1
|
Andrés Sastre E, Nossin Y, Jansen I, Kops N, Intini C, Witte-Bouma J, van Rietbergen B, Hofmann S, Ridwan Y, Gleeson JP, O'Brien FJ, Wolvius EB, van Osch GJVM, Farrell E. A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine. Biomaterials 2021; 279:121187. [PMID: 34678648 DOI: 10.1016/j.biomaterials.2021.121187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
In recent decades, an increasing number of tissue engineered bone grafts have been developed. However, expensive and laborious screenings in vivo are necessary to assess the safety and efficacy of their formulations. Rodents are the first choice for initial in vivo screens but their size limits the dimensions and number of the bone grafts that can be tested in orthotopic locations. Here, we report the development of a refined murine subcutaneous model for semi-orthotopic bone formation that allows the testing of up to four grafts per mouse one order of magnitude greater in volume than currently possible in mice. Crucially, these defects are also "critical size" and unable to heal within the timeframe of the study without intervention. The model is based on four bovine bone implants, ring-shaped, where the bone healing potential of distinct grafts can be evaluated in vivo. In this study we demonstrate that promotion and prevention of ossification can be assessed in our model. For this, we used a semi-automatic algorithm for longitudinal micro-CT image registration followed by histological analyses. Taken together, our data supports that this model is suitable as a platform for the real-time screening of bone formation, and provides the possibility to study bone resorption, osseointegration and vascularisation.
Collapse
Affiliation(s)
- E Andrés Sastre
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Y Nossin
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - I Jansen
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - N Kops
- Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Intini
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - B van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Y Ridwan
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J P Gleeson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI Advanced Materials and Bioengineering Research (AMBER) Center, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Trinity Center for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - E B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - G J V M van Osch
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - E Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Han X, Zhang G, Chai M, Zhang X. Light-assisted therapy for biofilm infected micro-arc oxidation TiO 2 coating on bone implants. Biomed Mater 2021; 16:025018. [PMID: 33440352 DOI: 10.1088/1748-605x/abdb72] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Implant-associated infections is a main factor leading to the failure of titanium (Ti) implants. Micro-arc oxidation is a convenient and effective technique to form a biocompatible metal (Ag+, Cu2+ and Zn2+) ions-doped TiO2 coatings to combat bacterial infections. However, compared with the sterilization by metal ions, light-triggered antibacterial therapies have accepted more attention due to its higher antibacterial efficiency and security. Although TiO2 is an excellent photocatalyst, it can be triggered by ultraviolet light due to the wide band gap. Herein, molybdenum disulfide (MoS2) modified TiO2 coating was fabricated on Ti by a hybrid process of micro-arc oxidation and hydrothermal treatment. The hybrid coating exhibits excellent antibacterial activity under the irradiation of 808 nm near-infrared light because of the synergistic antibacterial effects of reactive oxygen species and hyperthermia, and Staphylococcus aureus (S. aureus) biofilm can be eradicated within 15 min both in vivo and in vitro. Furthermore, collagen decorated on the surface of the hybrid coating can improve the proliferation, adhesion and spreading of MC3T3-E1 osteoblasts.
Collapse
Affiliation(s)
- Xiang Han
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | | | | | | |
Collapse
|
3
|
Hashemi S, Mohammadi Amirabad L, Farzad-Mohajeri S, Rezai Rad M, Fahimipour F, Ardeshirylajimi A, Dashtimoghadam E, Salehi M, Soleimani M, Dehghan MM, Tayebi L, Khojasteh A. Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell Tissue Res 2021; 384:403-421. [PMID: 33433691 DOI: 10.1007/s00441-020-03374-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Production of a 3D bone construct with high-yield differentiated cells using an appropriate cell source provides a reliable strategy for different purposes such as therapeutic screening of the drugs. Although adult stem cells can be a good source, their application is limited due to invasive procedure of their isolation and low yield of differentiation. Patient-specific human-induced pluripotent stem cells (hiPSCs) can be an alternative due to their long-term self-renewal capacity and pluripotency after several passages, resolving the requirement of a large number of progenitor cells. In this study, a new biphasic 3D-printed collagen-coated HA/β-TCP scaffold was fabricated to provide a 3D environment for the cells. The fabricated scaffolds were characterized by the 3D laser scanning digital microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical test. Then, the osteogenesis potential of the hiPSC-seeded scaffolds was investigated compared to the buccal fat pad stem cell (BFPSC)-seeded scaffolds through in vitro and in vivo studies. In vitro results demonstrated up-regulated expressions of osteogenesis-related genes of RUNX2, ALP, BMP2, and COL1 compared to the BFPSC-seeded scaffolds. In vivo results on calvarial defects in the rats confirmed a higher bone formation in the hiPSC-seeded scaffolds compared to the BFPSC-seeded groups. The immunofluorescence assay also showed higher expression levels of collagen I and osteocalcin proteins in the hiPSC-seeded scaffolds. It can be concluded that using the hiPSC-seeded scaffolds can lead to a high yield of osteogenesis, and the hiPSCs can be used as a superior stem cell source compared to BFPSCs for bone-like construct bioengineering.
