1
|
Lei S, Meng Q, Liu Y, Liu Q, Dai A, Cai X, Wang MW, Zhou Q, Zhou H, Yang D. Distinct roles of the extracellular surface residues of glucagon-like peptide-1 receptor in β-arrestin 1/2 signaling. Eur J Pharmacol 2024; 968:176419. [PMID: 38360293 DOI: 10.1016/j.ejphar.2024.176419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with β-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in β-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated β-arrestin 1/2 recruitment for diverse ligands, and β-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased β-arrestin 1 recruitment but increased β-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected β-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in β-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive β-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in β-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in β-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on β-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without β-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and β-arrestins. Our study offers valuable information about ligand induced β-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.
Collapse
Affiliation(s)
- Saifei Lei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Meng
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanyun Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan; School of Pharmacy, Hainan Medical University, Haikou, 570228, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hu Zhou
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| |
Collapse
|
2
|
Investigating the ligand agonism and antagonism at the D 2long receptor by dynamic mass redistribution. Sci Rep 2022; 12:9637. [PMID: 35688965 PMCID: PMC9187652 DOI: 10.1038/s41598-022-14311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The signalling of the D2 receptor (D2R), a G protein-coupled receptor (GPCR), is a complex process consisting of various components. For the screening of D2R ligands, methods quantifying distinct second messengers such as cAMP or the interaction of the receptor with β-arrestin, are commonly employed. In contrast, a label-free biosensor technology like dynamic mass redistribution (DMR), where it is mostly unknown how the individual signalling pathways contribute to the DMR signal, provides a holistic readout of the complex cellular response. In this study, we report the successful application of the DMR technology to CHO-K1 cells stably expressing the human dopamine D2long receptor. In real-time kinetic experiments, studies of D2R reference compounds yielded results for agonists and antagonists that were consistent with those obtained by conventional methods and also allowed a discrimination between partial and full agonists. Furthermore, investigations on the signalling pathway in CHO-K1 hD2longR cells identified the Gαi/o protein as the main proximal trigger of the observed DMR response. The present study has shown that the DMR technology is a valuable method for the characterisation of putative new ligands and, due to its label-free nature, suggests its use for deorphanisation studies of GPCRs.
Collapse
|
3
|
Forster L, Grätz L, Mönnich D, Bernhardt G, Pockes S. A Split Luciferase Complementation Assay for the Quantification of β-Arrestin2 Recruitment to Dopamine D 2-Like Receptors. Int J Mol Sci 2020; 21:ijms21176103. [PMID: 32847148 PMCID: PMC7503597 DOI: 10.3390/ijms21176103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Investigations on functional selectivity of GPCR ligands have become increasingly important to identify compounds with a potentially more beneficial side effect profile. In order to discriminate between individual signaling pathways, the determination of β-arrestin2 recruitment, in addition to G-protein activation, is of great value. In this study, we established a sensitive split luciferase-based assay with the ability to quantify β-arrestin2 recruitment to D2long and D3 receptors and measure time-resolved β-arrestin2 recruitment to the D2long receptor after agonist stimulation. We were able to characterize several standard (inverse) agonists as well as antagonists at the D2longR and D3R subtypes, whereas for the D4.4R, no β-arrestin2 recruitment was detected, confirming previous reports. Extensive radioligand binding studies and comparisons with the respective wild-type receptors confirm that the attachment of the Emerald luciferase fragment to the receptors does not affect the integrity of the receptor proteins. Studies on the involvement of GRK2/3 and PKC on the β-arrestin recruitment to the D2longR and D3R, as well as at the D1R using different kinase inhibitors, showed that the assay could also contribute to the elucidation of signaling mechanisms. Its broad applicability, which provides concentration-dependent and kinetic information on receptor/β-arrestin2 interactions, renders this homogeneous assay a valuable method for the identification of biased agonists.
