1
|
Li L, Yuan H, Li Q, Li K, Lin P. Microfluidics, an effective tool for supporting phage display-A review. Anal Chim Acta 2024; 1326:342978. [PMID: 39260910 DOI: 10.1016/j.aca.2024.342978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 09/13/2024]
Abstract
Phage display is a vital tool for the discovery and development of affinity reagents such as antibodies and peptides, which have great potential in imaging, molecular recognition, biosensors, targeted delivery and other clinical applications. However, affinity reagents obtained by phage display are often subjected to a process called biopanning, which is considered time-consuming, labor-intensive and lacks accurate control, limiting the acquisition of high-quality affinity reagents. Over the last two decades, several microfluidic approaches have been designed to simplify the conventional biopanning process and to realize precise control. To better understand the advantages of microfluidics over traditional biopanning and the potential of microfluidics for other molecular screening strategies, we provided an overview of recent applications of microfluidics in phage display. Additionally, the next challenges and outlooks are discussed.
Collapse
Affiliation(s)
- Liang Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Yuan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Qin Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
2
|
Wang Y, Zhao J, Jiang Z, Ma Y, Zhang R. Single-Cell Proteomics by Barcoded Phage-Displayed Screening via an Integrated Microfluidic Chip. Methods Mol Biol 2024; 2793:101-112. [PMID: 38526726 DOI: 10.1007/978-1-0716-3798-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recent advancements in the profiling of proteomes at the single-cell level necessitate the development of quantitative and versatile platforms, particularly for analyzing rare cells like circulating tumor cells (CTCs). In this chapter, we present an integrated microfluidic chip that utilizes magnetic nanoparticles to capture single tumor cells with exceptional efficiency. This chip enables on-chip incubation and facilitates in situ analysis of cell-surface protein expression. By combining phage-based barcoding with next-generation sequencing technology, we successfully monitored changes in the expression of multiple surface markers induced by CTC adherence. This innovative platform holds significant potential for comprehensive screening of multiple surface antigens simultaneously in rare cells, offering single-cell resolution. Consequently, it will contribute valuable insights into biological heterogeneity and human disease.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Jiang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Yuan Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China.
| | - Rui Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Han SI, Sarkes DA, Hurley MM, Renberg R, Huang C, Li Y, Jahnke JP, Sumner JJ, Stratis-Cullum DN, Han A. Identification of Microorganisms that Bind Specifically to Target Materials of Interest Using a Magnetophoretic Microfluidic Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11391-11402. [PMID: 36847552 PMCID: PMC10848205 DOI: 10.1021/acsami.2c15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Discovery of microorganisms and their relevant surface peptides that specifically bind to target materials of interest can be achieved through iterative biopanning-based screening of cellular libraries having high diversity. Recently, microfluidics-based biopanning methods have been developed and exploited to overcome the limitations of conventional methods where controlling the shear stress applied to remove cells that do not bind or only weakly bind to target surfaces is difficult and the overall experimental procedure is labor-intensive. Despite the advantages of such microfluidic methods and successful demonstration of their utility, these methods still require several rounds of iterative biopanning. In this work, a magnetophoretic microfluidic biopanning platform was developed to isolate microorganisms that bind to target materials of interest, which is gold in this case. To achieve this, gold-coated magnetic nanobeads, which only attached to microorganisms that exhibit high affinity to gold, were used. The platform was first utilized to screen a bacterial peptide display library, where only the cells with surface peptides that specifically bind to gold could be isolated by the high-gradient magnetic field generated within the microchannel, resulting in enrichment and isolation of many isolates with high affinity and high specificity toward gold even after only a single round of separation. The amino acid profile of the resulting isolates was analyzed to provide a better understanding of the distinctive attributes of peptides that contribute to their specific material-binding capabilities. Next, the microfluidic system was utilized to screen soil microbes, a rich source of extremely diverse microorganisms, successfully isolating many naturally occurring microorganisms that show strong and specific binding to gold. The results show that the developed microfluidic platform is a powerful screening tool for identifying microorganisms that specifically bind to a target material surface of interest, which can greatly accelerate the development of new peptide-driven biological materials and hybrid organic-inorganic materials.