Collapse
Affiliation(s)
- Sheida Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Rezai Rad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Salehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wang J, Chen J, Ran Y, He Q, Jiang T, Li W, Yu X. Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:553529. [PMID: 33178669 PMCID: PMC7594528 DOI: 10.3389/fbioe.2020.553529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022] Open
Abstract
Exploration for ideal bone regeneration materials still remains a hot research topic due to the unmet clinical challenge of large bone defect healing. Bone grafting materials have gradually evolved from single component to multiple-component composite, but their functions during bone healing still only regulate one or two biological processes. Therefore, there is an urgent need to develop novel materials with more complex composition, which convey multiple biological functions during bone regeneration. Here, we report an naturally nanostructured ECM based composite scaffold derived from fish air bladder and combined with dicalcium phosphate (DCP) microparticles to form a new type of bone grafting material. The DCP/acellular tissue matrix (DCP/ATM) scaffold demonstrated porous structure with porosity over 65% and great capability of absorbing water and other biologics. In vitro cell culture study showed that DCP/ATM scaffold could better support osteoblast proliferation and differentiation in comparison with DCP/ADC made from acid extracted fish collagen. Moreover, DCP/ATM also demonstrated more potent bone regenerative properties in a rat calvarial defect model, indicating incorporation of ECM based matrix in the scaffolds could better support bone formation. Taken together, this study demonstrates a new avenue toward the development of new type of bone regeneration biomaterial utilizing ECM as its key components.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jiayu Chen
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Yongfeng Ran
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Qianhong He
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Tao Jiang
- Hangzhou Huamai Medical Devices Co., Ltd., Hangzhou, China
| | - Weixu Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Tian Y, Liang K, Ji Y. Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The citrate-based thermoset elastomer is a promising candidate for bone scaffold material, but the harsh curing condition made it difficult to fabricate porous structure. Recently, poly (1, 8-octanediol-co-Pluronic F127 citrate) (POFC) porous scaffold was creatively fabricated by chitin nanofibrils (ChiNFs) supported emulsion-freeze-casting. Thanks to the supporting role of ChiNFs, the lamellar pore structure formed by directional freeze-drying was maintained during the subsequent thermocuring. Herein, bioactive glass (BG) was introduced into the POFC porous scaffolds to improve bioactivity. It was found the complete replacement of ChiNF particles with BG particles could not form a stable porous structure; however, existing at least 15 wt% ChiNF could ensure the formation of lamellar pore, and the interlamellar distance increased with BG ratios. Thus, the BG granules did not contribute to the formation of pore structure like ChiNFs, however, they surely endowed the scaffolds with enhanced mechanical properties, improved osteogenesis bioactivity, better cytocompatibility as well as quick degradation rate. Reasonably adjusting BG ratios could balance the requirements of porous structure and bioactivity.
