart drug delivery. J Appl Polym Sci 2012. [DOI: 10.1002/app.38718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|