Collapse
Affiliation(s)
- Lisa Forster
- Correspondence: (L.F.); (S.P.); Tel.: +49-941-943-4796 (L.F.); +49-941-943-4825 (S.P.)
| | | | | | | | - Steffen Pockes
- Correspondence: (L.F.); (S.P.); Tel.: +49-941-943-4796 (L.F.); +49-941-943-4825 (S.P.)
| |
Collapse
|
4
|
Li P, Wang L, Di LJ. Applications of Protein Fragment Complementation Assays for Analyzing Biomolecular Interactions and Biochemical Networks in Living Cells. J Proteome Res 2019; 18:2987-2998. [PMID: 31274323 DOI: 10.1021/acs.jproteome.9b00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are indispensable for the dynamic assembly of multiprotein complexes that are central players of nearly all of the intracellular biological processes, such as signaling pathways, metabolic pathways, formation of intracellular organelles, establishment of cytoplasmic skeletons, etc. Numerous approaches have been invented to study PPIs both in vivo and in vitro, including the protein-fragment complementation assay (PCA), which is a widely applied technology to study PPIs and biomolecular interactions. PCA is a technology based on the expression of the bait and prey proteins in fusion with two complementary reporter protein fragments, respectively, that will reassemble when in close proximity. The reporter protein can be the enzymes or fluorescent proteins. Recovery of the enzymatic activity or fluorescent signal can be the indicator of PPI between the bait and prey proteins. Significant effort has been invested in developing many derivatives of PCA, along with various applications, in order to address specific questions. Therefore, a prompt review of these applications is important. In this review, we will categorize these applications according to the scenarios that the PCAs were applied and expect to provide a reference guideline for the future selection of PCA methods in solving a specific problem.
Collapse
Affiliation(s)
- Peipei Li
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China.,Metabolomics Core, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| |
Collapse
|
5
|
Fleiss A, Sarkisyan KS. A brief review of bioluminescent systems (2019). Curr Genet 2019; 65:877-882. [PMID: 30850867 PMCID: PMC6620254 DOI: 10.1007/s00294-019-00951-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Despite being widely used in reporter technologies, bioluminescent systems are largely understudied. Of at least forty different bioluminescent systems thought to exist in nature, molecular components of only seven light-emitting reactions are known, and the full biochemical pathway leading to light emission is only understood for two of them. Here, we provide a succinct overview of currently known bioluminescent systems highlighting available tools for research and discussing future applications.
Collapse
Affiliation(s)
- Aubin Fleiss
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Karen S Sarkisyan
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London, UK. .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK. .,Planta LLC, Bolshoi Boulevard, 42 Str 1, Office 335, Moscow, 121205, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| |
Collapse
|
6
|
Laschet C, Dupuis N, Hanson J. A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR-G protein interactions. J Biol Chem 2018; 294:4079-4090. [PMID: 30593506 DOI: 10.1074/jbc.ra118.006231] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are currently the target of more than 30% of the marketed medicines. However, there is an important medical need for ligands with improved pharmacological activities on validated drug targets. Moreover, most of these ligands remain poorly characterized, notably because of a lack of pharmacological tools. Thus, there is an important demand for innovative assays that can detect and drive the design of compounds with novel or improved pharmacological properties. In particular, a functional and screening-compatible GPCR-G protein interaction assay is still unavailable. Here, we report on a nanoluciferase-based complementation technique to detect ligands that promote a GPCR-G protein interaction. We demonstrate that our system can be used to profile compounds with regard to the G proteins they activate through a given GPCR. Furthermore, we established a proof of applicability of screening for distinct G proteins on dopamine receptor D2 whose differential coupling to Gαi/o family members has been extensively studied. In a D2-Gαi1 versus D2-Gαo screening, we retrieved five agonists that are currently being used in antiparkinsonian medications. We determined that in this assay, piribedil and pergolide are full agonists for the recruitment of Gαi1 but are partial agonists for Gαo, that the agonist activity of ropinirole is biased in favor of Gαi1 recruitment, and that the agonist activity of apomorphine is biased for Gαo We propose that this newly developed assay could be used to develop molecules that selectively modulate a particular G protein pathway.
