1
|
Muang-Non P, Perry-Britton MKS, Macreadie LK, White NG. A three-component hydrogen bonded framework. Chem Commun (Camb) 2024; 60:7582-7585. [PMID: 38962853 DOI: 10.1039/d4cc02265c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A porous three-component hydrogen bonded framework, 1⋅biphen⋅TP, was prepared from a tetra-amidinium component (14+) and two different dianions, benzene-1,4-dicarboxylate (terephthalate, TP2-) and biphenyl-4,4'-dicarboxylate (biphen2-). Interestingly, when the framework was prepared in ethanol/water, 1⋅biphen⋅TP forms even when an excess of either dicarboxylate is present. However, when only water is used as solvent, only two-component frameworks are formed.
Collapse
Affiliation(s)
- Phonlakrit Muang-Non
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | | | - Lauren K Macreadie
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
2
|
Kaur K, Chandel M, Sagar P, Sahu BK, Ladhi R, Rajamanickam P, Aich P, Khatri M, Kanagarajan S, Singhal NK, Singh M, Shanmugam VK. Bells and Whistles on Fertilizers: Molecular Hands to Hang Nanoporous Foliar Fertilizer Reservoirs. ACS OMEGA 2024; 9:25870-25878. [PMID: 38911721 PMCID: PMC11191114 DOI: 10.1021/acsomega.3c09895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
Porous materials are highly explored platforms for fertilizer delivery. Among porous materials, metal-organic frameworks (MOFs) are an important class of coordination polymers in which metal ions and organic electron donors as linkers are assembled to form crystalline structures with stable nanoporosity. Selected amino acids were inherently found to have the capacity to hold the leaf cuticle. Hence, MOF synthesis was attempted in the presence of amino acids, which can act as surface terminators and can assist as hands to hold to the leaf for a controlled nutrient supply. By serendipity, the amino acids were found to act as modulators, resulting in well-stabilized porous MOF structures with iron metal nodes, which are often noted to be unstable. Thus, the composite, i.e., (MOF@aa) MOF modulated with amino acids, has efficient nutrient-feeding ability through the foliar route when compared to the control.
Collapse
Affiliation(s)
- Kamaljit Kaur
- University
Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Mahima Chandel
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Poonam Sagar
- Food
and Nutritional Biotechnology, National
Agri-Food Biotechnology Institute, Mohali 140308, Punjab, India
| | - Bandana Kumari Sahu
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Ritu Ladhi
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | | | - Pooja Aich
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Madhu Khatri
- University
Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Selvaraju Kanagarajan
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, 234 22 Lomma, Sweden
| | - Nitin Kumar Singhal
- Food
and Nutritional Biotechnology, National
Agri-Food Biotechnology Institute, Mohali 140308, Punjab, India
| | - Monika Singh
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Vijaya Kumar Shanmugam
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
3
|
Lee SJ, Telfer SG. Multicomponent Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202306341. [PMID: 37344359 DOI: 10.1002/anie.202306341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Metal-organic frameworks (MOFs) are constructed from metal ions or clusters and organic linkers. Typical MOFs are rather simple, comprising just one type of joint and linker. An additional degree of structural complexity can be introduced by using multiple different components that are assembled into the same framework In the early days of MOF chemistry, conventional wisdom held that attempting to prepare frameworks starting from such a broad set of components would lead to multiple different phases. However, this review highlights how this view was mistaken and frameworks comprising multiple different components can be deliberately designed and synthesized. When coupled to structural order and periodicity, the presence of multiple components leads to exceptional functional properties that can be understood at the atomic level.
