1
|
Yamamoto T, Taguchi R, Yan Z, Ejima R, Xu L, Nakahata M, Kamon Y, Hashidzume A. Interaction of Cyclodextrins with Amphiphilic Alternating Cooligomers Possessing the Dense Triazole Backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7178-7191. [PMID: 38506447 DOI: 10.1021/acs.langmuir.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The interaction of cyclodextrins (CDs) with structure-controlled polymers is expected to provide significant insights into macromolecular recognition. However, the interaction of CDs with structure-controlled polymers has been an underexamined issue of investigation. Herein, alternating amphiphilic cooligomers (oligoCnAH, where n denotes the carbon number of alkyl groups; n = 4, 8, and 12) were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition polymerization of heterodimers of 4-azido-5-hexynoic acid (AH) derivatives carrying N-alkylamide and t-butyl (tBu) ester side chains, followed by hydrolysis of the tBu ester, to study the interaction of CDs with oligoCnAH by 1H NMR, nuclear Overhauser effect spectroscopy, and pulse-field-gradient spin-echo NMR. These NMR studies indicated that αCD interacted with oligoC4AH, αCD and βCD interacted with oligoC8AH, and all CDs interacted with oligoC12AH. Based on the equilibrium models proposed, the binding constants were evaluated for the binary mixtures, which showed interaction. Comparing the interactions of the CDs/oligoC12AH binary mixtures with those of the binary mixtures of CDs and alternating copolymers of sodium maleate and dodecyl vinyl ether (polyC12M), it is concluded that oligoC12AH forms less stable micelles than does polyC12M presumably because of the lower molecular weight, the hydrophilic amide groups in the side chain, and the longer interval between neighboring C12 groups in oligoC12AH.
Collapse
Affiliation(s)
- Tomoaki Yamamoto
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoichi Taguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Zijun Yan
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ryo Ejima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Linlin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Bose R, Jayawant M, Raut R, Lakkakula J, Roy A, Alghamdi S, Qusty NF, Sharma R, Verma D, Khandaker MU, Almujally A, Tamam N, Sulieman A. Cyclodextrin nanoparticles in targeted cancer theranostics. Front Pharmacol 2023; 14:1218867. [PMID: 37601050 PMCID: PMC10434568 DOI: 10.3389/fphar.2023.1218867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The field of cancer nanotheranostics is rapidly evolving, with cyclodextrin (CD)-based nanoparticles emerging as a promising tool. CDs, serving as nanocarriers, have higher adaptability and demonstrate immense potential in delivering powerful anti-cancer drugs, leading to promising and specific therapeutic outcomes for combating various types of cancer. The unique characteristics of CDs, combined with innovative nanocomplex creation techniques such as encapsulation, enable the development of potential theranostic treatments. The review here focuses mainly on the different techniques administered for effective nanotheranostics applications of CD-associated complex compounds in the domain of cancer treatments. The experimentations on various loaded drugs and their complex conjugates with CDs prove effective in in vivo results. Various cancers can have potential nanotheranostics cures using CDs as nanoparticles along with a highly efficient process of nanocomplex development and a drug delivery system. In conclusion, nanotheranostics holds immense potential for targeted drug delivery and improved therapeutic outcomes, offering a promising avenue for revolutionizing cancer treatments through continuous research and innovative approaches.
Collapse
Affiliation(s)
- Roshnee Bose
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, Maharashtra, India
| | - Maharsh Jayawant
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, Maharashtra, India
| | - Rajesh Raut
- Department of Botany, The Institute of Science, Mumbai, Maharashtra, India
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, Maharashtra, India
- Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, Maharashtra, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, Dhaka, Bangladesh
| | - Abdullah Almujally
- Department of Biomedical Physics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
3
|
Chan MH, Li CH, Chang YC, Hsiao M. Iron-Based Ceramic Composite Nanomaterials for Magnetic Fluid Hyperthermia and Drug Delivery. Pharmaceutics 2022; 14:2584. [PMID: 36559083 PMCID: PMC9788200 DOI: 10.3390/pharmaceutics14122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Because of the unique physicochemical properties of magnetic iron-based nanoparticles, such as superparamagnetism, high saturation magnetization, and high effective surface area, they have been applied in biomedical fields such as diagnostic imaging, disease treatment, and biochemical separation. Iron-based nanoparticles have been used in magnetic resonance imaging (MRI) to produce clearer and more detailed images, and they have therapeutic applications in magnetic fluid hyperthermia (MFH). In recent years, researchers have used clay minerals, such as ceramic materials with iron-based nanoparticles, to construct nanocomposite materials with enhanced saturation, magnetization, and thermal effects. Owing to their unique structure and large specific surface area, iron-based nanoparticles can be homogenized by adding different proportions of ceramic minerals before and after modification to enhance saturation magnetization. In this review, we assess the potential to improve the magnetic properties of iron-based nanoparticles and in the preparation of multifunctional composite materials through their combination with ceramic materials. We demonstrate the potential of ferromagnetic enhancement and multifunctional composite materials for MRI diagnosis, drug delivery, MFH therapy, and cellular imaging applications.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Karthic A, Roy A, Lakkakula J, Alghamdi S, Shakoori A, Babalghith AO, Emran TB, Sharma R, Lima CMG, Kim B, Park MN, Safi SZ, de Almeida RS, Coutinho HDM. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Front Cell Dev Biol 2022; 10:984311. [PMID: 36158215 PMCID: PMC9494816 DOI: 10.3389/fcell.2022.984311] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is still one of the world’s deadliest health concerns. As per latest statistics, lung, breast, liver, prostate, and cervical cancers are reported topmost worldwide. Although chemotherapy is most widely used methodology to treat cancer, poor pharmacokinetic parameters of anticancer drugs render them less effective. Novel nano-drug delivery systems have the caliber to improve the solubility and biocompatibility of various such chemical compounds. In this regard, cyclodextrins (CD), a group of natural nano-oligosaccharide possessing unique physicochemical characteristics has been highly exploited for drug delivery and other pharmaceutical purposes. Their cup-like structure and amphiphilic nature allows better accumulation of drugs, improved solubility, and stability, whereas CDs supramolecular chemical compatibility renders it to be highly receptive to various kinds of functionalization. Therefore combining physical, chemical, and bio-engineering approaches at nanoscale to specifically target the tumor cells can help in maximizing the tumor damage without harming non-malignant cells. Numerous combinations of CD nanocomposites were developed over the years, which employed photodynamic, photothermal therapy, chemotherapy, and hyperthermia methods, particularly targeting cancer cells. In this review, we discuss the vivid roles of cyclodextrin nanocomposites developed for the treatment and theranostics of most important cancers to highlight its clinical significance and potential as a medical tool.
