1
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
2
|
Nucleosome positioning on large tandem DNA repeats of the ’601’ sequence engineered in Saccharomyces cerevisiae. J Mol Biol 2022; 434:167497. [DOI: 10.1016/j.jmb.2022.167497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
|
3
|
Routhier E, Pierre E, Khodabandelou G, Mozziconacci J. Genome-wide prediction of DNA mutation effect on nucleosome positions for yeast synthetic genomics. Genome Res 2021; 31:317-326. [PMID: 33355297 PMCID: PMC7849406 DOI: 10.1101/gr.264416.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Genetically modified genomes are often used today in many areas of fundamental and applied research. In many studies, coding or noncoding regions are modified in order to change protein sequences or gene expression levels. Modifying one or several nucleotides in a genome can also lead to unexpected changes in the epigenetic regulation of genes. When designing a synthetic genome with many mutations, it would thus be very informative to be able to predict the effect of these mutations on chromatin. We develop here a deep learning approach that quantifies the effect of every possible single mutation on nucleosome positions on the full Saccharomyces cerevisiae genome. This type of annotation track can be used when designing a modified S. cerevisiae genome. We further highlight how this track can provide new insights on the sequence-dependent mechanisms that drive nucleosomes' positions in vivo.
Collapse
Affiliation(s)
- Etienne Routhier
- Sorbonne Universite, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Paris F-75252, France
| | - Edgard Pierre
- Sorbonne Universite, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Paris F-75252, France
| | | | - Julien Mozziconacci
- Sorbonne Universite, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, Paris F-75252, France
- Muséum National d'Histoire Naturelle, Structure et Instabilité des Génomes, UMR7196, Paris 75231, France
- Institut Universitaire de France, Paris 75005, France
| |
Collapse
|
4
|
Villaluenga JPG, Vidal J, Cao-García FJ. Noncooperative thermodynamics and kinetic models of ligand binding to polymers: Connecting McGhee-von Hippel model with the Tonks gas model. Phys Rev E 2020; 102:012407. [PMID: 32795076 DOI: 10.1103/physreve.102.012407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Ligand binding to polymers modifies the physical and chemical properties of the polymers, leading to physical, chemical, and biological implications. McGhee and von Hippel obtained the equilibrium coverage as a function of the ligand affinity, through the computation of the possible binding sites for the ligand. Here, we complete this theory deriving the kinetic model for the ligand-binding dynamics and the associated equilibrium chemical potential, which turns out to be of the Tonks gas model type. At low coverage, the Tonks chemical potential becomes the Fermi chemical potential and even the ideal gas chemical potential. We also discuss kinetic models associated with these chemical potentials. These results clarify the kinetic models of ligand binding, their relations with the chemical potentials, and their range of validity. Our results highlight the inaccuracy of ideal and simplified kinetic approaches for medium and high coverages.
Collapse
Affiliation(s)
- Juan P G Villaluenga
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Jules Vidal
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Francisco Javier Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, C/Faraday, 9, 28049 Madrid, Spain
| |
Collapse
|
5
|
Abstract
Physical access to DNA is a highly dynamic property of chromatin that plays an essential role in establishing and maintaining cellular identity. The organization of accessible chromatin across the genome reflects a network of permissible physical interactions through which enhancers, promoters, insulators and chromatin-binding factors cooperatively regulate gene expression. This landscape of accessibility changes dynamically in response to both external stimuli and developmental cues, and emerging evidence suggests that homeostatic maintenance of accessibility is itself dynamically regulated through a competitive interplay between chromatin-binding factors and nucleosomes. In this Review, we examine how the accessible genome is measured and explore the role of transcription factors in initiating accessibility remodelling; our goal is to illustrate how chromatin accessibility defines regulatory elements within the genome and how these epigenetic features are dynamically established to control gene expression.