Collapse
Affiliation(s)
- Song-I Han
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Deborah A. Sarkes
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Margaret M. Hurley
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Rebecca Renberg
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Can Huang
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Yuwen Li
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Justin P. Jahnke
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - James J. Sumner
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Dimitra N. Stratis-Cullum
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Arum Han
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, USA
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
4
|
Condelipes PGM, Fontes PM, Godinho-Santos A, Brás EJS, Marques V, Afonso MB, Rodrigues CMP, Chu V, Gonçalves J, Conde JP. Towards personalized antibody cancer therapy: development of a microfluidic cell culture device for antibody selection. LAB ON A CHIP 2022; 22:4717-4728. [PMID: 36349999 DOI: 10.1039/d2lc00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibody therapy has been one of the most successful therapies for a wide range of diseases, including cancer. One way of expediting antibody therapy development is through phage display technology. Here, by screening thousands of randomly assembled peptide sequences, it is possible to identify potential therapeutic candidates. Conventional screening technologies do not accommodate perfusion through the system, as is the case of standard plate-based cultures. This leads to a poor translation of the experimental results obtained in vitro when moving to a more physiologically relevant setting, such as the case of preclinical animal models or clinical trials. Microfluidics is a technology that can improve screening efficacy by replicating more physiologically relevant conditions such as shear stress. In this work, a polydimethylsiloxane/polystyrene-based microfluidic system for a continuously perfused culture of cancer cells is reported. Human colorectal adenocarcinoma cells (HCT116) expressing CXCR4 were used as a cell target. Fluorescently labeled M13 phages anti-CXCR4 were used to study the efficiency of the microfluidic system as a tool to study the binding kinetics of the engineered bacteriophages. Using our microfluidic platform, we estimated a dissociation constant of 0.45 pM for the engineered phage. Additionally, a receptor internalization assay was developed using SDF-1α to verify phage specificity to the CXCR4 receptor. Upon receptor internalization there was a signal reduction, proving that the anti-CXCR4 fluorescently labelled M13 phages bound specifically to the CXCR4 receptor. The simplicity and ease of use of the microfluidic device design presented in this work can form the basis of a generic platform that facilitates the study and optimization of therapies based on interaction with biological entities such as mammalian cells.
Collapse
Affiliation(s)
- Pedro G M Condelipes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Pedro Mendes Fontes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo J S Brás
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Sun H, Hu N, Wang J. Application of Microfluidic Technology in Antibody Screening. Biotechnol J 2022; 17:e2100623. [PMID: 35481726 DOI: 10.1002/biot.202100623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
Specific antibodies are widely used in the biomedical field. Current screening methods for specific antibodies mainly involve hybridoma technology and antibody engineering techniques. However, these technologies suffer from tedious screening processes, long preparation periods, high costs, low efficiency, and a degree of automation, which have become a bottleneck for the screening of specific antibodies. To overcome these difficulties, microfluidics has been developed as a promising technology for high-throughput screening and high purity of antibody. In this review, we provide an overview of the recent advances in microfluidic applications for specific antibody screening. In particular, hybridoma technology and four antibody engineering techniques (including phage display, single B cell antibody screening, antibody expression, and cell-free protein synthesis) based on microfluidics have been introduced, challenges, and the future outlook of these technologies are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
6
|
Philpott D, Gomis S, Wang H, Atwal R, Kelil A, Sack T, Morningstar B, Burnie C, Sargent EH, Angers S, Sidhu S, Kelley SO. Rapid On-Cell Selection of High-Performance Human Antibodies. ACS CENTRAL SCIENCE 2022; 8:102-109. [PMID: 35106377 PMCID: PMC8796304 DOI: 10.1021/acscentsci.1c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Phage display is a critical tool for developing antibodies. However, existing approaches require many time-consuming rounds of biopanning and screening of potential candidates due to a high rate of failure during validation. Herein, we present a rapid on-cell phage display platform which recapitulates the complex in vivo binding environment to produce high-performance human antibodies in a short amount of time. Selection is performed in a highly stringent heterogeneous mixture of cells to quickly remove nonspecific binders. A microfluidic platform then separates antigen-presenting cells with high throughput and specificity. An unsupervised machine learning algorithm analyzes sequences of phage from all pools to identify the structural trends that contribute to affinity and proposes ideal candidates for validation. In a proof-of-concept screen against human Frizzled-7, a key ligand in the Wnt signaling pathway, antibodies with picomolar affinity were discovered in two rounds of selection that outperformed current gold-standard reagents. This approach, termed μCellect, is low cost, high throughput, and compatible with a wide variety of cell types, enabling widespread adoption for antibody development.