Collapse
Affiliation(s)
- Seok J Lee
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Natural Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Shane G Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Natural Sciences, Massey University, Palmerston North, 4442, New Zealand
| |
Collapse
|
4
|
Do HH, Rabani I, Truong HB. Metal-organic framework-based nanomaterials for CO 2 storage: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:964-970. [PMID: 37766914 PMCID: PMC10520466 DOI: 10.3762/bjnano.14.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The increasing recognition of the impact of CO2 emissions as a global concern, directly linked to the rise in global temperature, has raised significant attention. Carbon capture and storage, particularly in association with adsorbents, has occurred as a pivotal approach to address this pressing issue. Large surface area, high porosity, and abundant adsorption sites make metal-organic frameworks (MOFs) promising contenders for CO2 uptake. This review commences by discussing recent advancements in MOFs with diverse adsorption sites, encompassing open metal sites and Lewis basic centers. Next, diverse strategies aimed at enhancing CO2 adsorption capabilities are presented, including pore size manipulation, post-synthetic modifications, and composite formation. Finally, the extant challenges and anticipated prospects pertaining to the development of MOF-based nanomaterials for CO2 storage are described.
Collapse
Affiliation(s)
- Ha Huu Do
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Wakchaure PD, Ganguly B. Metal ion-decorated hexasilaprismane and its derivative as a molecular container for the separation of CO 2 from flue gas molecules: a computational study. Dalton Trans 2023; 52:4336-4348. [PMID: 36912042 DOI: 10.1039/d3dt00208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The electronic structure of hexasilaprismane (HSP) was examined with different computational techniques to elucidate the bonding features and the electrostatic surface potential of HSP. The carbon dioxide adsorption and separation capacities of metal-ion-decorated hexasilaprismane (HSP) were examined with DFT and CBS-QB3. Furthermore, the 1,2,3,4,5,6-hexaphenylprismasilane (HPPS) molecule was examined for its binding with metal ions and gas adsorption capacity. The Mg2+ ion complexed HPPS molecule adsorbs 15CO2 molecules with an average binding free energy of -0.98 eV per molecule. The calculated gravimetric densities of 45.1 and 48.4 wt% show that these systems can be employed for CO2 capture. The substantial difference in the affinity of the designed systems for CO2 gas molecules compared to N2 and CH4 molecules show the potential of the systems for CO2 separation from N2 and CH4 gas molecules.
Collapse
Affiliation(s)
- Padmaja D Wakchaure
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
6
|
Rasaily S, Baruah K, Sharma D, Lepcha P, Biswas S, Biswas AN, Tamang S, Pariyar A. Rationally Designed Manganese-Based Metal-Organic Frameworks as Altruistic Metal Oxide Precursors for Noble Metal-Free Oxygen Reduction Reaction. Inorg Chem 2023; 62:3026-3035. [PMID: 36755399 DOI: 10.1021/acs.inorgchem.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The sluggish oxygen reduction reaction (ORR) at the cathode is challenging and hinders the growth of hydrogen fuel cells. Concerning kinetic values, platinum is the best known catalyst for ORR; however, its less abundance, high cost, and corrosive nature warrant the development of low-cost catalysts. We report the hydrothermal synthesis of two novel Mn-based metal-organic frameworks (MOFs), [Mn2(DOT)(H2O)2]n (Mn-SKU-1) and [Mn2(DOT)2(BPY)2(THF)]n (Mn-SKU-2) (DOT = 2,5-dihydroxyterephthalate; BPY = 4,4'-bipyridine). Mn-SKU-1 contains dimeric Mn(II) centers where the two corner-shared MnO6 octahedra fuse to give rise to an infinite Mn2O10 cluster, whereas the two Mn(II) ions coordinate to DOT and BPY moieties to give rise to a pillared structure in Mn-SKU-2 and form a 3D → 3D homo-interpenetration MOF with a twofold interpenetrated net. The pyrolysis of as-synthesized Mn-MOFs at 600 °C under N2 produced exclusively porous α-Mn2O3 composites (PSKU-1 and PSKU-2), with the BET surface area of 90.8 (for PSKU-1) and 179.3 m2 g-1 (for PSKU-2). These mesoporous MOF-derived α-Mn2O3 composites were modified as cathode materials for the electrocatalytic reduction of oxygen. The onset potential for the oxygen reduction reaction was found to be 0.90 V for PSKU-1 and 0.93 V for PSKU-2 versus RHE in 0.1 M KOH solution, with the current density of 4.8 and 6.0 mA cm-2, respectively, at 1600 rpm. Based on the RDE/RRDE results, the electrocatalytic oxygen reduction occurs majorly via the four-electron process. The electrocatalyst PSKU-2 is cheap, easy to use, retains 90% of its activity after 10 h of continuous use, and offers higher recyclability than Pt/C. The onset potential maximum current density and kinetic values (Jk = 11.68 mA cm-2 and Tafel slope = 85.0 mV dec-1) obtained in this work are higher than the values reported for pure Mn2O3.
