1
|
Vukadinović A, Milanović Z, Ognjanović M, Janković D, Radović M, Mirković M, Karageorgou MA, Bouziotis P, Erić S, Vranješ-Đurić S, Antić B, Prijović Ž. 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours. NANOTECHNOLOGY 2022; 33:405102. [PMID: 35728572 DOI: 10.1088/1361-6528/ac7ac0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Radiolabelled superparamagnetic iron oxide nanoparticles (SPIONs) are a promising nanomaterial for the development of dual radiation/hyperthermia cancer therapy. To that purpose, flower-shaped SPIONs with an exceptional heating capability were synthesised and coated with citrate, dextran or (3-aminopropyl)triethoxysilane. Both non-coated and coated SPIONs were nontoxic to CT-26 mouse colon cancer cells up to 1.0 mg ml-1in vitro. In an oscillating magnetic field, citrate-coated SPIONs (CA/SPIONs) displayed the highest heating rate (SAR ∼ 253 W g-1) and the strongest hyperthermia effects against CT-26 cells. Labelling of the CA/SPIONs by the90Y radionuclide, emitting β-radiation with an average/maximum energy of 0.94/2.23 MeV, and deep tissue penetration generated90Y-CA/SPIONs intended for the therapy of solid tumours. However, intravenous injection of90Y-CA/SPIONs in CT-26 xenograft-bearing mice resulted in low tumour accumulation. On the contrary, intratumoural injection resulted in long-term retention at the injection site. A single intratumoural injection of 0.25 mg CA/SPIONs followed by 30-min courses of magnetic hyperthermia for four consecutive days caused a moderate antitumour effect against CT-26 and 4T1 mouse tumour xenografts. Intratumoural application of 1.85 MBq/0.25 mg90Y-CA/SPIONs, alone or combined with hyperthermia, caused a significant (P ≤ 0.01) antitumour effect without signs of systemic toxicity. The results confirm the suitability of90Y-CA/SPIONs for monotherapy or dual magnetic hyperthermia-radionuclide nanobrachytherapy (NBT) of solid tumours.
Collapse
Affiliation(s)
- Aleksandar Vukadinović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Zorana Milanović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Miloš Ognjanović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Drina Janković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Magdalena Radović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Marija Mirković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Maria-Argyro Karageorgou
- Department of Physics, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, GR-15784 Athens, Greece
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Aghia Paraskevi, 15341 Athens, Greece
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Aghia Paraskevi, 15341 Athens, Greece
| | - Slavica Erić
- Faculty of Pharmacy, University of Belgrade, 11001 Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Bratislav Antić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Željko Prijović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| |
Collapse
|
2
|
Bayoumi NA, El-Kolaly MT. Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The rapid progress of nanomedicine field has a great influence on the different tumor therapeutic trends. It achieves a potential targeting of the therapeutic agent to the tumor site with neglectable exposure of the normal tissue. In nuclear medicine, nanocarriers have been employed for targeted delivery of therapeutic radioisotopes to the malignant tissues. This systemic radiotherapy is employed to overcome the external radiation therapy drawbacks. This review overviews studies concerned with investigation of different nanoparticles as promising carriers for targeted radiotherapy. It discusses the employment of different nanovehicles for achievement of the synergistic effect of targeted radiotherapy with other tumor therapeutic modalities such as hyperthermia and photodynamic therapy. Radiosensitization utilizing different nanosensitizer loaded nanoparticles has also been discussed briefly as one of the nanomedicine approach in radiotherapy.
Collapse
Affiliation(s)
- Noha Anwer Bayoumi
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Mohamed Taha El-Kolaly
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
3
|
Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. NANOSCALE 2021; 13:8817-8836. [PMID: 33960346 DOI: 10.1039/d1nr01268a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) has become one of the preferred choices for advanced liver cancer patients. Current clinically used microsphere embolic agents, such as PVA, gelatin, and alginate microspheres, have limited therapeutic efficacy and lack the function of real-time imaging. In this work, we fabricated magnetic liquid metal nanoparticle (Fe@EGaIn NP) loaded calcium alginate (CA) microspheres (denoted as Fe@EGaIn/CA microspheres), which integrate CT/MR dual-modality imaging and photothermal/photodynamic functions of the Fe@EGaIn NP core, as well as embolization and drug-loading functions of CA microspheres. Namely, such nano-in-micro spheres can be used as fully flexible theranostic agents to achieve smart-chemoembolization. It has been confirmed by in vitro and in vivo experiments that Fe@EGaIn/CA microspheres have advantageous morphology, favorable biocompatibility, splendid versatility, and advanced embolic efficacy. Benefiting from these properties, excellent therapeutic efficiency was achieved with a tumor growth-inhibiting value of 100% in tumor-bearing rabbits. As a novel microsphere embolic agent with promising therapeutic efficacy and diagnostic capability, Fe@EGaIn/CA microspheres have shown potential applications in clinical transcatheter arterial chemoembolization. And the preparation strategy presented here provides a generalized paradigm for achieving multifunctional and fully flexible theranostics.