Collapse
Affiliation(s)
- Sandy L Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Mozziconacci J, Koszul R. Filling the gap: Micro-C accesses the nucleosomal fiber at 100-1000 bp resolution. Genome Biol 2015; 16:169. [PMID: 26294274 PMCID: PMC4546249 DOI: 10.1186/s13059-015-0744-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The fine three-dimensional structure of the nucleosomal fiber has remained elusive to genome-wide chromosome conformation capture (3C) approaches. A new study mapping contacts at the single nucleosome level (Micro-C) reveals topological interacting domains along budding yeast chromosomes. These domains encompass one to five consecutive genes and are delimited by highly active promoters.
Collapse
Affiliation(s)
- Julien Mozziconacci
- Theoretical Physics for Condensed Matter Laboratory, UPMC, CNRS UMR 7600, Sorbonne Universités, Place Jussieu, 75005, Paris, France.
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015, Paris, France. .,CNRS, UMR 3525, 75015, Paris, France.
| |
Collapse
|
7
|
Müller O, Kepper N, Schöpflin R, Ettig R, Rippe K, Wedemann G. Changing chromatin fiber conformation by nucleosome repositioning. Biophys J 2015; 107:2141-50. [PMID: 25418099 DOI: 10.1016/j.bpj.2014.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022] Open
Abstract
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ?10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.
Collapse
Affiliation(s)
- Oliver Müller
- Institute for Applied Computer Science, University of Applied Sciences Stralsund, Stralsund, Germany
| | - Nick Kepper
- Deutsches Krebsforschungszentrum and BioQuant, Heidelberg, Germany
| | - Robert Schöpflin
- Institute for Applied Computer Science, University of Applied Sciences Stralsund, Stralsund, Germany
| | - Ramona Ettig
- Deutsches Krebsforschungszentrum and BioQuant, Heidelberg, Germany
| | - Karsten Rippe
- Deutsches Krebsforschungszentrum and BioQuant, Heidelberg, Germany
| | - Gero Wedemann
- Institute for Applied Computer Science, University of Applied Sciences Stralsund, Stralsund, Germany.
| |
Collapse
|
8
|
Boulé JB, Mozziconacci J, Lavelle C. The polymorphisms of the chromatin fiber. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:033101. [PMID: 25437138 DOI: 10.1088/0953-8984/27/3/033101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic 'naked DNA' view to a more realistic 'coated DNA' view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.
Collapse
Affiliation(s)
- Jean-Baptiste Boulé
- Genome Structure and Instability, CNRS UMR7196 - INSERM U1154, National Museum of Natural History, Paris, France. CNRS GDR 3536, University Pierre and Marie Curie-Paris 6, Paris, France
| | | | | |
Collapse
|
9
|
Beshnova DA, Cherstvy AG, Vainshtein Y, Teif VB. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions. PLoS Comput Biol 2014; 10:e1003698. [PMID: 24992723 PMCID: PMC4081033 DOI: 10.1371/journal.pcbi.1003698] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.
Collapse
Affiliation(s)
- Daria A. Beshnova
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Yevhen Vainshtein
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | - Vladimir B. Teif
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| |
Collapse
|
10
|
Parmar JJ, Marko JF, Padinhateeri R. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence. Nucleic Acids Res 2013; 42:128-36. [PMID: 24068556 PMCID: PMC3874171 DOI: 10.1093/nar/gkt854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted ‘barriers’ co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that ‘statistical’ positioning of nucleosomes against ‘barriers’, hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.
Collapse
Affiliation(s)
- Jyotsana J Parmar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA, Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|
11
|
Teif VB, Erdel F, Beshnova DA, Vainshtein Y, Mallm JP, Rippe K. Taking into account nucleosomes for predicting gene expression. Methods 2013; 62:26-38. [PMID: 23523656 DOI: 10.1016/j.ymeth.2013.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 03/10/2013] [Indexed: 01/10/2023] Open
Abstract
The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin.
Collapse
Affiliation(s)
- Vladimir B Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum-DKFZ & BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Chevereau G, Arneodo A, Vaillant C. Influence of the genomic sequence on the primary structure of chromatin. FRONTIERS IN LIFE SCIENCE 2011. [DOI: 10.1080/21553769.2012.708882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|