Collapse
Affiliation(s)
- Sagarmani Rasaily
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Khanindram Baruah
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Debesh Sharma
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Panjo Lepcha
- Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | - Sachidulal Biswas
- Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | | | - Sudarsan Tamang
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Anand Pariyar
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| |
Collapse
|
7
|
Singh M, Neogi S. Largely Entangled Diamondoid Framework with High-Density Urea and Divergent Metal Nodes for Selective Scavenging of CO 2 and Molecular Dimension-Mediated Size-Exclusive H-Bond Donor Catalysis. Inorg Chem 2023; 62:871-884. [PMID: 36580539 DOI: 10.1021/acs.inorgchem.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pore environment modulation with high-density polarizing groups in metal-organic frameworks (MOFs) can effectively accomplish selective and multicyclic carbon dioxide (CO2) adsorption, whereas the incorporation of task-specific organic sites inside these porous vessels promise to evade self-quenching, solubility, and recyclability issues in hydrogen-bond donating (HBD) catalysis. However, concurrent amalgamation of both these attributes over a single platform is rare but extremely demanding in view of sustainable applications. We designed a robust diamondoid framework CSMCRI-17 (CSMCRI = Central Salt and Marine Chemicals Research Institute) from the mixed-ligand assembly of azo group-containing dicarboxylate ligand, urea-functionalized pyridyl linker, and Zn(II) nodes with specific divergent coordination. Seven-fold interpenetration to the microporous structure largely augments N-rich functionality that facilitates high CO2 uptake in the activated form (17a) with good CO2 selectivity over N2 and CH4 that outperform many reported materials. The framework displays very strong CO2 affinity and no reduction in adsorption capacity over multiple uptake-release cycles. Benefitting from the pore-wall decoration with urea functionality from the pillaring strut, 17a further demonstrates hydrogen-bond-mediated Friedel-Crafts alkylation of indole with β-nitrostyrene under mild conditions, with multicyclic usability and excellent reactivity toward wide ranges of substituted nucleophiles and electrophiles. Interestingly, interpenetration-generated optimum-sized pores induce poor conversion to sterically encumbered substrate via molecular dimension-mediated size selectivity that is alternatively ascribed from additional control experiments and support the occurrence of HBD reaction within the MOF cavity. The catalytic path is detailed in light of the change of emission intensity of the framework by the electrophile as well as the judicious choice of the substrate, which authenticates the prime role of urea moiety-governed two-point hydrogen bonding.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
do Pim WD, Marcotte S, Kitos AA, Richardson P, Pallister P, Murugesu M. Straightforward Mechanosynthesis of a Phase-Pure Interpenetrated MOF-5 Bearing a Size-Matching Tetrazine-Based Linker. Inorg Chem 2022; 61:11695-11701. [PMID: 35854222 DOI: 10.1021/acs.inorgchem.2c01285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The archetypal metal-organic framework-5 (MOF-5 or IRMOF-1) has been explored as a benchmark sorbent material with untapped potential to be studied in the capture and storage of gases and chemical confinement. Several derivatives of this framework have been prepared using the multivariate (MTV) strategy through mixing size-matching linkers to isolate, for example, MIXMOFs that outperform same-linker congeners when employed as gas reservoirs. Herein, we describe a straightforward protocol that uses mechanosynthesis (solvent-free grinding) followed by mild activation in dimethylformamide (DMF)/CHCl3 (40 °C and ambient pressure) to synthesize a functional phase-pure interpenetrated MOF-5 (int-MOF-5) bearing the size-matching 1,4-benzene dicarboxylate (BDC) and 1,2,4,5-tetrazine-3,6-dicarboxylate (TZDC) linkers in the backbone of the interpenetrated MIXMOF. We found that the grinding involving a mixture of H2TZDC and H2BDC in a 1:4 ratio (20% of H2TZDC) in the presence of zinc(II) acetate yields a crystalline solid that upon activation forms a phase-pure int-MOF-5 herein referred to as 20%TZDC-MOF-5. The crystalline phase, thermal stability, and porous structure of 20%TZDC-MOF-5 were thoroughly characterized, and the gas adsorption performance of the MIXMOF was investigated through the isotherms of N2 and H2 at 77 K and CO2 at 273 and 296 K. The pore size distribution for 20%TZDC-MOF-5 was found to be very similar to that determined using single crystals of the same-linker int-MOF-5. The presence of TZDC in the MIXMOF led to a slight increase in the uptake values for both H2 and CO2, suggesting that beneficial interactions take place. To the best of our knowledge, this is the first report presenting a suitable protocol to yield a functionalized int-MOF-5 as a promising means of synergistically fine-tuning the confinement of small target molecules such as CO2 and H2.