Collapse
Affiliation(s)
- David
N. Philpott
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Surath Gomis
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Hansen Wang
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Atwal
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Abdellali Kelil
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Tanja Sack
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Brandon Morningstar
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Chris Burnie
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Edward H. Sargent
- Edward
S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Stephane Angers
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sachdev Sidhu
- Donnelly
Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of
Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
7
|
Kim WG, Zueger C, Kim C, Wong W, Devaraj V, Yoo HW, Hwang S, Oh JW, Lee SW. Experimental and numerical evaluation of a genetically engineered M13 bacteriophage with high sensitivity and selectivity for 2,4,6-trinitrotoluene. Org Biomol Chem 2020; 17:5666-5670. [PMID: 30973549 DOI: 10.1039/c8ob03075h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective and sensitive detection of desired targets is very critical in sensor design. Here, we report a genetically engineered M13 bacteriophage-based sensor system evaluated by quantum mechanics (QM) calculations. Phage display is a facile way to develop the desired peptide sequences, but the resulting sequences can be imperfect peptides for binding of target molecules. A TNT binding peptide (WHW) carrying phage was self-assembled to fabricate thin films and tested for the sensitive and selective surface plasmon resonance-based detection of TNT molecules at the 500 femtomole level. SPR studies performed with the WHW peptide and control peptides (WAW, WHA, AHW) were well-matched with those of the QM calculations. Our combined method between phage engineering and QM calculation will significantly enhance our ability to design selective and sensitive sensors.
Collapse
Affiliation(s)
- Won-Geun Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 609-735, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Raftery LJ, Howard CB, Grewal YS, Vaidyanathan R, Jones ML, Anderson W, Korbie D, Duarte T, Cao MD, Nguyen SH, Coin LJM, Mahler SM, Trau M. Retooling phage display with electrohydrodynamic nanomixing and nanopore sequencing. LAB ON A CHIP 2019; 19:4083-4092. [PMID: 31712799 DOI: 10.1039/c9lc00978g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phage display methodologies offer a versatile platform for the isolation of single-chain Fv (scFv) molecules which may be rebuilt into monoclonal antibodies. Herein, we report on a complete workflow termed PhageXpress, for rapid selection of single-chain Fv sequences by leveraging electrohydrodynamic-manipulation of a solution containing phage library particles to enhance target binding whilst minimizing non-specific interactions. Our PhageXpress technique is combined with Oxford Nanopore Technologies' MinION sequencer and custom bioinformatics to achieve high-throughput screening of phage libraries. We performed 4 rounds of biopanning against Dengue virus (DENV) non-structural protein 1 (NS1) using traditional methods (4 week turnaround), which resulted in the isolation of 19 unique scFv clones. We validated the feasibility and efficiency of the PhageXpress method utilizing the same phage library and antigen target. Notably, we successfully mapped 14 of the 19 anti-NS1 scFv sequences (∼74%) with our new method, despite using ∼30-fold less particles during screening and conducting only a single round of biopanning. We believe this approach supersedes traditional methods for the discovery of bio-recognition molecules such as antibodies by speeding up the process for the development of therapeutic and diagnostic biologics.