Collapse
Affiliation(s)
- Céline Laschet
- From the Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège and
| | - Nadine Dupuis
- From the Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège and
| | - Julien Hanson
- From the Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège and .,the Laboratory of Medicinal Chemistry, CIRM-Drug Target and Lead Discovery, University of Liège, Liège CHU, B34 (+4), B-4000 Liège, Belgium
| |
Collapse
|
7
|
Uno N, Fujimoto T, Komoto S, Kurosawa G, Sawa M, Suzuki T, Kazuki Y, Oshimura M. A luciferase complementation assay system using transferable mouse artificial chromosomes to monitor protein-protein interactions mediated by G protein-coupled receptors. Cytotechnology 2018; 70:1499-1508. [PMID: 30112660 PMCID: PMC6269364 DOI: 10.1007/s10616-018-0231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven-transmembrane domain receptors that interact with the β-arrestin family, particularly β-arrestin 1 (ARRB1). GPCRs interact with 33% of small molecule drugs. Ligand screening is promising for drug discovery concerning GPCR-related diseases. Luciferase complementation assay (LCA) enables detection of protein–protein complementation via bioluminescence following complementation of N- and C-terminal luciferase fragments (NEluc and CEluc) fused to target proteins, but it is necessary to co-express the two genes. Here, we developed LCAs with mouse artificial chromosomes (MACs) that have unique characteristics such as stable maintenance and a substantial insert-carrying capacity. First, an NEluc-ARRB1 was inserted into MAC4 by Cre-loxP recombination in CHO cells, named ARRB1-MAC4. Second, a parathyroid hormone receptor 2 (PTHR2)-CEluc or prostaglandin EP4 receptor (hEP4)-CEluc were inserted into ARRB1-MAC4, named ARRB1-PTHR2-MAC4 and ARRB1-hEP4-MAC4, respectively, via the sequential integration of multiple vectors (SIM) system. Each MAC was transferred into HEK293 cells by microcell-mediated chromosome transfer (MMCT). LCAs using the established HEK293 cell lines resulted in 35,000 photon counts upon somatostatin stimulation for ARRB1-MAC4 with transient transfection of the somatostatin receptor 2 (SSTR2) expression vector, 1800 photon counts upon parathyroid hormone stimulation for ARRB1-PTHR2-MAC4, and 35,000 photon counts upon prostaglandin E2 stimulation for ARRB1-hEP4-MAC4. These MACs were maintained independently from host chromosomes in CHO and HEK293 cells. HEK293 cells containing ARRB1-PTHR2-MAC4 showed a stable reaction for long-term. Thus, the combination of gene loading by the SIM system into a MAC and an LCA targeting GPCRs provides a novel and useful platform to discover drugs for GPCR-related diseases.
Collapse
Affiliation(s)
- Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Tomohito Fujimoto
- ProbeX, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Shinya Komoto
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Gene Kurosawa
- Department Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masaaki Sawa
- ProbeX, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
8
|
Wang A, Feng J, Li Y, Zou P. Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities. ACS Chem Neurosci 2018; 9:639-650. [PMID: 29482322 DOI: 10.1021/acschemneuro.7b00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Optical biosensors have been invaluable tools in neuroscience research, as they provide the ability to directly visualize neural activity in real time, with high specificity, and with exceptional spatial and temporal resolution. Notably, a majority of these sensors are based on fluorescent protein scaffolds, which offer the ability to target specific cell types or even subcellular compartments. However, fluorescent proteins are intrinsically bulky tags, often insensitive to the environment, and always require excitation light illumination. To address these limitations, there has been a proliferation of alternative sensor scaffolds developed in recent years, including hybrid sensors that combine the advantages of synthetic fluorophores and genetically encoded protein tags, as well as bioluminescent probes. While still in their early stage of development as compared with fluorescent protein-based sensors, these novel probes have offered complementary solutions to interrogate various aspects of neuronal communication, including transmitter release, changes in membrane potential, and the production of second messengers. In this Review, we discuss these important new developments with a particular focus on design strategies.