Collapse
Affiliation(s)
- Walace D do Pim
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Sébastien Marcotte
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Paul Richardson
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Peter Pallister
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
Zhang Q, Hong Y, Wang Y, Guo Y, Wang K, Wu H, Zhang C. Recent advances in pillar‐layered metal‐organic frameworks with interpenetrated and non‐interpenetrated topologies as supercapacitor electrodes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qichun Zhang
- City University of Hong Kong Department of Physics and Materials Science 83 Tat Chee Ave, Kowloon Tong 999077 Hong Kong HONG KONG
| | - Ye Hong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuting Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuxuan Guo
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R CHINA
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China CHINA
| |
Collapse
|
10
|
Wu YM, Zhao PC, Jia B, Li Z, Yuan S, Li CH. A silver-functionalized metal–organic framework with effective antibacterial activity. NEW J CHEM 2022. [DOI: 10.1039/d1nj06183f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal–organic framework with alkene-functional groups was constructed and postsynthetically modified with Ag(i) for antibacterial applications.
Collapse
Affiliation(s)
- Ya-Meng Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Pei-Chen Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Jia
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhe Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Denisov GL, Primakov PV, Nelyubina YV. A New Metal-Organic Framework: Product of Solvothermal Synthesis in 3D-Printed Autoclaves. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Deegan MM, Dworzak MR, Gosselin AJ, Korman KJ, Bloch ED. Gas Storage in Porous Molecular Materials. Chemistry 2021; 27:4531-4547. [PMID: 33112484 DOI: 10.1002/chem.202003864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal-organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Kyle J Korman
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
14
|
Deegan MM, Ahmed TS, Yap GPA, Bloch ED. Structure and redox tuning of gas adsorption properties in calixarene-supported Fe(ii)-based porous cages. Chem Sci 2020; 11:5273-5279. [PMID: 34122984 PMCID: PMC8159286 DOI: 10.1039/d0sc01833c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023] Open
Abstract
We describe the synthesis of Fe(ii)-based octahedral coordination cages supported by calixarene capping ligands. The most porous of these molecular cages has an argon accessible BET surface area of 898 m2 g-1 (1497 m2 g-1 Langmuir). The modular synthesis of molecular cages allows for straightforward substitution of both the bridging carboxylic acid ligands and the calixarene caps to tune material properties. In this context, the adsorption enthalpies of C2/C3 hydrocarbons ranged from -24 to -46 kJ mol-1 at low coverage, where facile structural modifications substantially influence hydrocarbon uptakes. These materials exhibit remarkable stability toward oxidation or decomposition in the presence of air and moisture, but application of a suitable chemical oxidant generates oxidized cages over a controlled range of redox states. This provides an additional handle for tuning the porosity and stability of the Fe cages.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| | - Tonia S Ahmed
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware Newark DE 19716 USA
| |
Collapse
|
15
|
Yuan S, Huang L, Huang Z, Sun D, Qin JS, Feng L, Li J, Zou X, Cagin T, Zhou HC. Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. J Am Chem Soc 2020; 142:4732-4738. [DOI: 10.1021/jacs.9b13072] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Lan Huang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Zhehao Huang
- Berzelii Center EXSELENT on Porous Materials, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Di Sun
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P. R. China
| | - Jun-Sheng Qin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jialuo Li
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiaodong Zou
- Berzelii Center EXSELENT on Porous Materials, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tahir Cagin
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3022, United States
| |