Collapse
Affiliation(s)
- Dawei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Wu
- Department of Interventional Medical, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China
| | - Rui Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chennan Lu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Rao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ranjbar Bahadori S, Mulgaonkar A, Hart R, Wu CY, Zhang D, Pillai A, Hao Y, Sun X. Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1671. [PMID: 33047504 DOI: 10.1002/wnan.1671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shahab Ranjbar Bahadori
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Hart
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dianbo Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anil Pillai
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yaowu Hao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Perić M, Kyne SH, Gruden M, Rodić M, Jeremić D, Stanković DM, Brčeski I. Synthesis, structural and DFT analysis of a binuclear nickel(II) complex with the 1,4-bis[2-[2-(diphenylphosphino)benzylidene]]phthalazinylhydrazone ligand. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019; 20:E2323. [PMID: 31083402 PMCID: PMC6539387 DOI: 10.3390/ijms20092323] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
In the last two decades, various nanomaterials have attracted increasing attention in medical science owing to their unique physical and chemical characteristics. Incorporating radionuclides into conventionally used nanomaterials can confer useful additional properties compared to the original material. Therefore, various radionuclides have been used to synthesize functional nanomaterials for biomedical applications. In particular, several α- or β-emitter-labeled organic and inorganic nanoparticles have been extensively investigated for efficient and targeted cancer treatment. This article reviews recent progress in cancer therapy using radiolabeled nanomaterials including inorganic, polymeric, and carbon-based materials and liposomes. We first provide an overview of radiolabeling methods for preparing anticancer agents that have been investigated recently in preclinical studies. Next, we discuss the therapeutic applications and effectiveness of α- or β-emitter-incorporated nanomaterials in animal models and the emerging possibilities of these nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
7
|
Mirković M, Radović M, Stanković D, Milanović Z, Janković D, Matović M, Jeremić M, Antić B, Vranješ-Đurić S. 99mTc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:124-133. [PMID: 31146983 DOI: 10.1016/j.msec.2019.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Novel theranostic nanoplatform is expected to integrate imaging for guiding and monitoring of the tumor therapy with great therapeutic efficacy and fewer side effects. Here we describe the preparation of a multifunctional 99mTc-bisphosphonate-coated magnetic nanoparticles (MNPs) based on Fe3O4 and coated with two hydrophilic bisphosphonate ligands, i.e., methylene diphosphonate (MDP) and 1-hydroxyethane-1,1- diphosphonate (HEDP). The presence of the bisphosphonates on the MNPs surface, enabled their biocompatibility, colloidal stability and successful binding of the radionuclide. The morphology, size, structure, surface charge and magnetic properties of obtained bisphosphonate-coated Fe3O4 MNPs were characterized by transmission electron microscopy, X-ray powder diffraction, dynamic light scattering, laser Doppler electrophoresis, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The specific power absorption values for Fe3O4-MDP and Fe3O4-HEDP were 113 W/g and 141 W/g, respectively, indicated their heating ability under applied magnetic field. Coated MNPs were radiolabeled with 99mTc using stannous chloride as the reducing agent in a reproducible high yield (95% for Fe3O4-MDP and 97% for Fe3O4-HEDP MNPs) and were remained stable in saline and human serum for 24 h. Ex vivo biodistribution studies presented significant liver and spleen uptake in healthy Wistar rats after intravenous administration at all examined time points due to the colloidal nature of both 99mTc-MNPs. Results of scintigraphy studies are in accordance with ex vivo biodistribution studies, demonstrating high in vivo stability of radiolabeled MNPs and therefore results of both methods were proved as accurate information on the biodistribution profile of investigated MNPs. Overall, in vitro and in vivo stability as well as heating ability, indicate that biocompatible radiolabeled bisphosphonate magnetic nanoparticles exhibit promising potential as a theranostic nanoagent.