Collapse
Affiliation(s)
- Anqi Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Smirnova DV, Ugarova NN. Firefly Luciferase-based Fusion Proteins and their Applications in Bioanalysis. Photochem Photobiol 2016; 93:436-447. [PMID: 27796044 DOI: 10.1111/php.12656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022]
Abstract
Firefly luciferase is widely used in molecular biology and bioanalytical systems as a reporter molecule due to the high quantum yield of the bioluminescence, availability of stable mutant forms of the enzyme with prescribed spectral characteristics and abundance of bacterial expression systems suitable for production of recombinant proteins in limitless quantities. In this review, we described fusion proteins of luciferase with biotin-binding domain and streptavidin, with proteins A and G, antibodies, with DNA- and RNA-binding proteins, as well as fusion proteins designed for BRET systems. The firefly luciferase-based fusion proteins are represented as an effective tool for the development of different bioanalytical systems such as (1) systems in which luciferase is attached to the surface of the target and the bioluminescence signal is detected from the specific complexes formed; (2) BRET-based systems, in which the specific interaction induces changes in the bioluminescence spectrum; and (3) systems that use modified or split luciferases, in which the luciferase activity changes under the action of the analyte. All these systems have wide application in biochemical analysis of physiologically important compounds, for the detection of pathogenic bacteria and viruses, for evaluation of protein-protein interactions, assaying of metabolites involved in cell communication and cell signaling.
Collapse
Affiliation(s)
- Daria V Smirnova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia N Ugarova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Zhang Q, Yang H, Li J, Xie X. Discovery and Characterization of a Novel Small-Molecule Agonist for Medium-Chain Free Fatty Acid Receptor G Protein-Coupled Receptor 84. J Pharmacol Exp Ther 2016; 357:337-44. [PMID: 26962172 DOI: 10.1124/jpet.116.232033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization.
Collapse
Affiliation(s)
- Qing Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China (Q.Z., X.X.); and CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Q.Z., H.Y., J.L., X.X.)
| | - Hui Yang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China (Q.Z., X.X.); and CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Q.Z., H.Y., J.L., X.X.)
| | - Jing Li
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China (Q.Z., X.X.); and CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Q.Z., H.Y., J.L., X.X.)
| | - Xin Xie
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China (Q.Z., X.X.); and CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Q.Z., H.Y., J.L., X.X.)
| |
Collapse
|
11
|
Hattori M, Ozawa T. Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis. Methods Mol Biol 2016; 1461:195-202. [PMID: 27424906 DOI: 10.1007/978-1-4939-3813-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are notable targets of basic therapeutics. Many screening methods have been established to identify novel agents for GPCR signaling in a high-throughput manner. However, information related to the temporal reaction of GPCR with specific ligands remains poor. We recently developed a bioluminescence method for the quantitative detection of the interaction between GPCR and β-arrestin using split luciferase complementation. To monitor time-course variation of the interactions, a new imaging system contributes to the accurate evaluation of drugs for GPCRs in a high-throughput manner.
Collapse
Affiliation(s)
- Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Jiang Y, Li YR, Tian H, Ma M, Matsunami H. Muscarinic acetylcholine receptor M3 modulates odorant receptor activity via inhibition of β-arrestin-2 recruitment. Nat Commun 2015; 6:6448. [PMID: 25800153 PMCID: PMC4372811 DOI: 10.1038/ncomms7448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
The olfactory system in rodents serves a critical function in social, reproductive, and survival behaviors. Processing of chemosensory signals in the brain is dynamically regulated in part by an animal's physiological state. We previously reported that type 3 muscarinic acetylcholine receptors (M3-Rs) physically interact with odorant receptors (ORs) to promote odor-induced responses in a heterologous expression system. However, it is not known how M3-Rs affect the ability of olfactory sensory neurons (OSNs) to respond to odors. Here, we show that an M3-R antagonist attenuates odor-induced responses in OSNs from wild-type, but not M3-R-null mice. Using a novel molecular assay, we demonstrate that the activation of M3-Rs inhibits the recruitment of β-arrestin-2 to ORs, resulting in a potentiation of odor-induced response in OSNs. These results suggest a role for acetylcholine in modulating olfactory processing at the initial stages of signal transduction in the olfactory system.