Collapse
Affiliation(s)
- Lyndon J Raftery
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia and ARC Training Centre for Biopharmaceutical Innovation, AIBN, University of Queensland, Brisbane, Australia
| | - Yadveer S Grewal
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia
| | - Ramanathan Vaidyanathan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and ARC Training Centre for Biopharmaceutical Innovation, AIBN, University of Queensland, Brisbane, Australia
| | - Will Anderson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia
| | - Darren Korbie
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Minh Duc Cao
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Son Hoang Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and ARC Training Centre for Biopharmaceutical Innovation, AIBN, University of Queensland, Brisbane, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia. and Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia and School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Lee DJ, Park HS, Koo K, Lee JY, Nam YS, Lee W, Yang MY. Gold Binding Peptide Identified from Microfluidic Biopanning: An Experimental and Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:522-528. [PMID: 30592604 DOI: 10.1021/acs.langmuir.8b02563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biopanning refers to the processes of screening peptides with a high affinity to a target material. Microfluidic biopanning has advantages compared to conventional biopanning which requires large amounts of the target material and involves inefficient multiple pipetting steps to remove nonspecific or low-affinity peptides. Here, we fabricate a microfluidic biopanning system to identify a new gold-binding peptide (GBP). A polydimethylsiloxane microfluidic device is fabricated and bonded to a glass slide with a gold pattern that is deposited by electron-beam evaporation. The microfluidic biopanning system can provide high adjustability in the washing step during the biopanning process because the liquid flow rate and the resulting shear stress can be precisely controlled. The surface plasmon resonance analysis shows that the binding affinity of the identified GBP is comparable to previously reported GBPs. Moreover, molecular dynamics simulations are performed to understand its binding affinity against the gold surface in detail. Theoretical calculations suggest that the association and dissociation rates of the GBPs depend on their sequence-dependent conformations and interactions with the gold surface. These findings provide insight into designing efficient biopanning tools and peptides with a high affinity for various target materials.
Collapse
Affiliation(s)
| | | | - Kunmo Koo
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea
| | - Jeong Yong Lee
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea
| | | | | | | |
Collapse
|
10
|
Hung LY, Fu CY, Wang CH, Chuang YJ, Tsai YC, Lo YL, Hsu PH, Chang HY, Shiesh SC, Hsu KF, Lee GB. Microfluidic platforms for rapid screening of cancer affinity reagents by using tissue samples. BIOMICROFLUIDICS 2018; 12:054108. [PMID: 30344835 PMCID: PMC6170194 DOI: 10.1063/1.5050451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Cancer is the most serious disease worldwide, and ovarian cancer (OvCa) is the second most common type of gynecological cancer. There is consequently an urgent need for early-stage detection of OvCa, which requires affinity reagent biomarkers for OvCa. Systematic evolution of ligands by exponential enrichment (SELEX) and phage display technology are two powerful technologies for identifying affinity reagent biomarkers. However, the benchtop protocols for both screening technologies are relatively lengthy and require well-trained personnel. We therefore developed a novel, integrated microfluidic system capable of automating SELEX and phage display technology. Instead of using cancer cell lines, it is the first work which used tissue slides as screening targets, which possess more complicated and uncovered information for affinity reagents to recognize. This allowed for the identification of aptamer (nucleic acid) and peptide probes specific to OvCa cells and tissues. Furthermore, this developed system could be readily modified to uncover affinity reagents for diagnostics or even target therapy of other cancer cell types in the future.
Collapse
Affiliation(s)
- Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Yu Fu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuan-Jhe Chuang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Ling Lo
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | - Shu-Chu Shiesh
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Author to whom correspondence should be addressed. Electronic mail:
| |
Collapse
|
11
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
12
|
Zade HM, Keshavarz R, Shekarabi HSZ, Bakhshinejad B. Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids 2017; 49:1293-1308. [DOI: 10.1007/s00726-017-2452-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
13
|
Hsiao YH, Huang CY, Hu CY, Wu YY, Wu CH, Hsu CH, Chen C. Continuous microfluidic assortment of interactive ligands (CMAIL). Sci Rep 2016; 6:32454. [PMID: 27578501 PMCID: PMC5006012 DOI: 10.1038/srep32454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023] Open
Abstract
Finding an interactive ligand-receptor pair is crucial to many applications, including the development of monoclonal antibodies. Biopanning, a commonly used technique for affinity screening, involves a series of washing steps and is lengthy and tedious. Here we present an approach termed continuous microfluidic assortment of interactive ligands, or CMAIL, for the screening and sorting of antigen-binding single-chain variable antibody fragments (scFv) displayed on bacteriophages (phages). Phages carrying native negative charges on their coat proteins were electrophoresed through a hydrogel matrix functionalized with target antigens under two alternating orthogonal electric fields. During the weak horizontal electric field phase, phages were differentially swept laterally depending on their affinity for the antigen, and all phages were electrophoresed down to be collected during the strong vertical electric field phase. Phages of different affinity were spatially separated, allowing the continuous operation. More than 105 CFU (colony forming unit) antigen-interacting phages were isolated with ~100% specificity from a phage library containing 3 × 109 individual members within 40 minutes of sorting using CMAIL. CMAIL is rapid, sensitive, specific, and does not employ washing, elution or magnetic beads. In conclusion, we have developed an efficient and cost-effective method for isolating and sorting affinity reagents involving phage display.