Collapse
Affiliation(s)
- Yaling Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering , Donghua University , 2999 North Renmin Road , Shanghai , 201620, PR China
| | - Kai Liang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , 2999 North Renmin Road , Shanghai , 201620, PR China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering , Donghua University , 2999 North Renmin Road , Shanghai , 201620, PR China
| |
Collapse
|
6
|
Clearfield DS, Xin X, Yadav S, Rowe DW, Wei M. Osteochondral Differentiation of Fluorescent Multireporter Cells on Zonally-Organized Biomaterials. Tissue Eng Part A 2019; 25:468-486. [DOI: 10.1089/ten.tea.2018.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Drew S. Clearfield
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Sumit Yadav
- Department of Orthodontics, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - David W. Rowe
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Mei Wei
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
7
|
Entezari A, Roohani I, Li G, Dunstan CR, Rognon P, Li Q, Jiang X, Zreiqat H. Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone. Adv Healthc Mater 2019; 8:e1801353. [PMID: 30536610 DOI: 10.1002/adhm.201801353] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/17/2018] [Indexed: 02/01/2023]
Abstract
The successful regeneration of functional bone tissue in critical-size defects remains a significant clinical challenge. To address this challenge, synthetic bone scaffolds are widely developed, but remarkably few are translated to the clinic due to poor performance in vivo. Here, it is demonstrated how architectural design of 3D printed scaffolds can improve in vivo outcomes. Ceramic scaffolds with different pore sizes and permeabilities, but with similar porosity and interconnectivity, are implanted in rabbit calvaria for 12 weeks, and then the explants are harvested for microcomputed tomography evaluation of the volume and functionality of newly formed bone. The results indicate that scaffold pores should be larger than 390 µm with an upper limit of 590 µm to enhance bone formation. It is also demonstrated that a bimodal pore topology-alternating large and small pores-enhances the volume and functionality of new bone substantially. Moreover, bone formation results indicate that stiffness of new bone is highly influenced by the scaffold's permeability in the direction concerned. This study demonstrates that manipulating pore size and permeability in a 3D printed scaffold architecture provides a useful strategy for enhancing bone regeneration outcomes.
Collapse
Affiliation(s)
- Ali Entezari
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| | - Iman Roohani
- School of Chemistry University of New South Wales NSW 2052 Australia
| | - Guanglong Li
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
- Department of Prosthodontics Oral Bioengineering and Regenerative Medicine Lab Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Colin R. Dunstan
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| | - Pierre Rognon
- School of Civil Engineering University of Sydney NSW 2006 Australia
| | - Qing Li
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| | - Xinquan Jiang
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
- Department of Prosthodontics Oral Bioengineering and Regenerative Medicine Lab Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine 639 Zhizaoju Road Shanghai 200011 China
| | - Hala Zreiqat
- Australian Research Council Centre in Innovative BioEngineering School of Aerospace Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Australia
- Shanghai‐Sydney Joint Bioengineering and Regenerative Medicine Lab at Shanghai JiaoTong Shanghai 200011 China
| |
Collapse
|
8
|
Semyari H, Salehi M, Taleghani F, Ehterami A, Bastami F, Jalayer T, Semyari H, Hamed Nabavi M, Semyari H. Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. J Biomater Appl 2018; 33:501-513. [DOI: 10.1177/0885328218805229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, hydroxyapatite nanoparticles containing 10% doxycycline, a structural isomer of tetracycline, was prepared by the co-precipitation method. It was added to collagen solution for the preparation of the scaffold with freeze-casting method in order to develop a composite scaffold with both antibacterial and osteoinductive properties for repairing bone defects. The scaffolds were evaluated regarding their morphology, porosity, degradation and cellular response. The scaffolds for further investigation were added in a rat calvaria defect model. The study showed that after eight weeks, the bone formation was relatively higher in the collagen/nano-hydroxyapatite/doxycycline group with completely filled defect when compared with other groups. Histopathological evaluation showed that the defect in the collagen/nano-hydroxyapatite/doxycycline group was fully replaced by the new bone and connective tissue. Our results provide evidence supporting the possible applicability of doxycycline-containing scaffolds for successful bone regeneration.