Collapse
Affiliation(s)
- Anandakrishnan Karthic
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- Centre for Computational Biology and Translational Research, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore, Pakistan
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri –URCA, Crato, Brazil
| | | |
Collapse
|
5
|
Morita Y, Kobayashi K, Toku Y, Kimura Y, Luo Q, Song G, Ju Y. Nanocarriers for drug-delivery systems using a ureido-derivatized polymer gatekeeper for temperature-controlled spatiotemporal on-off drug release. BIOMATERIALS ADVANCES 2022; 139:213026. [PMID: 35882119 DOI: 10.1016/j.bioadv.2022.213026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Accidental chemotherapy extravasation exacerbates the side effects of anticancer drugs. Therefore, drug-delivery nanocarriers should be designed to avoid persistent drug release at off-target sites and promote burst drug release at on-target. Considering these requirements, poly(allylamine)-co-poly(allylurea) (PAU), a ureido-derivatized temperature responsive polymer with upper critical solution temperature (UCSTs), is an ideal material. This report describes the fabrication, characterization, and in vitro cellular toxicity of PAU polymer-grafted magnetic mesoporous silica nanoparticles as drug-delivery nanocarriers. A UCST of 43 °C and an ultranarrow transition temperature range of 39-43 °C was realized, ensuring that the nanocarriers suppressed undesirable leakage to below 10 % of the drug loading for 8 h in the absence of a thermal stimulus. A drug release burst of up to 75 % of the drug loading was achieved within 30 min after the stimulus, reducing the viability of the in vitro cancer cells to 12 %. Therefore, the ureido-derivatized polymer is one of the most suitable gatekeepers for drug-delivery nanocarriers.
Collapse
Affiliation(s)
- Yasuyuki Morita
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Koudai Kobayashi
- Department of Micro-Nano Mechanical Sciences & Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuhki Toku
- Department of Micro-Nano Mechanical Sciences & Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yasuhiro Kimura
- Department of Micro-Nano Mechanical Sciences & Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Qing Luo
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Ju
- Department of Micro-Nano Mechanical Sciences & Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
6
|
Lee J, Kim K, Kim C. Mesoporous nanocarriers with cyclic peptide gatekeeper containing N-cadherin binding sequence for stimulus-responsive drug release. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
8
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
9
|
Gómez-Graña S, Pérez-Juste J, Hervés P. Cyclodextrins and inorganic nanoparticles: Another tale of synergy. Adv Colloid Interface Sci 2021; 288:102338. [PMID: 33383472 DOI: 10.1016/j.cis.2020.102338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
In this review, we summarize the recent research focused on the combination of inorganic nanoparticles and α-, β- and γ- cyclodextrins. Our intention is to highlight the most relevant publications on the synthesis of nanoparticle-cyclodextrin (NP-CD) nanohybrids, with CDs acting as reducing agents or through the post-synthetic modification of inorganic nanoparticles with CDs. We also discuss the new or enhanced properties that arise from the host-guest capabilities of the CDs and inorganic nanoparticles. Finally, we illustrate the potential applications of these materials in numerous research fields.
Collapse
Affiliation(s)
- Sergio Gómez-Graña
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain.
| | - Jorge Pérez-Juste
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Pablo Hervés
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| |
Collapse
|
10
|
Zhang K, Zhang Y, Li Y, Iqbal Z, Yu L, Liu J, Wang H, He P. The thermal/pH-sensitive drug delivery system encapsulated by PAA based on hollow hybrid nanospheres with two silicon source. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:695-713. [PMID: 33297850 DOI: 10.1080/09205063.2020.1861734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of drug delivery systems based on hollow mesoporous silica nanoparticles (MSNs) is still a major challenge. In this work, the hollow hybrid MSNs were successfully prepared by cetyltrimethylammonium bromide-directed sol-gel process and one-step hydrothermal treatment process. The hollow hybrid MSNs had hybrid ethane-bridged frameworks with the uniform particle size (250 nm) and mesoporous pore diameter (3.7 nm). The polyacrylic acid (PAA) encapsulated drug delivery system based on hollow hybrid MSNs was prepared by using silanization, surface modification, doxorubicin hydrochloride (DOX) loading, and PAA coating. Drug encapsulation and release behavior at different temperatures and pH were studied by using DOX as a model guest molecule. The results displayed that the modified hollow ethane-bridged MSNs possessed good biocompatibility and excellent thermal/pH-dual-sensitive drug release property. This novel thermal/pH-sensitive drug delivery system based on hollow ethane-bridged MSNs has the advantages of feasible synthesis, no cytotoxicity, and good drug loading capacity, which may have potential applications in the anticancer therapy.