Collapse
|
16
|
Denisov GL, Primakov PV, Korlyukov AA, Novikov VV, Nelyubina YV. Solvothermal Synthesis of the Metal-Organic Framework MOF-5 in Autoclaves Prepared by 3D Printing. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328419120030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
|
18
|
Zhu R, Ding J, Jin L, Pang H. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Kim H, Kim H, Kim K, Lee E. Structural Control of Metal–Organic Framework Bearing N-Heterocyclic Imidazolium Cation and Generation of Highly Stable Porous Structure. Inorg Chem 2019; 58:6619-6627. [DOI: 10.1021/acs.inorgchem.8b03173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyunseok Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - Hyunyong Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 790-784, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 790-784, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - Eunsung Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 790-784, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| |
Collapse
|
20
|
Ding M, Flaig RW, Jiang HL, Yaghi OM. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 2019; 48:2783-2828. [DOI: 10.1039/c8cs00829a] [Citation(s) in RCA: 1089] [Impact Index Per Article: 181.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarizes recent advances and highlights the structure–property relationship on metal–organic framework-based materials for carbon dioxide capture and conversion.
Collapse
Affiliation(s)
- Meili Ding
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| | - Robinson W. Flaig
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Soft Matter Chemistry
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Department of Chemistry
- University of Science and Technology of China
| | - Omar M. Yaghi
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| |
Collapse
|
21
|
Puthiaraj P, Lee YR, Ravi S, Zhang S, Ahn WS. Metal–Organic Framework (MOF)-based CO2 Adsorbents. POST-COMBUSTION CARBON DIOXIDE CAPTURE MATERIALS 2018. [DOI: 10.1039/9781788013352-00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rising CO2 levels in the atmosphere resulting from fossil fuel combustion is one of the most significant global environmental concerns. Carbon capture and sequestration (CCS), primarily post-combustion CO2 capture, is an essential research area to reduce CO2 levels and avoid environmental destabilization. Recently, metal–organic frameworks (MOFs) have been attracting attention in the scientific community for potential applications in gas storage and separation, including CCS, owing to their novel properties, such as a large surface area, tunable pore shape and size, and tailored chemical functionality. This chapter starts with a brief introduction about the significance of CO2 adsorption and separation, followed by how MOF-based research endeavors were initiated and explored, and why MOFs are unique for gas adsorption. Secondly, we reviewed the relationship between CO2 adsorption and MOF properties including surface area, pore size and volume, amine functionality, nature of linkers, and structural flexibility, and analyzed the reported data based on the possible adsorption mechanism. The humidity effects on CO2 capture over MOFs and implementation of MOF composites were considered as well. Finally, some conclusions on the status of the developed MOFs and perspectives for future research on MOFs for the practical application of CO2 adsorption and separation were mentioned.
Collapse
Affiliation(s)
- Pillaiyar Puthiaraj
- Department of Chemistry and Chemical Engineering, Inha University Incheon 402-751 South Korea
| | - Yu-Ri Lee
- Department of Chemistry and Chemical Engineering, Inha University Incheon 402-751 South Korea
| | - Seenu Ravi
- Department of Chemistry and Chemical Engineering, Inha University Incheon 402-751 South Korea
| | - Siqian Zhang
- Department of Chemistry and Chemical Engineering, Inha University Incheon 402-751 South Korea
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering, Inha University Incheon 402-751 South Korea
| |
Collapse
|
22
|
Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, Maurin G, Eddaoudi M. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 2018; 46:3402-3430. [PMID: 28555216 DOI: 10.1039/c7cs00153c] [Citation(s) in RCA: 735] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.