Collapse
Affiliation(s)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ferial Taleghani
- Department of Periodontology, Dental School, Shahed University, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Bastami
- Dental research center, research institute of dental Science, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Oral and maxillofacial surgery department, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hadis Semyari
- Dental student, faculty of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
9
|
Namini MS, Bayat N, Tajerian R, Ebrahimi-Barough S, Azami M, Irani S, Jangjoo S, Shirian S, Ai J. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods. J Orthop Surg Res 2018; 13:63. [PMID: 29587806 PMCID: PMC5870175 DOI: 10.1186/s13018-018-0754-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
Background An engineered tissue structure is an artificial scaffold combined with cells and signaling factors. Among various polymers, the polylactide-co-glycolide/hydroxyapatite (PLGA/HA) has attracted much attention due to their optimal properties. The aim of this study was to study the behavior of human endometrial stem cell (hEnSC)-derived osteoblast cells cultured on PLGA/HA nanocomposite scaffolds. Methods hEnSCs were isolated and exposed to osteogenic media for 21 days. Differentiated cells were cultured on PLGA/HA synthetic scaffolds. The PLGA/HA-based nanocomposite scaffolds were fabricated using either electrospinning or freeze-drying methods. Behavior of the cells was evaluated a week after seeding hEnSC-derived osteoblast-like cells on these scaffolds. Osteogenesis was investigated in terms of alkaline phosphatase activity, gene expression, immunocytochemistry (ICC), proliferation, and scanning electron microscopy (SEM). Moreover, scaffold properties, such as pore size and morphology of the cells, onto the scaffolds were evaluated using SEM. Furthermore, biocompatibility of these scaffolds was confirmed by 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results The matrix mineralization was proved by alizarin red staining, and the osteogenic media-treated cultures positively expressed osteocalcin and osteopontin markers. Moreover, qRT-PCR results confirmed the positive gene expression of osteopontin and osteonectin in the differentiated osteoblast-like cells. The results of behavior assessment of the cultured cells on electrospinning and freeze-dried scaffolds showed that the behavior of the cultured cells on the freeze-dried PLGA/HA scaffolds was significantly better than the electrospinning PLGA/HA scaffolds. Conclusion It has been shown that the freeze-dried PLGA/HA nanocomposite scaffolds can appropriately support the attachment and proliferation of the differentiated osteoblast cells and are a suitable candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Mojdeh Salehi Namini
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Neda Bayat
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roxana Tajerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saranaz Jangjoo
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahr-e Kord, Iran.,Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab Pathology, Shiraz, Iran
| | - Jafar Ai
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Enhanced Tissue Compatibility of Polyetheretherketone Disks by Dopamine-Mediated Protein Immobilization. Macromol Res 2018. [DOI: 10.1007/s13233-018-6018-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Aravamudhan A, Ramos DM, Nip J, Kalajzic I, Kumbar SG. Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing. Macromol Biosci 2018; 18:10.1002/mabi.201700263. [PMID: 29178402 PMCID: PMC5835266 DOI: 10.1002/mabi.201700263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Indexed: 01/12/2023]
Abstract
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
| | - Daisy M. Ramos
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Jonathan Nip
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT-06030, US
| | - Sangamesh G. Kumbar
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Orthopaedics, UConn Health, Farmington, CT-06030, US
| |
Collapse
|
12
|
Clearfield D, Nguyen A, Wei M. Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach. J Biomed Mater Res A 2017; 106:948-958. [PMID: 29115031 DOI: 10.1002/jbm.a.36288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/14/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023]
Abstract
The zonal organization of osteochondral tissue underlies its long term function. Despite this, tissue engineering strategies targeted for osteochondral repair commonly rely on the use of isotropic biomaterials for tissue reconstruction. There exists a need for a new class of highly biomimetic, anisotropic scaffolds that may allow for the engineering of new tissue with zonal properties. To address this need, we report the facile production of monolithic multidirectional collagen-based scaffolds that recapitulate the zonal structure and composition of osteochondral tissue. First, superficial and osseous zone-mimicking scaffolds were fabricated by unidirectional freeze casting collagen-hyaluronic acid and collagen-hydroxyapatite-containing suspensions, respectively. Following their production, a lyophilization bonding process was used to conjoin these scaffolds with a distinct collagen-hyaluronic acid suspension mimicking the composition of the transition zone. Resulting matrices contained a thin, highly aligned superficial zone that interfaced with a cellular transition zone and vertically oriented calcified cartilage and osseous zones. Confocal microscopy confirmed a zone-specific localization of hyaluronic acid, reflecting the depth-dependent increase of glycosaminoglycans in the native tissue. Poorly crystalline, carbonated hydroxyapatite was localized to the calcified cartilage and osseous zones and bordered the transition zone. Compressive testing of hydrated scaffold zones confirmed an increase of stiffness with scaffold depth, where compressive moduli of chondral and osseous zones fell within or near ranges conducive for chondrogenesis or osteogenesis of mesenchymal stem cells. With the combination of these biomimetic architectural and compositional cues, these multidirectional scaffolds hold great promise for the engineering of zonal osteochondral tissue. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 948-958, 2018.