Collapse
Affiliation(s)
- Keju Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China.,The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Zoya Iqbal
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Li Yu
- Department of Traumaorthopedics and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiyan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, China
| | - Haiping Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, China
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China.,Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, China
| |
Collapse
|
11
|
Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target 2020; 29:131-154. [PMID: 32815741 DOI: 10.1080/1061186x.2020.1812614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNPs) are a particular example of innovative nanomaterials for the development of drug delivery systems. MSNPs have recently received more attention for biological and pharmaceutical applications due to their capability to deliver therapeutic agents. Due to their unique structure, they can function as an effective carrier for the delivery of therapeutic agents to mitigate diseases progress, reduce inflammatory responses and consequently improve cancer treatment. The potency of MSNPs for the diagnosis and management of various diseases has been studied. This literature review will take an in-depth look into the properties of various types of MSNPs (e.g. shape, particle and pore size, surface area, pore volume and surface functionalisation), and discuss their characteristics, in terms of cellular uptake, drug delivery and release. MSNPs will then be discussed in terms of their therapeutic applications (passive and active tumour targeting, theranostics, biosensing and immunostimulative), biocompatibility and safety issues. Also, emerging trends and expected future advancements of this carrier will be provided.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Molecular Design and Synthesis Discipline, Queensland University of Technology, Brisbane, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Sitah Al Harthi
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia.,Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Dawadmi, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
12
|
Zhang SF, Lü S, Yang J, Huang M, Liu Y, Liu M. Synthesis of Multiarm Peptide Dendrimers for Dual Targeted Thrombolysis. ACS Macro Lett 2020; 9:238-244. [PMID: 35638687 DOI: 10.1021/acsmacrolett.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current thrombolytic agents generally possess low specificity and pose a high risk of intracranial hemorrhage. Here, various generations of multiarm polylactic acid-polyglutamic acid peptide dendrimers were synthesized, and then nattokinase-combining magnetic Fe3O4 nanoparticles and RGD-modified dendrimers (Fe3O4-(4-PLA(G3)4)-RGD) were fabricated for targeted thrombi dissolution. Their in vitro and in vivo thrombolytic properties were determined. In vitro determination indicated that Fe3O4-(4-PLA(G3)4)-RGD/nattokinase provided 3-fold higher blood clot dissolution than that obtained with free nattokinase. An in vivo thrombolytic examination revealed that most of the thrombi were dissolved under an external magnetic field. In addition, there were many nanoparticles in vascular endothelial cells, demonstrating the RGD and magnetic dual targeting capacity of Fe3O4-(4-PLA(G3)4)-RGD/nattokinase. These results demonstrated that Fe3O4-(4-PLA(G3)4)-RGD nanoparticles not only will deliver targeted thrombolytic agents to enhance the efficacy of site-specific thrombolytic treatment but also have potential in the diagnosis of thrombotic disease in its early stages.
Collapse
Affiliation(s)
- Shao-Fei Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Agriculture and Forestry Technology, Longnan Teacher’s College, Longnan 742500, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiandong Yang
- School of Agriculture and Forestry Technology, Longnan Teacher’s College, Longnan 742500, China
| | - Mengjie Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongming Liu
- The First School of Clinical Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
|
14
|
Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040067] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperthermia is a noninvasive method that uses heat for cancer therapy where high temperatures have a damaging effect on tumor cells. However, large amounts of heat need to be delivered, which could have negative effects on healthy tissues. Thus, to minimize the negative side effects on healthy cells, a large amount of heat must be delivered only to the tumor cells. Magnetic hyperthermia (MH) uses magnetic nanoparticles particles (MNPs) that are exposed to alternating magnetic field (AMF) to generate heat in local regions (tissues or cells). This cancer therapy method has several advantages, such as (a) it is noninvasive, thus requiring surgery, and (b) it is local, and thus does not damage health cells. However, there are several issues that need to achieved: (a) the MNPs should be biocompatible, biodegradable, with good colloidal stability (b) the MNPs should be successfully delivered to the tumor cells, (c) the MNPs should be used with small amounts and thus MNPs with large heat generation capabilities are required, (d) the AMF used to heat the MNPs should meet safety conditions with limited frequency and amplitude ranges, (e) the changes of temperature should be traced at the cellular level with accurate and noninvasive techniques, (f) factors affecting heat transport from the MNPs to the cells must be understood, and (g) the effect of temperature on the biological mechanisms of cells should be clearly understood. Thus, in this multidisciplinary field, research is needed to investigate these issues. In this report, we shed some light on the principles of heat generation by MNPs in AMF, the limitations and challenges of MH, and the applications of MH using multifunctional hybrid MNPs.