Collapse
Affiliation(s)
- Yi-Hsing Hsiao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chao-Yang Huang
- Development Center for Biotechnology, New Taipei City 22180, Taiwan
| | - Chih-Yung Hu
- Development Center for Biotechnology, New Taipei City 22180, Taiwan
| | - Yen-Yu Wu
- Development Center for Biotechnology, New Taipei City 22180, Taiwan
| | - Chung-Hsiun Wu
- Development Center for Biotechnology, New Taipei City 22180, Taiwan
| | - Chia-Hsien Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Hung LY, Wang CH, Fu CY, Gopinathan P, Lee GB. Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. LAB ON A CHIP 2016; 16:2759-74. [PMID: 27381813 DOI: 10.1039/c6lc00662k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microfluidic technologies have miniaturized a variety of biomedical applications, and these chip-based systems have several significant advantages over their large-scale counterparts. Recently, this technology has been used for automating labor-intensive and time-consuming screening processes, whereby affinity reagents, including aptamers, peptides, antibodies, polysaccharides, glycoproteins, and a variety of small molecules, are used to probe for molecular biomarkers. When compared to conventional methods, the microfluidic approaches are faster, more compact, require considerably smaller quantities of samples and reagents, and can be automated. Furthermore, they allow for more precise control of reaction conditions (e.g., pH, temperature, and shearing forces) such that more efficient screening can be performed. A variety of affinity reagents for targeting cancer cells or cancer biomarkers are now available and will likely replace conventional antibodies. In this review article, the selection of affinity reagents for cancer cells or cancer biomarkers on microfluidic platforms is reviewed with the aim of highlighting the utility of such approaches in cancer diagnostics.
Collapse
MESH Headings
- Animals
- Antibodies, Immobilized/chemistry
- Antibodies, Immobilized/metabolism
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Humans
- Immobilized Nucleic Acids/chemistry
- Immobilized Nucleic Acids/metabolism
- Immobilized Proteins/metabolism
- Lab-On-A-Chip Devices/trends
- Leukocytes/cytology
- Leukocytes/metabolism
- Ligands
- Mice
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/metabolism
- Neoplasms/pathology
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/metabolism
Collapse
Affiliation(s)
- Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | | | | | | | | |
Collapse
|
15
|
Tan Y, Tian T, Liu W, Zhu Z, J Yang C. Advance in phage display technology for bioanalysis. Biotechnol J 2016; 11:732-45. [PMID: 27061133 DOI: 10.1002/biot.201500458] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/30/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022]
Abstract
Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis.
Collapse
Affiliation(s)
- Yuyu Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Tian Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wenli Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Chaoyong J Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Cusano AM, Causa F, Moglie RD, Falco N, Scognamiglio PL, Aliberti A, Vecchione R, Battista E, Marasco D, Savarese M, Raucci U, Rega N, Netti PA. Integration of binding peptide selection and multifunctional particles as tool-box for capture of soluble proteins in serum. J R Soc Interface 2015; 11:rsif.2014.0718. [PMID: 25100324 DOI: 10.1098/rsif.2014.0718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this paper, we report on a general approach for the detection of a specific tumoural biomarker directly in serum. Such detection is made possible using a protein-binding peptide selected through an improved phage display technique and then conjugated to engineered microparticles (MPs). Protein biomarkers represent an unlimited source of information for non-invasive diagnostic and prognostic tests; MP-based assays are becoming largely used in manipulation of soluble biomarkers, but their direct use in serum is hampered by the complex biomolecular environment. Our technique overcomes the current limitations as it produces a selective MP--engineered with an antifouling layer--that 'captures' the relevant protein staying impervious to the background. Our system succeeds in fishing-out the human tumour necrosis factor alpha directly in serum with a high selectivity degree. Our method could have great impact in soluble protein manipulation and detection for a wide variety of diagnostic applications.