Collapse
Affiliation(s)
- Drew Clearfield
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269
| | - Andrew Nguyen
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269
| | - Mei Wei
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269
| |
Collapse
|
13
|
Bendtsen ST, Wei M. In vitro
evaluation of 3D bioprinted tri‐polymer network scaffolds for bone tissue regeneration. J Biomed Mater Res A 2017; 105:3262-3272. [DOI: 10.1002/jbm.a.36184] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mei Wei
- Institute of Materials Science, University of ConnecticutStorrs Connecticut 06269
- Department of Materials Science and EngineeringUniversity of ConnecticutStorrs Connecticut 06269
| |
Collapse
|
14
|
Kwon GW, Gupta KC, Jung KH, Kang IK. Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering. Biomater Res 2017; 21:11. [PMID: 28620549 PMCID: PMC5470256 DOI: 10.1186/s40824-017-0097-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND To mimic the muscle inspired cells adhesion through proteins secretion, the lamination of collagen-hydroxyapatite nanorod (nHA) composite nanofibers has been carried out successfully on polydopamine (PDA)-coated microfibrous polylactide-co-glycolide (PLGA) fabrics. The lamination of collagen-hydroxyapatite composite nanofibers on polydopamine-coated microfibrous PLGA fabrics was carried through electrospinning the solution of collagen containing L-glutamic acid-grafted hydroxyapatite nanorods (nHA-GA) at a flow rate of 1.5 mL/h and an applied voltage of 15 kV. RESULTS In comparison to pristine PLGA, dopamine-coated PLGA and collagen-hydroxyapatite composite nanofiber lamination has produced more wettable surfaces and surface wettability is found to higher with dopamine-coated PLGA fabrics then pristine PLGA. The SEM micrographs have clearly indicated that the lamination of polydopamine-coated PLGA fabric with collagen-hydroxyapatite composite nanofibers has shown increased adhesion of MC3T3E1 cells in comparison to pristine PLGA fabrics. CONCLUSION The results of these studies have clearly demonstrated that collagen-nHA composites fibers may be used to create bioactive 3D scaffolds using PLGA as an architectural support agent.
Collapse
Affiliation(s)
- Gi-Wan Kwon
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 702-701 South Korea
| | - Kailash Chandra Gupta
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 702-701 South Korea.,Polymer Research Laboratory, Department of Chemistry, I. I. T. Roorkee, Roorkee, 247 667 India
| | - Kyung-Hye Jung
- Department of Advanced Materials and Chemical Engineering,Catholic University of Daegu, Kyungsan, South Korea
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 702-701 South Korea
| |
Collapse
|
15
|
Osteogenesis evaluation of duck's feet-derived collagen/hydroxyapatite sponges immersed in dexamethasone. Biomater Res 2017; 21:2. [PMID: 28250967 PMCID: PMC5324229 DOI: 10.1186/s40824-017-0088-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023] Open
Abstract
Background The aim of this study was to investigate the osteogenesis effects of DC and DC/HAp sponge immersed in without and with dexamethasone. Methods The experimental groups in this study were DC and DC/HAp sponge immersed in without dexamethasone (Dex(−)DC and Dex(−)-DC/HAp group) and with dexamethasone (Dex(+)-DC and Dex(+)-DC/HAp group). We characterized DC and DC/HAp sponge using compressive strength, scanning electron microscopy (SEM). Also, osteogenic differentiation of BMSCs on sponge (Dex(−)DC, Dex(−)-DC/HAp, Dex(+)-DC and Dex(+)-DC/HAp group) was assessed by SEM, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assay, alkaline phosphatase (ALP) activity assay and reverse transcription-PCR (RT-PCR). Results In this study, we assessed osteogenic differentiation of BMSCs on Duck’s feet-derived collagen (DC)/HAp sponge immersed with dexamethasone Dex(+)-DC/HAp. These results showed that Dex(+)-DC/HAp group increased cell proliferation and osteogenic differentiation of BMSCs during 28 days. Conclusion From these results, Dex(+)-DC/HAp can be envisioned as a potential biomaterial for bone regeneration applications.
Collapse
|
16
|
Bobbert FSL, Zadpoor AA. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B 2017; 5:6175-6192. [DOI: 10.1039/c7tb00741h] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper presents an overview of the effect of porous biomaterial architecture on seeding efficiency, cell response, angiogenesis, and bone formation.