Collapse
|
15
|
Ardelean IL, Ficai D, Sonmez M, Oprea O, Nechifor G, Andronescu E, Ficai A, Titu MA. Hybrid Magnetic Nanostructures For Cancer Diagnosis And Therapy. Anticancer Agents Med Chem 2019; 19:6-16. [PMID: 30411694 DOI: 10.2174/1871520618666181109112655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Cancer is the second disease in the world from the point of view of mortality. The conventional routes of treatment were found to be not sufficient and thus alternative ways are imposed. The use of hybrid, magnetic nanostructures is a promising way for simultaneous targeted diagnosis and treatment of various types of cancer. For this reason, the development of core@shell structures was found to be an efficient way to develop stable, biocompatible, non-toxic carriers with shell-dependent internalization capacity in cancer cells. So, the multicomponent approach can be the most suitable way to assure the multifunctionality of these nanostructures to achieve the desired/necessary properties. The in vivo stability is mostly assured by the coating of the magnetic core with various polymers (including polyethylene glycol, silica etc.), while the targeting capacity is mostly assured by the decoration of these nanostructures with folic acid. Unfortunately, there are also some limitations related to the multilayered approach. For instance, the increasing of the thickness of layers leads to a decrease the magnetic properties, (hyperthermia and guiding ability in the magnetic field, for instance), the outer shell should contain the targeting molecules (as well as the agents helping the internalization into the cancer cells), etc.
Collapse
Affiliation(s)
- Ioana L Ardelean
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Denisa Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Maria Sonmez
- Leather and Footwear Research Institute, Department of Rubber, 93 Ion Minulescu street, 031215, Bucharest, Romania
| | - Ovidiu Oprea
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Anton Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Mihail A Titu
- "Lucian Blaga" University of Sibiu, Faculty of Engineering, Industrial Engineering and Management Departament, Sibiu, Romania
| |
Collapse
|
16
|
Lee J, Oh ET, Lee J, Kang T, Kim HG, Kang H, Park HJ, Kim C. Cyclic iRGD peptide as a dual-functional on–off gatekeeper of mesoporous nanocontainers for targeting NRP-1 and selective drug release triggered by conformational conversion. NEW J CHEM 2019. [DOI: 10.1039/c8nj04649b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyclic iRGD peptide as a dual-functional on–off gatekeeper on the surface of MSNs is prepared for specific NRP-1 targeting and selective drug release by conformational conversion.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences
- School of Medicine
- Inha University
- Incheon 22212
- Korea
| | - Jinyoung Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Taehyeong Kang
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Ha Gyeong Kim
- Department of Microbiology
- Hypoxia-related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Hansol Kang
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Heon Joo Park
- Department of Microbiology
- Hypoxia-related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Chulhee Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| |
Collapse
|
17
|
Lee J, Oh ET, Kang H, Kim J, Kim HG, Park HJ, Kim C. Specific HER2 targeting and triggered drug release by conformational transformation of a dual-functional peptide gatekeeper on mesoporous nanocontainers. NEW J CHEM 2019. [DOI: 10.1039/c9nj02591j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For specific targeting of HER2 and triggered drug release by stimuli-responsive conformational transformation, we developed a dual-functional cyclic peptide gatekeeper containing a HER2-binding sequence on the surface of mesoporous nanocontainers.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences
- School of Medicine
- Inha University
- Incheon 22212
- Korea
| | - Hansol Kang
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Jiwon Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Ha Gyeong Kim
- Department of Microbiology
- Hypoxia-related Disease Research Center, College of Medicine
- Inha University
- Incheon 22212
- Korea
| | - Heon Joo Park
- Department of Microbiology
- Hypoxia-related Disease Research Center, College of Medicine
- Inha University
- Incheon 22212
- Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| |
Collapse
|
18
|
Tamarov K, Näkki S, Xu W, Lehto VP. Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles. J Mater Chem B 2018; 6:3632-3649. [PMID: 32254826 DOI: 10.1039/c8tb00462e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The exploitation of various inorganic nanoparticles as drug carriers and therapeutics is becoming increasingly common. The first issue to be considered with regard to the nanomaterials being utilized in medicine centers on their safety. The functionality of nanocarriers in real-life environments explains the enthusiasm for their use. Several functionalities are typically added onto nanocarriers but the most crucial feature of those carriers intended to be administered intravenously is that they should possess a long residence time in blood circulation. The present review focusses on the mesoporous nanoparticles due to their great promise in nanomedicine and concentrates on their coatings because it is the outmost layer which dictates their first interactions with the surroundings and often determines their biofate.
