1
|
Hu X, Huang L, Wang S, Ahmed R, Li P, Demirci U, Zhang Z. Color-selective labyrinth-like quantum dot nanobeads enable point-of-care dual assay of Mycotoxins. SENSORS AND ACTUATORS B: CHEMICAL 2023; 376:132956. [DOI: 10.1016/j.snb.2022.132956] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
2
|
Fluorescent microbeads for point-of-care testing: a review. Mikrochim Acta 2019; 186:361. [PMID: 31101985 DOI: 10.1007/s00604-019-3449-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
Microbead-based point-of-care testing (POCT) has demonstrated great promise in translating detection modalities from bench-side to bed-side. This is due to the ease of visualization, high surface area-to-volume ratio of beads for efficient target binding, and efficient encoding capability for simultaneous detection of multiple analytes. This review (with 112 references) summarizes the progress made in the field of fluorescent microbead-based POCT. Following an introduction into the field, a first large section sums up techniques and materials for preparing microbeads, typically of dye-labelled particles, various kinds of quantum dots and upconversion materials. Further subsections cover the encapsulation of nanoparticles into microbeads, decoration of nanoparticles on microbeads, and in situ embedding of nanoparticles during microbead synthesis. A next large section summarizes microbead-based fluorometric POCT, with subsections on detection of nucleic acids, proteins, circulating tumor cells and bacteria. A further section covers emerging POCT based on the use of smartphones or flexible microchips. The last section gives conclusions and an outlook on current challenges and possible solutions. Aside from giving an overview on the state of the art, we expect this article to boost the further development of POCT technology. Graphical Abstract Schematic presentation of the fabrication of microbeads, the detection targets of interest including bacteria, circulating tumor cells (CTCs), protein and nucleic acid, and the emerging point-of-care testing (POCT) platform. The colored wheels of the bus represent the fluorescent materials embedded in (red color) or decorated on the surface of microbeads (green color).
Collapse
|
3
|
Zhang DSZ, Jiang Y, Wei D, Wei X, Xu H, Gu H. Polymers mediate a one-pot route for functionalized quantum dot barcodes with a large encoding capacity. NANOSCALE 2018; 10:12461-12471. [PMID: 29926869 DOI: 10.1039/c8nr01888j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With the increasing demands for high-throughput multiplexed bioassays, quantum dot (QD)-encoded microbeads as biocarriers for various bioreactions have attracted considerable attention. However, three key requirements for these biocarriers are still longstanding issues: a stable fluorescence intensity, a large encoding capacity and abundant surface functional groups. Here, a novel one-pot strategy is developed, generating functionalized QD-encoded microspheres with a strong fluorescence intensity and optical stability. With poly(styrene-co-maleic anhydride) (PSMA) molecules as mediators, the encapsulation of QDs and carboxylation of the bead surface are integrated together, greatly improving the preparation efficiency and guaranteeing their potential application in biodetection. Moreover, the mechanism for preparing QD-doped beads is further proposed, which helps to precisely manipulate the preparation process and accurately encode the beads. Through this approach, a single- and dual-color barcode library of QD-encoded microspheres has been successfully established, which demonstrates their great potential in suspension arrays.
Collapse
Affiliation(s)
- Ding Sheng-Zi Zhang
- Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | | | | | | | | | | |
Collapse
|
4
|
Yang YJ, Tang B, Zhang L, Wang C, Ma HT, Pang DW, Zhang ZL. On-demand one-step synthesis of small-sized fluorescent–magnetic bifunctional microparticles on a droplet-splitting chip. J Mater Chem B 2018; 6:961-965. [DOI: 10.1039/c7tb02122d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Generation of small-sized multifunctional microparticles: multifunctional microparticles were easily produced based on droplet splitting and photopolymerization in a single step.
Collapse
Affiliation(s)
- Yu-Jun Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Cheng Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Hao-Tian Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- P. R. China
| |
Collapse
|
5
|
You L, Li R, Dong X, Wang F, Guo J, Wang C. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. J Colloid Interface Sci 2017; 488:109-117. [DOI: 10.1016/j.jcis.2016.10.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 01/16/2023]
|
6
|
Wen CY, Xie HY, Zhang ZL, Wu LL, Hu J, Tang M, Wu M, Pang DW. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. NANOSCALE 2016; 8:12406-29. [PMID: 26831217 DOI: 10.1039/c5nr08534a] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The study of cancer is of great significance to human survival and development, due to the fact that cancer has become one of the greatest threats to human health. In recent years, the rapid progress of nanoscience and nanotechnology has brought new and bright opportunities to this field. In particular, the applications of quantum dots (QDs) and magnetic nanoparticles (MNPs) have greatly promoted early diagnosis and effective therapy of cancer. In this review, we focus on fluorescent/magnetic micro/nano-spheres based on QDs and/or MNPs (we may call them "nanoparticle-sphere (NP-sphere) composites") from their preparation to their bio-application in cancer research. Firstly, we outline and compare the main four kinds of methods for fabricating NP-sphere composites, including their design principles, operation processes, and characteristics (merits and limitations). The NP-sphere composites successfully inherit the unique fluorescence or magnetic properties of QDs or MNPs. Moreover, compared with the nanoparticles (NPs) alone, the NP-sphere composites show superior properties, which are also discussed in this review. Then, we summarize their recent applications in cancer research from three aspects, that is: separation and enrichment of target tumor cells or biomarkers; cancer diagnosis mainly through medical imaging or tumor biomarker detection; and cancer therapy via targeted drug delivery systems. Finally, we provide some perspectives on the future challenges and development trends of the NP-sphere composites.