Collapse
Affiliation(s)
- F. S. L. Bobbert
- Department of Biomechanical Engineering
- Delft University of Technology
- Delft 2628CD
- The Netherlands
| | - A. A. Zadpoor
- Department of Biomechanical Engineering
- Delft University of Technology
- Delft 2628CD
- The Netherlands
| |
Collapse
|
17
|
Hu C, Yu L, Wei M. Biomimetic intrafibrillar silicification of collagen fibrils through a one-step collagen self-assembly/silicification approach. RSC Adv 2017. [DOI: 10.1039/c7ra02935g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrafibrillar silicified collagen fibrils are successfully fabricated using a one-step collagen self-assembly/silicification approach, which better support osteoblast activities.
Collapse
Affiliation(s)
- Changmin Hu
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| | - Le Yu
- Department of Materials Science and Engineering
- University of Connecticut
- Storrs
- USA
| | - Mei Wei
- Department of Materials Science and Engineering
- University of Connecticut
- Storrs
- USA
- Institute of Materials Science
| |
Collapse
|
18
|
Hu C, Zilm M, Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J Biomed Mater Res A 2016; 104:1153-61. [PMID: 26748775 DOI: 10.1002/jbm.a.35649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
A biomimetic collagen-apatite (Col-Ap) scaffold resembling the composition and structure of natural bone from the nanoscale to the macroscale has been successfully prepared for bone tissue engineering. We have developed a bottom-up approach to fabricate hierarchically biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization. To achieve intrafibrillar mineralization, polyacrylic acid (PAA) was used as a sequestrating analog of noncollagenous proteins (NCPs) to form a fluidic amorphous calcium phosphate (ACP) nanoprecursor through attraction of calcium and phosphate ions. Sodium tripolyphosphate was used as a templating analog to regulate orderly deposition of apatite within collagen fibrils. Both X-ray diffraction and Fourier transform infrared spectroscopy suggest that the mineral phase was apatite. Field emission scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction confirmed that hierarchical collagen-Ap scaffolds were produced with both intrafibrillar and extrafibrillar mineralization. Biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization (IE-Col-Ap) were compared with Col-Ap scaffolds with extrafibrillar mineralization only (E-Col-Ap) as well as pure collagen scaffolds in vitro for cellular proliferation using MC3T3-E1 cells. Pure collagen scaffolds had the highest rate of proliferation, while there was no statistically significant difference between IE-Col-Ap and E-Col-Ap scaffolds. Thus, the bottom-up biomimetic fabrication approach has rendered a group of promising Col-Ap scaffolds, which bear high resemblance to natural bone in terms of composition and structure.
Collapse
Affiliation(s)
- Changmin Hu
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Michael Zilm
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Mei Wei
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| |
Collapse
|
19
|
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Improving the permeability of lyophilized collagen-hydroxyapatite scaffolds for cell-based bone regeneration with a gelatin porogen. J Biomed Mater Res B Appl Biomater 2015; 104:1580-1590. [PMID: 26305733 DOI: 10.1002/jbm.b.33387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/14/2014] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
Bone tissue engineering using biomaterial scaffolds and culture-expanded osteoprogenitor cells has been demonstrated in several studies; however, it is not yet a clinical reality. One challenge is the optimal design of scaffolds for cell delivery and the identification of scaffold parameters that can delineate success and failure in vivo. Motivated by a previous experiment in which a batch of lyophilized collagen-hydroxyapatite (HA) scaffolds displayed modest bone formation in vivo, despite having large pores and high porosity, we began to investigate the effect of scaffold permeability on bone formation. Herein, we fabricated scaffolds with a permeability of 2.17 ± 1.63 × 10-9 m4 /(N s) and fourfold higher using a sacrificial gelatin porogen. Scaffolds were seeded with mouse bone marrow stromal cells carrying a fluorescent reporter for osteoblast differentiation and implanted into critical-size calvarial defects in immunodeficient mice. The porogen scaffold group containing a 1:1 ratio of solids to beads was significantly more radiopaque than the scaffold group without the bead porogen 3 weeks after implantation. Quantitative histomorphometry uncovered the same trend between the 1:1 group and scaffolds without porogen found in the radiographic data; however, this was not statistically significant here. Taken together, the X-ray and histology suggest that the 1:1 ratio of porogen to scaffold solids, resulting in a fourfold increase in permeability, may enhance bone formation when compared to scaffolds without porogen. Scaffold permeability can be a useful quality control measure before implantation and this practice should improve the consistency and efficacy of cell-based bone tissue engineering. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1580-1590, 2016.