Collapse
Affiliation(s)
- Marija Mirković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia.
| | - Magdalena Radović
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Dragana Stanković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Zorana Milanović
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Drina Janković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Milovan Matović
- Centre of Nuclear Medicine, Clinical Centre Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Marija Jeremić
- Centre of Nuclear Medicine, Clinical Centre Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Bratislav Antić
- Laboratory of Theoretical and Condensed Matter Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
8
|
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018. [PMCID: PMC7156018 DOI: 10.1016/b978-0-323-48063-5.00001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology is an enabling technology with great potential for applications in stem cell research and regenerative medicine. Fluorescent nanodiamond (FND), an inherently biocompatible and nontoxic nanoparticle, is well suited for such applications. We had developed a prospective isolation method using CD157, CD45, and CD54 to obtain lung stem cells. Labeling of CD45−CD54+CD157+ cells with FNDs did not eliminate their abilities for self-renewal and differentiation. The FND labeling in combination with cell sorting, fluorescence lifetime imaging microscopy, and immunostaining identified transplanted stem cells allowed tracking of their engraftment and regenerative capabilities with single-cell resolution. Time-gated fluorescence (TGF) imaging in mouse tissue sections indicated that they reside preferentially at the bronchoalveolar junctions of lungs, especially in naphthalene-injured mice. Our results presented in Subchapter 1.1 demonstrate not only the remarkable homing capacity and regenerative potential of the isolated stem cells, but also the ability of finding rare lung stem cells in vivo using FNDs. The topical use of antiretroviral-based microbicides, namely of a dapivirine ring, has been recently shown to partially prevent transmission of HIV through the vaginal route. Among different formulation approaches, nanotechnology tools and principles have been used for the development of tentative vaginal and rectal microbicide products. Subchapter 1.2 provides an overview of antiretroviral drug nanocarriers as novel microbicide candidates and discusses recent and relevant research on the topic. Furthermore, advances in developing vaginal delivery platforms for the administration of promising antiretroviral drug nanocarriers are reviewed. Although mostly dedicated to the discussion of nanosystems for vaginal use, the development of rectal nanomicrobicides is also addressed. Infectious diseases are currently responsible for over 8 million deaths per year. Efficient treatments require accurate recognition of pathogens at low concentrations, which in the case of blood infection (septicemia) can go as low as 1 mL–1. Detecting and quantifying bacteria at such low concentrations is challenging and typically demands cultures of large samples of blood (∼1 mL) extending over 24–72 h. This delay seriously compromises the health of patients and is largely responsible for the death toll of bacterial infections. Recent advances in nanoscience, spectroscopy, plasmonics, and microfluidics allow for the development of optical devices capable of monitoring minute amounts of analytes in liquid samples. In Subchapter 1.3 we critically discuss these recent developments that will, in the future, enable the multiplex identification and quantification of microorganisms directly on their biological matrix with unprecedented speed, low cost, and sensitivity. Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of biomedical applications. They may be used to detect and characterize diseases, to deliver relevant therapeutics, and to study the pharmacokinetic/pharmacodynamic parameters of nanomaterials. The use of radiotracer techniques in the research of novel NPs offers many advantages, but there are still some limitations. The binding of radionuclides to NPs has to be irreversible to prevent their escape to other tissues or organs. Due to the short half-lives of radionuclides, the manufacturing process is time limited and difficult, and there is also a risk of contamination. Subchapter 1.4 presents the main selection criteria for radionuclides and applicable radiolabeling procedures used for the radiolabeling of various NPs. Also, an overview of different types of NPs that have so far been labeled with radionuclides is presented.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan
| | - Hsiao-Yu Chiu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,Institute of Cellular and Organismic Biology, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Antic B, Boskovic M, Nikodinovic-Runic J, Ming Y, Zhang H, Bozin ES, Janković D, Spasojevic V, Vranjes-Djuric S. Complementary approaches for the evaluation of biocompatibility of 90Y-labeled superparamagnetic citric acid (Fe,Er) 3O 4 coated nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:157-164. [PMID: 28415449 DOI: 10.1016/j.msec.2017.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/30/2016] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric acid coated (Fe,Er)3O4 nanoparticles and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)3O4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that 90Y-labeled MNPs were predominantly found in liver (75.33% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric acid coated (Fe,Er)3O4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems.