Collapse
Affiliation(s)
- Karim Adil
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fernández de Luis R, Larrea ES, Orive J, Fidalgo-Marijuan A, Lezama L, Arriortua MI. Open and closed forms of the interpenetrated [Cu 2(Tae)(Bpa) 2](NO 3) 2·nH 2O: magnetic properties and high pressure CO 2/CH 4 gas sorption. Dalton Trans 2018; 47:958-970. [PMID: 29260169 DOI: 10.1039/c7dt04081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two closed and one open structural forms of the interpenetrated [Cu2(Tae)(Bpa)2](NO3)2·nH2O (H2Tae = 1,1,2,2-tetraacetylethane, Bpa = 1,2-bis(4-pyridyl)ethane) cationic coordination polymer have been synthesized. Three crystallographically related interpenetrated "ths" cationic nets encapsulate water molecules and nitrate anions giving rise to the closed structural forms of [Cu2(Tae)(Bpa)2](NO3)2·nH2O. Depending on the location of water molecules and nitrate groups, two different closed forms with 5.5 and 3.6 crystallization water molecules have been obtained. The thermal activation of the closed structures gives rise to a 29% expansion of the unit cell. This closed to open transformation is reversible, and is triggered by the loss or uptake of solvent. The high pressure gas adsorption experiments show similar selectivity values towards CO2 for CO2/CH4 mixtures to that showed by some metal organic frameworks without unsaturated metal sites, and isosteric heats for CO2 adsorption similar to that for the HKUST-1 compound.
Collapse
Affiliation(s)
- Roberto Fernández de Luis
- BCMaterials (Basque Center for Materials, Applications & Nanostructures), Technological Park of Zamudio, Camino de Ibaizabal, Bndg. 500-1st, 48160, Derio, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Marshall RJ, McGuire J, Wilson C, Forgan RS. Crystallographic investigation into the self-assembly, guest binding, and flexibility of urea functionalised metal-organic frameworks. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1370095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ross J. Marshall
- WestCHEM School of Chemistry, University of Glasgow , Glasgow, UK
| | - Jake McGuire
- WestCHEM School of Chemistry, University of Glasgow , Glasgow, UK
| | - Claire Wilson
- WestCHEM School of Chemistry, University of Glasgow , Glasgow, UK
| | - Ross S. Forgan
- WestCHEM School of Chemistry, University of Glasgow , Glasgow, UK
| |
Collapse
|
25
|
Frank M, Johnstone MD, Clever GH. Interpenetrated Cage Structures. Chemistry 2016; 22:14104-25. [DOI: 10.1002/chem.201601752] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Marina Frank
- Institute for Inorganic Chemistry; Georg-August University Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Mark D. Johnstone
- Department of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Guido H. Clever
- Department of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
26
|
Saffon-Merceron N, Barthélémy MC, Laurent C, Fabing I, Hoffmann P, Vigroux A. An Unusual 3D Zinc-Organic Framework Constructed from Paddle-Wheel-Based Carboxylate Sheets Bridged by Acetate Ions. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201600133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.08.005] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Yao Q, Fan Y, Wang Z, Duan W, Wang S, Li Y, Li D, Zhang Q, Du Y, Dou J. Coexistence of self- and interpenetration in two (3,6)-connected porous coordination polymers. CrystEngComm 2016. [DOI: 10.1039/c6ce01705c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Brozek CK, Michaelis V, Ong TC, Bellarosa L, López N, Griffin RG, Dincă M. Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues. ACS CENTRAL SCIENCE 2015; 1:252-60. [PMID: 27162979 PMCID: PMC4827552 DOI: 10.1021/acscentsci.5b00247] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 04/14/2023]
Abstract
Multinuclear solid-state nuclear magnetic resonance, mass spectrometry, first-principles molecular dynamics simulations, and other complementary evidence reveal that the coordination environment around the Zn(2+) ions in MOF-5, one of the most iconic materials among metal-organic frameworks (MOFs), is not rigid. The Zn(2+) ions bind solvent molecules, thereby increasing their coordination number, and dynamically dissociate from the framework itself. On average, one ion in each cluster has at least one coordinated N,N-dimethylformamide (DMF) molecule, such that the formula of as-synthesized MOF-5 is defined as Zn4O(BDC)3(DMF) x (x = 1-2). Understanding the dynamic behavior of MOF-5 leads to a rational low-temperature cation exchange approach for the synthesis of metastable Zn4-x Co x O(terephthalate)3 (x > 1) materials, which have not been accessible through typical high-temperature solvothermal routes thus far.