Collapse
Affiliation(s)
- Max M Villa
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269
| | - Liping Wang
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Jianping Huang
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Mei Wei
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269.
| |
Collapse
|
20
|
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 2014; 103:243-53. [PMID: 24909953 DOI: 10.1002/jbm.b.33225] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/06/2014] [Accepted: 05/17/2014] [Indexed: 01/18/2023]
Abstract
Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen-hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor-derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen-HA scaffold, the in vivo performance was compared with a commercial collagen-HA scaffold (Healos(®) , Depuy). The in-house collagen-HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n = 5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen-HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen-hydroxyapatite biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Max M Villa
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269-3136
| | | | | | | | | |
Collapse
|
21
|
Yu X, Wang L, Xia Z, Chen L, Jiang X, Rowe D, Wei M. Modulation of Host Osseointegration during Bone Regeneration by Controlling Exogenous Stem Cells Differentiation Using a Material Approach. Biomater Sci 2014; 2:242-251. [PMID: 24999385 PMCID: PMC4078879 DOI: 10.1039/c3bm60173k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell-based tissue engineering for large bone defect healing has attracted enormous attention in regenerative medicine. However, sufficient osseointegration of the grafts combined with exogenous stem cells still remains a major challenge. Here we developed a material approach to modulate the integration of the grafts to the host tissue when exogenous bone marrow stromal cells (BMSCs) were used as donor cells. Distinctive osseointegration of bone grafts was observed as we varied the content of hydroxyapatite (HA) in the tissue scaffolds implanted in a mouse femur model. More than 80% of new bone was formed in the first two weeks of implantation in high HA content scaffold but lack of host integration while only less than 5% of the new bone was formed during this time period in the no HA group but with much stronger host integration. Cell origin analysis leveraging GFP reporter indicates new bone in HA containing groups was mainly derived from donor BMSCs. In comparison, both host and donor cells were found on new bone surface in the no HA groups which led to seamless bridging between host tissue and the scaffold. Most importantly, host integration during bone formation is closely dictated to the content of HA present in the scaffolds. Taken together, we demonstrate a material approach to modulate the osseointegration of bone grafts in the context of exogenous stem cell-based bone healing strategy which might lead to fully functional bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Liping Wang
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Zengmin Xia
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Li Chen
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Xi Jiang
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - David Rowe
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Mei Wei
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Cellular performance comparison of biomimetic calcium phosphate coating and alkaline-treated titanium surface. BIOMED RESEARCH INTERNATIONAL 2013; 2013:832790. [PMID: 24455730 PMCID: PMC3884630 DOI: 10.1155/2013/832790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/28/2013] [Indexed: 01/22/2023]
Abstract
The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.