Collapse
Affiliation(s)
- Bratislav Antic
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia.
| | - Marko Boskovic
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | - Yue Ming
- College of Materials Science and Engineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100124, PR China.
| | - Hongguo Zhang
- College of Materials Science and Engineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100124, PR China
| | - Emil S Bozin
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Drina Janković
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Vojislav Spasojevic
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Sanja Vranjes-Djuric
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
10
|
Radović M, Mirković M, Perić M, Janković D, Vukadinović A, Stanković D, Petrović Đ, Bošković M, Antić B, Marković M, Vranješ-Đurić S. Design and preparation of 90Y-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications. J Mater Chem B 2017; 5:8738-8747. [DOI: 10.1039/c7tb02075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiolabeled MNPs for radiotherapy–hyperthermia cancer treatment were designed.
Collapse
|
11
|
Lu W, Hong H, Cai W. Radio-nanomaterials for biomedical applications: state of the art. EUROPEAN JOURNAL OF NANOMEDICINE 2016; 8:151-170. [PMID: 27482194 PMCID: PMC4963156 DOI: 10.1515/ejnm-2016-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incorporation of radioactive isotope(s) into conventional nanomaterials can bring extra properties which are not possessed by original materials. The resulting radioactive nanomaterials (radio-nanomaterials), with added physical/chemical properties, can be used as important tools for different biomedical applications. In this review, our goal is to provide an up-to-date overview on these applications using radio-nanomaterials. The first section illustrates the utilization of radionanomaterials for understanding of in vivo kinetics of their parent nano-materials. In the second section, we focus on two primary applications of radio-nanomaterials: imaging and therapeutic delivery. With various methods being used to form radio-nanomaterials, they can be used for positron emission tomography (PET), single-photon emission computed tomography (SPECT), and multimodal imaging. Therapeutic isotopes-loading radio-nanomaterials can possess selective killing efficacy of diseased cells (e.g. tumor cells) and can provide promises for certain isotopes which are not able to be used in a conventional manner. The successful and versatile biomedical applications of radio-nanomaterials warrants further investigations of those materials and their optimizations can pave the way to future imaging guidable, personalized treatments in patients.
Collapse
Affiliation(s)
- Weifei Lu
- Department of Radiology, University of Michigan - Ann Arbor, MI 48109-2200, USA; and College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Hao Hong
- Department of Radiology, University of Michigan - Ann Arbor, MI 48109-2200, USA, , ,
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin - Madison, WI 53705-2275, USA; and University of Wisconsin Carbone Cancer Center, Madison, WI 53705-2275, USA, , ,
| |
Collapse
|
12
|
Ignjatović N, Vranješ Djurić S, Mitić Z, Janković D, Uskoković D. Investigating an organ-targeting platform based on hydroxyapatite nanoparticles using a novel in situ method of radioactive ¹²⁵Iodine labeling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:439-46. [PMID: 25175234 DOI: 10.1016/j.msec.2014.07.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/07/2014] [Accepted: 07/13/2014] [Indexed: 01/08/2023]
Abstract
In this study, we have investigated the synthesis of nanoparticles of hydroxyapatite (HAp) and hydroxyapatite coated with chitosan (HAp/Ch) and the chitosan-poly-d,l-lactide-co-glycolide polymer blend (HAp/Ch-PLGA) as an organ-targeting system. We have examined and defined the final destination, as well as the dynamics and the pathways of the synthesized particles following intravenous administration in vivo. The XRD, ZP, FT-IR and SEM analyses have confirmed that the hydroxyapatite nanoparticles with d50=72 nm are coated with polymers. Radioactive 125-Iodine ((125)I), a low energy gamma emitter, was used to develop a novel in situ method for the radiolabeling of particles and investigation of their biodistribution. (125)I-labeled particles exhibited high stability in saline and serum over the second day, which justified their use in the following in vivo studies. The biodistribution of (125)I-labeled particles after intravenous injection in rats differed significantly: HAp particles mostly targeted the liver, HAp/Ch the spleen and the liver, while HAp/Ch-PLGA targeted the lungs. Twenty-four hours post injection, HAp particles were excreted completely, while both (125)I-HAp/Ch and (125)I-HAp/Ch-PLGA were retained in the body for a prolonged period of time with more than 20% of radioactivity still found in different organs.