Collapse
Affiliation(s)
- Angela Maria Cusano
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples 'Federico II', Naples, Italy Department of Chemical and Materials Engineering and Industrial Production, University of Naples 'Federico II', Naples, Italy
| | - Raffaella Della Moglie
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Nunzia Falco
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Anna Aliberti
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Edmondo Battista
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples 'Federico II', DFM-Scarl, Naples, Italy
| | - Marika Savarese
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Department of Chemical Science, University of Naples 'Federico II', Naples, Italy
| | - Umberto Raucci
- Department of Chemical Science, University of Naples 'Federico II', Naples, Italy
| | - Nadia Rega
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples 'Federico II', Naples, Italy Department of Chemical Science, University of Naples 'Federico II', Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples 'Federico II', Naples, Italy Department of Chemical and Materials Engineering and Industrial Production, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
17
|
Che YJ, Wu HW, Hung LY, Liu CA, Chang HY, Wang K, Lee GB. An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells. BIOMICROFLUIDICS 2015; 9:054121. [PMID: 26543513 PMCID: PMC4608964 DOI: 10.1063/1.4933067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/30/2015] [Indexed: 05/15/2023]
Abstract
Affinity reagents recognizing biomarkers specifically are essential components of clinical diagnostics and target therapeutics. However, conventional methods for screening of these reagents often have drawbacks such as large reagent consumption, the labor-intensive or time-consuming procedures, and the involvement of bulky or expensive equipment. Alternatively, microfluidic platforms could potentially automate the screening process within a shorter period of time and reduce reagent and sample consumption dramatically. It has been demonstrated recently that a subpopulation of tumor cells known as cancer stem cells possess high drug resistance and proliferation potential and are regarded as the main cause of metastasis. Therefore, a peptide that recognizes cancer stem cells and differentiates them from other cancer cells will be extremely useful in early diagnosis and target therapy. This study utilized M13 phage display technology to identify peptides that bind, respectively, to colon cancer cells and colon cancer stem cells using an integrated microfluidic system. In addition to positive selection, a negative selection process was integrated on the chip to achieve the selection of peptides of high affinity and specificity. We successfully screened three peptides specific to colon cancer cells and colon cancer stem cells, namely, HOLC-1, HOLC-2, and COLC-1, respectively, and their specificity was measured by the capture rate between target, control, and other cell lines. The capture rates are 43.40 ± 7.23%, 45.16 ± 7.12%, and 49.79 ± 5.34% for colon cancer cells and colon cancer stem cells, respectively, showing a higher specificity on target cells than on control and other cell lines. The developed technique may be promising for early diagnosis of cancer cells and target therapeutics.
Collapse
Affiliation(s)
- Yu-Jui Che
- Department of Power Mechanical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Huei-Wen Wu
- Department of Power Mechanical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Ching-Ann Liu
- Nanomedicine Program and Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Kuan Wang
- Nanomedicine Program and Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | | |
Collapse
|
18
|
Wang CH, Weng CH, Che YJ, Wang K, Lee GB. Cancer cell-specific oligopeptides selected by an integrated microfluidic system from a phage display library for ovarian cancer diagnosis. Theranostics 2015; 5:431-42. [PMID: 25699101 PMCID: PMC4329505 DOI: 10.7150/thno.10891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 12/03/2022] Open
Abstract
Ovarian cancer is one of the leading causes of female mortality worldwide. Unfortunately, there are currently few high-specificity candidate oligopeptide targeting agents that can be used for early diagnosis of this cancer. It has been suggested that cancer-specific oligopeptides could be screened from a phage display library. However, conventional methods are tedious, labor-intensive, and time consuming. Therefore, a novel, integrated microfluidic system was developed to automate the entire screening process for ovarian cancer cell-specific oligopeptides. An oligopeptide screened with microfluidic chip-based technique was demonstrated to have high affinity to ovarian cancer cells and demonstrated relatively low binding to other cancer cells, indicating a high specificity. Furthermore, the developed method consumed relatively low volumes of samples and reagents; only 70 μL of reactant was used within the whole experimental process. Each panning process was also significantly shortened to only 7.5 hours. Therefore, the screened oligopeptide could be used to isolate ovarian cancer cells in a rapid manner, thus greatly expediting the diagnosis and its application as oligopeptide targeting agent for theranostics of this cancer.