Collapse
|
23
|
Yu X, Walsh J, Wei M. Covalent Immobilization of Collagen on Titanium through Polydopamine Coating to Improve Cellular Performances of MC3T3-E1 Cells. RSC Adv 2013; 4:7185-7192. [PMID: 24932406 PMCID: PMC4053246 DOI: 10.1039/c3ra44137g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Surface modification of orthopedic implants is critical for improving the clinical performance of these medical devices. Herein, collagen was covalently immobilized onto a titanium implant surface via a novel adherent polydopamine coating inspired by mussel adhesive proteins. The formation and composition of the collagen coating was characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Fluorescent labeled collagen was also used to examine the formation and uniformity of the collagen coating. The resultant collagen coating with a polydopamine supporting substrate demonstrated better uniformity and distribution on the titanium surface compared to a physical adsorption of collagen. The covalent immobilized collagen coating is biologically active, as evidenced by its ability to enhance MC3T3-E1 cell adhesion, support cell proliferation and promote early stage osteogenic differentiation of pre-osteoblasts. Our study suggests covalent immobilization of collagen through the polydopamine coating might be an efficient way to improve the cellular performance of implant surfaces.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Materials Science and Engineering, University of Connecticut Storrs, CT, 06269, USA
| | - John Walsh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Mei Wei
- Department of Materials Science and Engineering, University of Connecticut Storrs, CT, 06269, USA
| |
Collapse
|
24
|
Cicuéndez M, Malmsten M, Doadrio JC, Portolés MT, Izquierdo-Barba I, Vallet-Regí M. Tailoring hierarchical meso-macroporous 3D scaffolds: from nano to macro. J Mater Chem B 2013; 2:49-58. [PMID: 32261298 DOI: 10.1039/c3tb21307b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone tissue regeneration requires the use of 3D scaffolds which mimic the architecture of the natural extracellular matrix, creating an adequate microenvironment for bone cell growth. Such 3D scaffolds need surface properties suitable for biological recognition in the early stage of cell adhesion, necessary to ensure complete cell colonization, retained cell functionality, and subsequently bone regeneration. Herein, hierarchical 3D scaffolds based on new hydroxyapatite/mesoporous glass nanocomposite bioceramic (MGHA) exhibiting different scales of porosity have been synthesized. These 3D scaffolds possess: (i) highly ordered mesopores with diameters of 10 nm; (ii) macropores with diameters in the 30-80 μm range with interconnections of 1-10 μm; and (iii) large macropores of ca. 500 μm. To improve their surface properties, 3D scaffolds were modified through direct functionalization with amine propyl groups, which notably improve preosteoblast adhesion, proliferation (2.3 fold), differentiation (4.8 fold) and further cell colonization of these scaffolds. The observed enhancement can be related to these amine groups which favour early adhesion, e.g., based on nonspecific protein adsorption as was demonstrated by ellipsometry. These results suggest that the combination of hierarchical structure design and amine surface modification of hydroxyapatite/mesoporous nanocomposite scaffolds yields a double increase in cell proliferation, as well as a quadruple increase in cell differentiation, demonstrating the potential of these nanocomposite materials for bone tissue regeneration purposes.
Collapse
Affiliation(s)
- Mónica Cicuéndez
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Ucar S, Yilgor P, Hasirci V, Hasirci N. Chitosan-based wet-spun scaffolds for bioactive agent delivery. J Appl Polym Sci 2013. [DOI: 10.1002/app.39629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Pinar Yilgor
- Department of Biomedical Engineering; Faculty of Engineering and Architecture; Cukurova University; 01330; Adana; Turkey
| | | | | |
Collapse
|
26
|
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Visualizing osteogenesis in vivo within a cell-scaffold construct for bone tissue engineering using two-photon microscopy. Tissue Eng Part C Methods 2013; 19:839-49. [PMID: 23641794 DOI: 10.1089/ten.tec.2012.0490] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tissue-engineering therapies have shown early success in the clinic, however, the cell-biomaterial interactions that result in successful outcomes are not yet well understood and are difficult to observe. Here we describe a method for visualizing bone formation within a tissue-engineered construct in vivo, at a single-cell resolution, and in situ in three dimensions using two-photon microscopy. First, two-photon microscopy and histological perspectives were spatially linked using fluorescent reporters for cells in the skeletal lineage. In the process, the tissue microenvironment that precedes a repair-focused study was described. The distribution and organization of type I collagen in the calvarial microenvironment was also described using its second harmonic signal. Second, this platform was used to observe in vivo, for the first time, host cells, donor cells, scaffold, and new bone formation within cell-seeded constructs in a bone defect. We examined constructs during bone repair 4 and 6 weeks after implantation. New bone formed on scaffolds, primarily by donor cells. Host cells formed a new periosteal layer that covered the implant. Scaffold resorption appeared to be site specific, where areas near the top were removed and deeper areas were completely embedded in new mineral. Visualizing the in vivo progression of the cell and scaffold microenvironment will contribute to our understanding of tissue-engineered regeneration and should lead to the development of more streamlined and therapeutically powerful approaches.
Collapse
Affiliation(s)
- Max M Villa
- 1 Department of Materials Science and Engineering, University of Connecticut , Storrs, Connecticut
| | | | | | | | | |
Collapse
|
27
|
Xia L, Lin K, Jiang X, Xu Y, Zhang M, Chang J, Zhang Z. Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J Mater Chem B 2013; 1:5403-5416. [DOI: 10.1039/c3tb20945h] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|