Collapse
Affiliation(s)
- K Tamarov
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
19
|
El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine (Lond) 2018; 13:929-952. [PMID: 29546817 DOI: 10.2217/nnm-2017-0320] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticles (MNPs), particularly made of iron oxides, have been extensively studied as diagnostic imaging agents and therapeutic delivery vehicles. In this review, special emphasis is set on the 'recent advancements of drug-conjugated MNPs used for therapeutic applications'. The most prevalent preparation methods and chemical functionalization strategies required for translational biomedical nanoformulations are outlined. Particular attention is, then, devoted to the tailored conjugation of drugs to the MNP carrier according to either noncovalent or covalent attachments, with advantages and drawbacks of both pathways conferred. Notable examples are presented to demonstrate the advantages of MNPs in respective drug-delivery applications. Understanding of the preparation, conjugation and delivery processes will definitely bring, in the next decades, a novel magneto-nanovehicle for effective theranostics.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- Department of Basic Sciences, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| |
Collapse
|
20
|
Lee J, Oh ET, Choi MH, Kim HG, Park HJ, Kim C. Dual-functional cyclic peptide switch on mesoporous nanocontainers for selective CD44 targeting and on–off gatekeeping triggered by conformational transformation. NEW J CHEM 2018. [DOI: 10.1039/c8nj02179a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual functional cyclic peptide gatekeeper with A6 sequence is designed not only for triggered drug release by conformational transformation of the peptide but also selective targeting of CD44.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences
- School of Medicine
- Inha University
- Incheon 22212
- Korea
| | - Min Hyeuk Choi
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Ha Gyeong Kim
- Department of Microbiology
- Hypoxia-related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Heon Joo Park
- Department of Microbiology
- Hypoxia-related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Chulhee Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| |
Collapse
|
21
|
Lee J, Oh ET, Han Y, Kim HG, Park HJ, Kim C. Mesoporous Silica Nanocarriers with Cyclic Peptide Gatekeeper: Specific Targeting of Aminopeptidase N and Triggered Drug Release by Stimuli-Responsive Conformational Transformation. Chemistry 2017; 23:16966-16971. [PMID: 29077239 DOI: 10.1002/chem.201704309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 11/07/2022]
Abstract
Utilizing stimuli-responsive conformational transformation of a cyclic peptide as a gatekeeper for mesoporous nanocarriers has several advantages such as facile introduction of targeting capabilities, low enzymatic degradation during blood circulation and enhanced specific binding to selected cells. In this report, a Asn-Gly-Arg (NGR)-containing dual-functional cyclic peptide gatekeeper on the surface of mesoporous nanocarrier is prepared not only for active targeting of the aminopeptidase N (APN) expressed on cancer cells but also stimuli-responsive intracellular drug release triggered by a glutathione (GSH)-induced conformational transformation of the peptide gatekeeper. The peptide gatekeeper on the surface of nanocarriers exhibits on-off gatekeeping by conformational transformation triggered by intracellular glutathione of the cancer cells. H1299 cells (high APN expression) showed greater uptake of the nanocarrier by endocytosis and higher apoptosis than A549 cells (low APN expression).
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering, Inha University, Yonghyun-dong, Nam-gu, Incheon, 22212, Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, School of Medicine, Inha University, Yonghyun-dong, Nam-gu, Incheon, 22212, Korea
| | - Yeji Han
- Department of Polymer Science and Engineering, Inha University, Yonghyun-dong, Nam-gu, Incheon, 22212, Korea
| | - Ha Gyeong Kim
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Yonghyun-dong, Nam-gu, Incheon, 22212, Korea
| | - Heon Joo Park
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Yonghyun-dong, Nam-gu, Incheon, 22212, Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering, Inha University, Yonghyun-dong, Nam-gu, Incheon, 22212, Korea
| |
Collapse
|
22
|
Lee J, Oh ET, Song J, Kim HG, Park HJ, Kim C. Stimulus-Induced Conformational Transformation of a Cyclic Peptide for Selective Cell-Targeting On-Off Gatekeeper for Mesoporous Nanocarriers. Chem Asian J 2017; 12:2813-2818. [DOI: 10.1002/asia.201701050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/11/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, School of Medicine; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Jaehun Song
- Department of Polymer Science and Engineering; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Ha Gyeong Kim
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Heon Joo Park
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| |
Collapse
|
23
|
Cutrone G, Casas-Solvas JM, Vargas-Berenguel A. Cyclodextrin-Modified inorganic materials for the construction of nanocarriers. Int J Pharm 2017; 531:621-639. [DOI: 10.1016/j.ijpharm.2017.06.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023]
|
24
|
New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3084-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Lee J, Oh ET, Yoon H, Kim CW, Han Y, Song J, Jang H, Park HJ, Kim C. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. NANOSCALE 2017; 9:6901-6909. [PMID: 28503686 DOI: 10.1039/c7nr00808b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue hypoxia developed in most malignant tumors makes a significant difference to normal tissues in the reduction potential and the activity of various bioreductive enzymes. Given the superior enzymatic activity of NAD(P)H:quinone oxidoreductase 1 (NQO1, a cytosolic reductase up-regulated in many human cancers) in hypoxia relative to that in normoxia, NQO1 has great potential for targeting hypoxic tumor cells. In the present report, the core concept of hypoxic NQO1-responsive mesoporous silica nanoparticles (MSNs) is based on the reasoning that the superior enzymatic activity of NQO1 within hypoxic cancer cells can be utilized as a key stimulus for the selective cleavage of an azobenzene stalk triggering the on-off gatekeeping for controlled release of guest drugs. We corroborate that the NQO1 specifically triggers to release the entrapped drug in the nanochannel of MSNs by reductive cleavage of the azobenzene linker only under hypoxic conditions in a controlled manner not only in vitro but also in vivo. Therefore, our results indicate that Si-Azo-CD-PEG could be utilized as a hypoxic cancer-targeting drug delivery carrier, and further suggest that the azobenzene linker could generally be useful for the construction of hypoxic NQO1-responsive nanomaterials.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pourjavadi A, Tehrani ZM. Poly(N-isopropylacrylamide)-coated β-cyclodextrin–capped magnetic mesoporous silica nanoparticles exhibiting thermal and pH dual response for triggered anticancer drug delivery. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1217531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Zahra Mazaheri Tehrani
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017; 46:6024-6045. [DOI: 10.1039/c7cs00219j] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progress on the design of diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems is summarized.