Collapse
Affiliation(s)
- Yue Jiang
- 1] Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] University Program of Genetics and Genomics, Duke University, Duke, North Carolina 27710, USA
| | - Yun Rose Li
- 1] Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA [2] Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Huikai Tian
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Minghong Ma
- 1] Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA [2] Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Hiroaki Matsunami
- 1] Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
13
|
HATTORI M, OZAWA T. High-throughput Live Cell Imaging and Analysis for Temporal Reaction of G Protein-coupled Receptor Based on Split Luciferase Fragment Complementation. ANAL SCI 2015; 31:327-30. [DOI: 10.2116/analsci.31.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mitsuru HATTORI
- Department of Chemistry, School of Science, The University of Tokyo
| | - Takeaki OZAWA
- Department of Chemistry, School of Science, The University of Tokyo
| |
Collapse
|
14
|
Takakura H, Hattori M, Tanaka M, Ozawa T. Cell-based assays and animal models for GPCR drug screening. Methods Mol Biol 2015; 1272:257-270. [PMID: 25563190 DOI: 10.1007/978-1-4939-2336-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The family of G protein-coupled receptors (GPCRs) remains a central focus of basic pharmacology and drug discovery efforts. Convenient methods to assess the efficacy of potentially therapeutic reagents for GPCRs are strongly required for high-throughput screening (HTS) assay. We recently developed a rapid, sensitive, and quantitative method for detecting potential chemicals that act on GPCRs using split luciferase complementation. In principle, this is based on the detection of interactions of GPCR with β-arrestin, which translocates to the activated GPCRs. This method can facilitate the construction of HTS systems in a multi-well plate format. Particularly, the method is compatible with single-cell imaging and animal models and even deeper tissues such as organs, because of its high sensitivity, suggesting that promising candidates from HTS assay can be moved easily to the next phase for additional analysis. This system can contribute to the effective evaluation of potentially therapeutic reagents and expedite the development of new drugs for GPCRs.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Arrestins/genetics
- Arrestins/metabolism
- Drug Discovery
- Drug Evaluation, Preclinical
- Female
- Gene Expression
- Genes, Reporter
- HEK293 Cells
- High-Throughput Screening Assays
- Humans
- Isoproterenol/pharmacology
- Luciferases/genetics
- Luciferases/metabolism
- Luminescent Measurements
- Mice, Inbred BALB C
- Plasmids/chemistry
- Plasmids/metabolism
- Propranolol/pharmacology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Somatostatin/agonists
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Single-Cell Analysis/methods
- Somatostatin/pharmacology
- Transfection
- beta-Arrestins
Collapse
Affiliation(s)
- Hideo Takakura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
15
|
Hattori M, Ozawa T. Bioluminescent tools for the analysis of G-protein-coupled receptor and arrestin interactions. RSC Adv 2015. [DOI: 10.1039/c4ra14979c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New protein-based bioluminescent probes for monitoring GPCR interaction with β-arrestin are presented.
Collapse
Affiliation(s)
- Mitsuru Hattori
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Takeaki Ozawa
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
16
|
Azad T, Tashakor A, Hosseinkhani S. Split-luciferase complementary assay: applications, recent developments, and future perspectives. Anal Bioanal Chem 2014; 406:5541-60. [DOI: 10.1007/s00216-014-7980-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 12/19/2022]
|
17
|
Yoshimura H, Ozawa T. Methods of Split Reporter Reconstitution for the Analysis of Biomolecules. CHEM REC 2014; 14:492-501. [DOI: 10.1002/tcr.201402001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takeaki Ozawa
- Department of Chemistry; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
18
|
HATTORI M, OZAWA T. Split Luciferase Complementation for Analysis of Intracellular Signaling. ANAL SCI 2014; 30:539-44. [DOI: 10.2116/analsci.30.539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mitsuru HATTORI
- Department of Chemistry, School of Science, The University of Tokyo
| | - Takeaki OZAWA
- Department of Chemistry, School of Science, The University of Tokyo
| |
Collapse
|