Collapse
|
19
|
Larsen AC, Gillig A, Shah P, Sau SP, Fenton KE, Chaput JC. General approach for characterizing in vitro selected peptides with protein binding affinity. Anal Chem 2014; 86:7219-23. [PMID: 24970615 PMCID: PMC4215864 DOI: 10.1021/ac501614d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
In
vitro selection technologies are important tools for identifying
high affinity peptides to proteins of broad medical and biological
interest. However, the technological advances that have made it possible
to generate long lists of candidate peptides have far outpaced our
ability to characterize the binding properties of individual peptides.
Here, we describe a low cost strategy to rapidly synthesize, purify,
screen, and characterize peptides for high binding affinity. Peptides
are assayed in a 96-well dot blot apparatus using membranes that enable
partitioning of bound and unbound peptide–protein complexes.
We have validated the binding affinity constants produced by this
method using known peptide ligands and applied this process to discover
five new peptides with nanomolar affinity to human α-thrombin.
Given the need for new analytical tools that can accelerate peptide
discovery and characterization, we feel that this approach would be
useful to a wide range of technologies that utilize high affinity
peptides.
Collapse
Affiliation(s)
- Andrew C Larsen
- Department of Chemistry and Biochemistry and ‡The Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | |
Collapse
|
20
|
Phage display informatics. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:698395. [PMID: 24454540 PMCID: PMC3880736 DOI: 10.1155/2013/698395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 11/17/2022]
|
21
|
Abstract
Over the past two decades, the application of microengineered systems in the chemical and biological sciences has transformed the way in which high-throughput experimentation is performed. The ability to fabricate complex microfluidic architectures has allowed scientists to create new experimental formats for processing ultra-small analytical volumes in short periods and with high efficiency. The development of such microfluidic systems has been driven by a range of fundamental features that accompany miniaturization. These include the ability to handle small sample volumes, ultra-low fabrication costs, reduced analysis times, enhanced operational flexibility, facile automation, and the ability to integrate functional components within complex analytical schemes. Herein we discuss the impact of microfluidics in the area of high-throughput screening and drug discovery and highlight some of the most pertinent studies in the recent literature.
Collapse
Affiliation(s)
- Oliver J. Dressler
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Richard M. Maceiczyk
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Andrew J. deMello
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Affiliation(s)
- Scott Banta
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Kevin Dooley
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Oren Shur
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
- Current affiliation: Boston Consulting Group, New York, NY 10022
| |
Collapse
|
23
|
Løset GÅ, Sandlie I. Next generation phage display by use of pVII and pIX as display scaffolds. Methods 2012; 58:40-6. [PMID: 22819858 DOI: 10.1016/j.ymeth.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
Abstract
Phage display technology has evolved to become an extremely versatile and powerful platform for protein engineering. The robustness of the phage particle, its ease of handling and its ability to tolerate a range of different capsid fusions are key features that explain the dominance of phage display in combinatorial engineering. Implementation of new technology is likely to ensure the continuation of its success, but has also revealed important short comings inherent to current phage display systems. This is in particular related to the biology of the two most popular display capsids, namely pIII and pVIII. Recent findings using two alternative capsids, pVII and pIX, located to the phage tip opposite that of pIII, suggest how they may be exploited to alleviate or circumvent many of these short comings. This review addresses important aspects of the current phage display standard and then discusses the use of pVII and pIX. These may both complement current systems and be used as alternative scaffolds for display and selection to further improve phage display as the ultimate combinatorial engineering platform.
Collapse
Affiliation(s)
- Geir Åge Løset
- Centre for Immune Regulation, University of Oslo, N-316 Oslo, Norway.
| | | |
Collapse
|