Collapse
Affiliation(s)
- Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116023
- China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
28
|
Lee J, Han S, Lee J, Choi M, Kim C. Stimuli-responsive α-helical peptide gatekeepers for mesoporous silica nanocarriers. NEW J CHEM 2017. [DOI: 10.1039/c7nj00124j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A stimuli-responsive α-helical peptide, as a gatekeeper on the surface of mesoporous silica nanoparticles, efficiently controlled the release of entrapped drugs through triggered conformational conversion and effectively disrupted lipid membranes.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Seungjong Han
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Jinyoung Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Minhyuek Choi
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| |
Collapse
|
29
|
Pascual L, Sayed SE, Martínez-Máñez R, Costero AM, Gil S, Gaviña P, Sancenón F. Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Org Lett 2016; 18:5548-5551. [DOI: 10.1021/acs.orglett.6b02793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lluís Pascual
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
| | - Sameh El Sayed
- Dipartimento
di Chimica, Università di Pavia, via Taramelli 12, I-27100 Pavia, Italy
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ana M. Costero
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento
de Química Orgánica, Universitat de València, Doctor
Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Salvador Gil
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento
de Química Orgánica, Universitat de València, Doctor
Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Pablo Gaviña
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento
de Química Orgánica, Universitat de València, Doctor
Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
30
|
Generation Dependency of Stimuli-Responsive Dendron-Gated Mesoporous Silica Nanocontainers. Macromol Res 2016. [DOI: 10.1007/s13233-016-4056-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
32
|
Lee J, Oh ET, Yoon H, Kim H, Park HJ, Kim C. A mesoporous nanocontainer gated by a stimuli-responsive peptide for selective triggering of intracellular drug release. NANOSCALE 2016; 8:8070-8077. [PMID: 27021628 DOI: 10.1039/c5nr09280a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mesoporous silica nanocontainers (MSNs) with biologically responsive gatekeepers have great potential for effective delivery of cargo molecules to the desired sites. For that purpose, peptides could be effective candidates as gatekeepers because of their bioresponsiveness and targeting capability. Taking advantage of the zinc finger domain peptide (CXXC), we designed a biocompatible all-peptide gatekeeper (WCGKC) with on-off gatekeeping capability through stimulus-responsive conformational conversion and the steric bulkiness of the tryptophan unit. The turn structure induced by an intramolecular disulfide bond of the peptide gatekeeper (WCGKC-SS) completely inhibited the release of the entrapped doxorubicin (DOX). However, upon reduction of the disulfide bond by glutathione (GSH), the peptide conformation was converted to a random structure, which opened the orifice of the mesopore leading to the release of DOX. The amine moiety of the lysine of the peptide gatekeeper was PEGylated to enhance dispersion stability and biocompatibility of the nanocontainer. Furthermore, the MSNs with the peptide gatekeeper (PEG-WCGKC-SS-Si) selectively released the entrapped DOX in A549 human lung cancer cells in a controlled manner triggered by intracellular GSH, but not in CCD normal lung cells containing a low intracellular GSH level. In A549 cells, DOX-loaded PEG-WCGKC-SS-Si exhibited about 10-times higher cytotoxicity induced by apoptosis than that in CCD cells.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea.
| | - Eun-Taex Oh
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 402-751, Korea
| | - Haerry Yoon
- Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea.
| | - Hyunmi Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea.
| | - Heon Joo Park
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 402-751, Korea.
| | - Chulhee Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea.
| |
Collapse
|
33
|
Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated Materials for On-Command Release of Guest Molecules. Chem Rev 2016; 116:561-718. [DOI: 10.1021/acs.chemrev.5b00456] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Aznar
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Mar Oroval
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Lluís Pascual
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Jose Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Biotecnología, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
34
|
Hudson R. Coupling the magnetic and heat dissipative properties of Fe3O4 particles to enable applications in catalysis, drug delivery, tissue destruction and remote biological interfacing. RSC Adv 2016. [DOI: 10.1039/c5ra22260e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As interest in nanomaterials continues to grow, and the scope of their applications widens, one subset of materials has set itself apart: magnetic nanoparticles (MNPs).
Collapse
Affiliation(s)
- R. Hudson
- Department of Chemistry
- Colby College
- Waterville
- USA
| |
Collapse
|
35
|
Sun R, Wang W, Wen Y, Zhang X. Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2019-2053. [PMID: 28347110 PMCID: PMC5304765 DOI: 10.3390/nano5042019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 12/18/2022]
Abstract
Mesoporous silica nanoparticle (MSN)-based intelligent transport systems have attracted many researchers' attention due to the characteristics of uniform pore and particle size distribution, good biocompatibility, high surface area, and versatile functionalization, which have led to their widespread application in diverse areas. In the past two decades, many kinds of smart controlled release systems were prepared with the development of brilliant nano-switches. This article reviews and discusses the advantages of MSN-based controlled release systems. Meanwhile, the switching mechanisms based on different types of stimulus response are systematically analyzed and summarized. Additionally, the application fields of these devices are further discussed. Obviously, the recent evolution of smart nano-switches promoted the upgrading of the controlled release system from the simple "separated" switch to the reversible, multifunctional, complicated logical switches and selective switches. Especially the free-blockage switches, which are based on hydrophobic/hydrophilic conversion, have been proposed and designed in the last two years. The prospects and directions of this research field are also briefly addressed, which could be better used to promote the further development of this field to meet the needs of mankind.