Collapse
Affiliation(s)
- Nenad Ignjatović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Sanja Vranješ Djurić
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Zarko Mitić
- Faculty of Medicine, Department of Pharmacy, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia
| | - Drina Janković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Dragan Uskoković
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia.
| |
Collapse
|
13
|
Jung J, Oh J. Swelling characterization of photo-cross-linked gelatin methacrylate spherical microgels for bioencapsulation. E-POLYMERS 2014. [DOI: 10.1515/epoly-2014-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe swelling behavior of biocompatible and biodegradable polymers is important for the delivery and release of cells and drugs in biomedical applications. This study reported the swelling characteristics of photo-cross-linked gelatin methacrylate (GelMa) spherical microgels. Spherical microgels were generated in a microfluidic system consisting of a co-axial flow-focusing device for microdroplet generation and an ultraviolet (UV) irradiation apparatus for polymerization. At a low flow rate ratio (<0.14), the 9 wt.% GelMa spherical microgels were smaller than the 6 wt.% ones. In contrast, at a high flow rate ratio (>0.14), the results were reversed. Overall, a proportional relationship was observed between the flow rate ratio and the droplet size. The increased GelMa concentration improved the mechanical properties and increased the swelling ratios. The possibility of bioencapsulation was demonstrated, with good viability of 3T3 cells encapsulated in the spherical microgels.
Collapse
Affiliation(s)
- Jinmu Jung
- 1Hemorheology Research Institute, Chonbuk National University, Jeonju 561-756, South Korea
| | - Jonghyun Oh
- 2Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, South Korea
| |
Collapse
|
14
|
Sripriyalakshmi S, Jose P, Ravindran A, Anjali CH. Recent Trends in Drug Delivery System Using Protein Nanoparticles. Cell Biochem Biophys 2014; 70:17-26. [DOI: 10.1007/s12013-014-9896-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Radović M, Calatayud MP, Goya GF, Ibarra MR, Antić B, Spasojević V, Nikolić N, Janković D, Mirković M, Vranješ-Đurić S. Preparation andin vivoevaluation of multifunctional90Y-labeled magnetic nanoparticles designed for cancer therapy. J Biomed Mater Res A 2014; 103:126-34. [DOI: 10.1002/jbm.a.35160] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Magdalena Radović
- “Vinča” Institute of Nuclear Sciences, University of Belgrade; PO Box 522 11000 Belgrade Serbia
| | - María Pilar Calatayud
- Instituto de Nanociencia de Aragón (INA), University of Zaragoza; Mariano Esquillor s/n 50018 Zaragoza Spain
| | - Gerardo Fabián Goya
- Instituto de Nanociencia de Aragón (INA), University of Zaragoza; Mariano Esquillor s/n 50018 Zaragoza Spain
| | - Manuel Ricardo Ibarra
- Instituto de Nanociencia de Aragón (INA), University of Zaragoza; Mariano Esquillor s/n 50018 Zaragoza Spain
| | - Bratislav Antić
- “Vinča” Institute of Nuclear Sciences, University of Belgrade; PO Box 522 11000 Belgrade Serbia
| | - Vojislav Spasojević
- “Vinča” Institute of Nuclear Sciences, University of Belgrade; PO Box 522 11000 Belgrade Serbia
| | - Nadežda Nikolić
- “Vinča” Institute of Nuclear Sciences, University of Belgrade; PO Box 522 11000 Belgrade Serbia
| | - Drina Janković
- “Vinča” Institute of Nuclear Sciences, University of Belgrade; PO Box 522 11000 Belgrade Serbia
| | - Marija Mirković
- “Vinča” Institute of Nuclear Sciences, University of Belgrade; PO Box 522 11000 Belgrade Serbia
| | - Sanja Vranješ-Đurić
- “Vinča” Institute of Nuclear Sciences, University of Belgrade; PO Box 522 11000 Belgrade Serbia
| |
Collapse
|
16
|
Hardiansyah A, Huang LY, Yang MC, Liu TY, Tsai SC, Yang CY, Kuo CY, Chan TY, Zou HM, Lian WN, Lin CH. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. NANOSCALE RESEARCH LETTERS 2014; 9:497. [PMID: 25246875 PMCID: PMC4169134 DOI: 10.1186/1556-276x-9-497] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 05/10/2023]
Abstract
In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.
Collapse
Affiliation(s)
- Andri Hardiansyah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Li-Ying Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Sung-Chen Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chih-Yung Yang
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chih-Yu Kuo
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Tzu-Yi Chan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Hui-Ming Zou
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Wei-Nan Lian
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan
| |
Collapse
|