Collapse
Affiliation(s)
- Carl K. Brozek
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vladimir
K. Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ta-Chung Ong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Luca Bellarosa
- Institute
of Chemical Research of Catalonia, ICIQ, Avinguda dels Països Catalans 16, 43007, Tarragona, Spain
| | - Núria López
- Institute
of Chemical Research of Catalonia, ICIQ, Avinguda dels Països Catalans 16, 43007, Tarragona, Spain
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- E-mail:
| |
Collapse
|
30
|
Bose P, Bai L, Ganguly R, Zou R, Zhao Y. Rational Design and Synthesis of a Highly Porous Copper-Based Interpenetrated Metal-Organic Framework for High CO2and H2Adsorption. Chempluschem 2015; 80:1259-1266. [DOI: 10.1002/cplu.201500104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/10/2022]
|
31
|
Pillai RS, Pinto ML, Pires J, Jorge M, Gomes JRB. Understanding Gas adsorption selectivity in IRMOF-8 using molecular simulation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:624-637. [PMID: 25519048 DOI: 10.1021/am506793b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Grand canonical Monte Carlo simulations were used to explore the adsorption behavior of methane, ethane, ethylene, and carbon dioxide in isoreticular metal-organic frameworks, IRMOF-1, noninterpenetrated IRMOF-8, and interpenetrated IRMOF-8. The simulated isotherms are compared with experimentally measured isotherms, when available, and a good agreement is observed. In the case of IRMOF-8, the agreement is much better for the interpenetrated model than for the noninterpenetrated model, suggesting that the experimental data was obtained on an essentially interpenetrated structure. Simulations show that carbon dioxide is preferentially adsorbed over methane, and a selective adsorption at low pressures of ethane over ethylene, especially in the case of IRMOF-8, confirm recent experimental results. Analysis of simulation results on both the interpenetrated and the noninterpenetrated structures shows that interpenetration is responsible for the higher adsorbed amounts of ethane at low pressures (<100 kPa) and for the interesting selectivity for ethane in ethane/ethylene binary mixtures. Van der Waals interactions seem to be enhanced in the interpenetrated structure, favoring ethane adsorption. This indicates that interpenetrated MOF structures may be of interest for the separation of small gas molecules.
Collapse
Affiliation(s)
- Renjith S Pillai
- Department of Chemistry, CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
32
|
Asha KS, Kavyasree PR, George A, Mandal S. The role of solvents in framework dimensionality and their effect on band gap energy. Dalton Trans 2015; 44:1009-16. [DOI: 10.1039/c4dt01678e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvents play a crucial role towards the dimensionality and band gap energy of hybrid framework materials.
Collapse
Affiliation(s)
- K. S. Asha
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- 695016 India
| | - P. R. Kavyasree
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- 695016 India
| | - Anu George
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- 695016 India
| | - Sukhendu Mandal
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- 695016 India
| |
Collapse
|
33
|
Hu S, Liu M, Li K, Zuo Y, Zhang A, Song C, Zhang G, Guo X. Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron. CrystEngComm 2014. [DOI: 10.1039/c4ce01545b] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Cho JH, Lee SM, Shin JW, Moon D, Min KS, Lah MS, Lee HI. Structural Transformation and Gas Adsorption Properties of Interpenetrated IRMOF-8. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.3.949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Liu L, Konstas K, Hill MR, Telfer SG. Programmed Pore Architectures in Modular Quaternary Metal–Organic Frameworks. J Am Chem Soc 2013; 135:17731-4. [DOI: 10.1021/ja4100244] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lujia Liu
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Institute of
Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Kristina Konstas
- CSIRO Materials Science and Engineering, Private Bag 33 Clayton South, Victoria 3169, Australia
| | - Matthew R. Hill
- CSIRO Materials Science and Engineering, Private Bag 33 Clayton South, Victoria 3169, Australia
| | - Shane G. Telfer
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Institute of
Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
36
|
Synthesis, structure, photoluminescence and theoretical calculation on a novel Zn(II) coordination polymer with (4,8)-connected topology. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.09.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013; 341:1230444. [DOI: 10.1126/science.1230444] [Citation(s) in RCA: 9593] [Impact Index Per Article: 799.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.