Collapse
Affiliation(s)
- Ruijuan Sun
- Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wenqian Wang
- Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
36
|
Wang T, Sun G, Wang M, Zhou B, Fu J. Voltage/pH-Driven Mechanized Silica Nanoparticles for the Multimodal Controlled Release of Drugs. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21295-21304. [PMID: 26345470 DOI: 10.1021/acsami.5b05619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The major challenges of current drug delivery systems for combination chemotherapy focus on how to efficiently transport drugs to target sites and release multiple drugs in a programmed manner. Herein, we report a novel multidrug delivery system, MSNPs 1, based on mechanized silica nanoparticles, which were constructed through functionalization of mesoporous silica nanoparticles with the acid-cleavable intermediate linkages and the monoferrocene functionalized β-cyclodextrin (Fc-β-CD) as supramolecular nanovalves. MSNPs 1 achieved zero premature release in the physiological pH solution and realized two different release modalities. In modality 1, MSNPs 1 released the encapsulated drugs gemcitabine (GEM) and doxorubicin (DOX) in sequence when they were successively applied to voltage and acid stimuli. The release time and dosage of GEM were precisely controlled via external voltage. The subsequent acid-triggered release of DOX was attributed to breakage of the intermediate linkages containing ketal groups. Modality 2 is the concurrent release of these two drugs directly upon acid exposure. Furthermore, the cell viability experiments demonstrated that MSNPs 1 had an improved cytotoxicity to MCF7 cells in comparison with single DOX- or GEM-loaded mechanized silica nanoparticles. We envisage that MSNPs 1 will play an important role in research and development for a new generation of controlled-release drug delivery system.
Collapse
Affiliation(s)
- Ting Wang
- School of Chemical Engineering and ‡Institute of Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology , Nanjing 210094, P. R. China
| | - GuangPing Sun
- School of Chemical Engineering and ‡Institute of Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology , Nanjing 210094, P. R. China
| | - MingDong Wang
- School of Chemical Engineering and ‡Institute of Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology , Nanjing 210094, P. R. China
| | - BaoJing Zhou
- School of Chemical Engineering and ‡Institute of Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology , Nanjing 210094, P. R. China
| | - JiaJun Fu
- School of Chemical Engineering and ‡Institute of Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology , Nanjing 210094, P. R. China
| |
Collapse
|
37
|
Chan MH, Lin HM. Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials 2015; 46:149-58. [DOI: 10.1016/j.biomaterials.2014.12.034] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
|
38
|
|
39
|
Wang Y, Gu H. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:576-85. [PMID: 25238634 DOI: 10.1002/adma.201401124] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/11/2014] [Indexed: 05/18/2023]
Abstract
Advances in nanotechnology and nanomedicine offer great opportunities for the development of nanoscaled theranostic platforms. Among various multifunctional nanocarriers, magnetic mesoporous silica nanocomposites (M-MSNs) attract prominent research interest for their outstanding properties and potential biomedical applications. This Research News article highlights recent progress in the design of core-shell-type M-MSNs for both diagnostic and therapeutic applications. First, an overview of synthetic strategies for three representative core-shell-type M-MSNs with different morphologies and structures is presented. Then, the diagnostic functions of M-MSNs is illustrated for magnetic resonance imaging (MRI) applications. Next, magnetic targeted delivery and stimuli-responsive release of drugs, and effective package of DNA/siRNA inside mesopores using M-MSNs as therapeutic agent carriers are discussed. The article concludes with some important challenges that need to be overcome for further practical applications of M-MSNs in nanomedicine.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | | |
Collapse
|
40
|
Lin Z, Li J, He H, Kuang H, Chen X, Xie Z, Jing X, Huang Y. Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra15663c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pH-sensitive drug release system using acetalated-dextran as valves was designed to manipulate smart intracellular release of anticancer drugs.
Collapse
Affiliation(s)
- Zhe Lin
- Research and Development Center
- Changchun University of Chinese Medicine
- Changchun 130117
- P. R. China
| | - Jizhen Li
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Hongyan He
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Huihui Kuang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
41
|
Lee J, Kim H, Han S, Hong E, Lee KH, Kim C. Stimuli-Responsive Conformational Conversion of Peptide Gatekeepers for Controlled Release of Guests from Mesoporous Silica Nanocontainers. J Am Chem Soc 2014; 136:12880-3. [DOI: 10.1021/ja507767h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jeonghun Lee
- Department of Polymer
Science and Engineering and ‡Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Hyunmi Kim
- Department of Polymer
Science and Engineering and ‡Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Songyi Han
- Department of Polymer
Science and Engineering and ‡Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Eunjung Hong
- Department of Polymer
Science and Engineering and ‡Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Keun-Hyeung Lee
- Department of Polymer
Science and Engineering and ‡Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Chulhee Kim
- Department of Polymer
Science and Engineering and ‡Department of Chemistry, Inha University, Incheon 402-751, Korea
| |
Collapse
|
42
|
Lee J, Kim M, Jin SJ, Lee H, Kwon YK, Park HJ, Kim C. Intracellular release of anticancer agents from a hollow silica nanocontainer with glutathione-responsive cyclodextrin gatekeepers. NEW J CHEM 2014. [DOI: 10.1039/c4nj01161a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J Control Release 2014; 192:192-201. [PMID: 25034575 DOI: 10.1016/j.jconrel.2014.06.037] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/02/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022]
Abstract
To develop carriers for efficient anti-cancer drug delivery with reduced side effects, a biocompatible and redox-responsive nanocontainer based on mesoporous silica nanoparticles (MSNs) for tumor-targeted triplex therapy was reported in this study. The nanocontainer was fabricated by immobilizing cytochrome c (CytC) onto the MSNs as sealing agent via intermediate linkers of disulfide bonds for redox-responsive intracellular drug delivery. AS1411 aptamer was further tailored onto MSNs for cell/tumor targeting. The successful construction of redox- responsive MSNs was confirmed by BET/BJH analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermogravimetric analysis (TGA), respectively. Detailed investigations demonstrated that anticancer drug of doxorubicin (DOX) loaded nanocontainer could be triggered by reductant (e.g. glutathione) within cellular microenvironment and release DOX to induce tumor cell apoptosis in vitro. More importantly, the nanocontainer displayed great potential for tumor targeting and achieved triplex therapy effects on the tumor inhibition in vivo through the loading DOX, gatekeeper of CytC and AS1411 aptamer, which were reflected by the change of tumor size, TUNEL staining and HE staining assays.