Collapse
Affiliation(s)
- Cong-Ying Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Y, Dong C, Su L, Wang H, Gong X, Wang H, Liu J, Chang J. Multifunctional Microspheres Encoded with Upconverting Nanocrystals and Magnetic Nanoparticles for Rapid Separation and Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:745-753. [PMID: 26653130 DOI: 10.1021/acsami.5b09913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immunoassays based on the downconversion target materials (organic dyes or quantum dots) lead to fairly strong spectral interference between the coded signal and reporter signal, which seriously affects the detection accuracy and hampers their applications. In this work, a new kind of upconverting nanocrystals encoded magnetic microspheres (UCNMMs) were designed and prepared successfully to solve the problem mentioned above. The UCNMMs were obtained by incorporating magnetic Fe3O4 nanoparticles and upconverting nanocrystals with polystyrene microspheres. Due to that upconverting nanocrystals (UCNs) and reporter signals are excitated by near-infrared and UV/visible light separately, immunoassays based on UCNMMs do not occur optical spectral interferences. Furthermore, these new functionalized UCNMMs have excellent properties in binding biomolecules and fast separating, which would have large potential applications in multiplexed assays.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Chunhong Dong
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Lin Su
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Hanjie Wang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Xiaoqun Gong
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Huiquan Wang
- School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin 300387, People's Republic of China
| | - Junqing Liu
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| |
Collapse
|
8
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Vaidya SV, Couzis A, Maldarelli C. Reduction in aggregation and energy transfer of quantum dots incorporated in polystyrene beads by kinetic entrapment due to cross-linking during polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3167-79. [PMID: 25674811 DOI: 10.1021/la503251s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the development of barcoded polystyrene microbeads, approximately 50 μm in diameter, which are encoded by incorporating multicolored semiconductor fluorescent nanocrystals (quantum dots or QDs) within the microbeads and using the emission spectrum of the embedded QDs as a spectral label. The polymer/nanocrystal bead composites are formed by polymerizing emulsified liquid droplets of styrene monomer and QDs suspended in an immiscible continuous phase (suspension polymerization). We focus specifically on the effect of divinylbenzene (DVB) added to cross-link the linearly growing styrene polymer chains and the effect of this cross-linking on the state of aggregation of the nanocrystals in the composite. Aggregated states of multicolor QDs give rise to nonradiative resonance energy transfer (RET) which distorts the emission label from a spectrum recorded in a reference solvent in which the nanocrystals are well dispersed and unaggregated. A simple barcode is chosen of a mixture of QDs emitting at 560 (yellow) and 620 nm (red). We find that for linear chain growth (no DVB), the QDs aggregate as is evident from the emission spectrum and the QD distribution as seen from confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images. Increasing the extent of cross-linking by the addition of DVB is shown to significantly decrease the aggregation and provide a clear label. We suggest that in the absence of cross-linking, linearly growing polymer chains, through enthalpic and entropic effects, drive the nanocrystals into inclusions, while cross-linking kinetically entraps the particle and prevents their aggregation.
Collapse
Affiliation(s)
- Shyam V Vaidya
- Department of Chemical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Alex Couzis
- Department of Chemical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Charles Maldarelli
- Department of Chemical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
10
|
Chen Y, Dong PF, Xu JH, Luo GS. Microfluidic generation of multicolor quantum-dot-encoded core-shell microparticles with precise coding and enhanced stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8538-42. [PMID: 24956221 DOI: 10.1021/la501692h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A novel microfluidic approach is developed to prepare multicolor QDs-encoded core-shell microparticles with precise and various barcode and enhanced stability performance. With the protection of the hydrogel shell, the leakage of QDs is avoided and the fluorescent stability is enhanced greatly. By embedding different QDs into different cores, no interaction between different QDs existed and the fluorescence spectrum of each kind of QDs can be recorded, respectively. Compared with QDs mixtures in a single particle, it is unnecessary to separate the emissions of QDs in different colors, and deconvolution algorithms are not needed. Therefore, it still maintains precise coding even if QDs with approximate emission wavelengths are used.
Collapse
Affiliation(s)
- Yang Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University , Beijing 100084, China
| | | | | | | |
Collapse
|