Collapse
Affiliation(s)
- Hiroyasu Furukawa
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kyle E. Cordova
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael O’Keeffe
- Department of Chemistry, Arizona State University, Tempe, AZ 87240, USA
- NanoCentury KAIST Institute and Graduate School of Energy, Environment, Water, and Sustainability (World Class University), Daejeon 305-701, Republic of Korea
| | - Omar M. Yaghi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- NanoCentury KAIST Institute and Graduate School of Energy, Environment, Water, and Sustainability (World Class University), Daejeon 305-701, Republic of Korea
| |
Collapse
|
38
|
Cheng X, Zhang A, Hou K, Liu M, Wang Y, Song C, Zhang G, Guo X. Size- and morphology-controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents. Dalton Trans 2013; 42:13698-705. [PMID: 23903703 DOI: 10.1039/c3dt51322j] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present here a simple solvothermal method to fabricate metal-organic framework NH2-MIL-53(Al) crystals with controllable size and morphology just by altering the ratio of water in the DMF-water mixed solvent system without the addition of any surfactants or capping agents. With increasing the volume ratio of water in the mixed solvents, a series of NH2-MIL-53(Al) crystals with different sizes and morphologies were synthesized. The average size of the smallest crystal is 76 ± 20 nm, which provides us a simple and environmentally friendly way to prepare nanoscale MOFs. The largest BET surface area of these samples is 1882 m(2) g(-1) that is mainly contributed by its micropore surface area, and its corresponding micropore volume is 0.83 cm(3) g(-1), which have greatly extended its application in the fields of gas adsorption and postsynthetic modification. All these samples were characterized by SEM, XRD, N2 adsorption/desorption, TGA and FT-IR. Then a mechanism for the impact of the water ratio on the crystal size and morphology is presented and discussed.
Collapse
Affiliation(s)
- Xinquan Cheng
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jiang HL, Makal TA, Zhou HC. Interpenetration control in metal–organic frameworks for functional applications. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.03.017] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
He X, Lu XP, Tian YY, Li MX, Zhu S, Xing F, Morris RE. Controlling interpenetration in metal–organic frameworks by tuning the conformations of flexible bis(triazole) ligands. CrystEngComm 2013. [DOI: 10.1039/c3ce40445e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kim D, Lah MS. Metal–organic framework with two different types of rigid triscarboxylates: net topology and gas sorption behaviour. CrystEngComm 2013. [DOI: 10.1039/c3ce40929e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Procopio EQ, Padial NM, Masciocchi N, Galli S, Oltra JE, Barea E, Navarro JAR. A highly porous interpenetrated MOF-5-type network based on bipyrazolate linkers. CrystEngComm 2013. [DOI: 10.1039/c3ce41339j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Liu B, Pang LY, Hou L, Wang YY, Zhang Y, Shi QZ. Two solvent-dependent zinc(ii) supramolecular isomers: structure analysis, reversible and nonreversible crystal-to-crystal transformation, highly selective CO2 gas adsorption, and photoluminescence behaviors. CrystEngComm 2012. [DOI: 10.1039/c2ce26058a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Feldblyum JI, Wong-Foy AG, Matzger AJ. Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption. Chem Commun (Camb) 2012; 48:9828-30. [DOI: 10.1039/c2cc34689c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|