Collapse
|
44
|
Zafar N, Fessi H, Elaissari A. Colloidal particles containing labeling agents and cyclodextrins for theranostic applications. Int J Pharm 2014; 472:118-29. [PMID: 24914830 DOI: 10.1016/j.ijpharm.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 01/11/2023]
Abstract
This review aims to give to the reader some new light on cyclodextrin (CD)-based theranostic agents in order to complete our recently published review dedicated to CD-particles conjugates in drug delivery systems (Zafar et al., 2014). CDs are biocompatible sugar-based macrocycles used in a wide range of biomedical applications. Here, we mainly focus on fundamental theranostic approaches combining the use of cyclodextrin molecules and colloidal particles as theranostic agents. The system's key features are discussed and a few recent pertinent applications are presented. CDs are used in order to enhance theranostic properties by providing apolar cavities for the encapsulation of hydrophobic moieties. Thus, CD molecules are used to enhance the loading capacity of particles by hosting active molecules. The relevance of CDs in enhancing the labeling properties of particles and the preparation of controlled drug release particles is also highlighted.
Collapse
Affiliation(s)
- Nadiah Zafar
- University of Lyon, F-69622 Lyon, France, University Lyon 1, Villeurbanne, CNRS, UMR 5007, LAGEP-CPE, 43 Bd. 11 Novembre 1918, Villeurbanne F-69622, France
| | - Hatem Fessi
- University of Lyon, F-69622 Lyon, France, University Lyon 1, Villeurbanne, CNRS, UMR 5007, LAGEP-CPE, 43 Bd. 11 Novembre 1918, Villeurbanne F-69622, France
| | - Abdelhamid Elaissari
- University of Lyon, F-69622 Lyon, France, University Lyon 1, Villeurbanne, CNRS, UMR 5007, LAGEP-CPE, 43 Bd. 11 Novembre 1918, Villeurbanne F-69622, France.
| |
Collapse
|
45
|
Hashidzume A, Yamaguchi H, Harada A. Cyclodextrin-based molecular machines. Top Curr Chem (Cham) 2014; 354:71-110. [PMID: 24789535 DOI: 10.1007/128_2014_547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter overviews molecular machines based on cyclodextrins (CDs). The categories of CD-based molecular machines, external stimuli for CD-based molecular machines, and typical examples of CD-based molecular machines are briefly described.
Collapse
Affiliation(s)
- Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | | | | |
Collapse
|
46
|
Nadrah P, Porta F, Planinšek O, Kros A, Gaberšček M. Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: smaller is better. Phys Chem Chem Phys 2013; 15:10740-8. [PMID: 23689395 DOI: 10.1039/c3cp44614j] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To elucidate the importance of the size of capping agents in stimulus-induced release systems from mesoporous silica nanoparticles (MSNs), the effectiveness of poly(propylene imine) dendrimers in controlling the model drug release was studied. MCM-41-type MSNs were synthesized and characterized. Fluorescent compounds (fluorescein disodium salt and carboxyfluorescein) were loaded in the porous structure of the MSNs and entrapped in the silica matrix with the dendrimers of generations I through V by anchoring dendrimers on the MSN surface through disulfide bonds. Stimulus-induced release of the cargo was studied in the presence of dithiothreitol (DTT). Dendrimers of generations I and II were found to be more effective in model drug retention and subsequent release than higher generations. Moreover, MSNs modified with larger amounts of dendrimers lowered the cargo release in the presence of DTT. These findings are of importance for optimizing drug delivery systems based on responsive MSNs as they enable tuning of the amount of the released cargo by choosing the capping agent of appropriate size.
Collapse
Affiliation(s)
- Peter Nadrah
- National Institute of Chemistry, Hajdrihova ul. 19, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
47
|
|
48
|
He H, kuang H, Yan L, Meng F, Xie Z, Jing X, Huang Y. A reduction-sensitive carrier system using mesoporous silica nanospheres with biodegradable polyester as caps. Phys Chem Chem Phys 2013; 15:14210. [DOI: 10.1039/c3cp51947c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
|
49
|
Zeng L, Xiang L, Ren W, Zheng J, Li T, Chen B, Zhang J, Mao C, Li A, Wu A. Multifunctional photosensitizer-conjugated core–shell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. RSC Adv 2013. [DOI: 10.1039/c3ra41916a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|