1
|
Aioub AG, Higginson CJ, Finn MG. Traceless Release of Alcohols Using Thiol-Sensitive Oxanorbornadiene Linkers. Org Lett 2018; 20:3233-3236. [PMID: 29767522 DOI: 10.1021/acs.orglett.8b01093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A class of ester-amide oxanorbornadiene (EA-OND) molecules was developed to release alcohol cargos by succinimide formation upon addition of a thiol reagent. The resulting ring-closed adducts undergo further fragmentation by retro-Diels-Alder reaction to release a furan moiety in a manner similar to oxanorbornadiene diesters. The rates of each of these fragmentation pathways in the same medium were found to be sensitive to the steric nature of the amide substituent. Alcohol release was much faster in protic solvents than in aprotic ones, suggesting that this system may be useful for rapid response to thiols in biological environments. Accordingly, the attachment and thiol-dependent release of cholesterol was characterized as an example of the manipulation of a drug-like cargo.
Collapse
Affiliation(s)
- Allison G Aioub
- School of Chemistry & Biochemistry, School of Biological Sciences , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Cody J Higginson
- School of Chemistry & Biochemistry, School of Biological Sciences , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - M G Finn
- School of Chemistry & Biochemistry, School of Biological Sciences , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
3
|
Charton J, Gauriot M, Guo Q, Hennuyer N, Marechal X, Dumont J, Hamdane M, Pottiez V, Landry V, Sperandio O, Flipo M, Buee L, Staels B, Leroux F, Tang WJ, Deprez B, Deprez-Poulain R. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. Eur J Med Chem 2014; 79:184-93. [PMID: 24735644 DOI: 10.1016/j.ejmech.2014.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
Insulin degrading enzyme (IDE) is a highly conserved zinc metalloprotease that is involved in the clearance of various physiologically peptides like amyloid-beta and insulin. This enzyme has been involved in the physiopathology of diabetes and Alzheimer's disease. We describe here a series of small molecules discovered by screening. Co-crystallization of the compounds with IDE revealed a binding both at the permanent exosite and at the discontinuous, conformational catalytic site. Preliminary structure-activity relationships are described. Selective inhibition of amyloid-beta degradation over insulin hydrolysis was possible. Neuroblastoma cells treated with the optimized compound display a dose-dependent increase in amyloid-beta levels.
Collapse
Affiliation(s)
- Julie Charton
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Marion Gauriot
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Qing Guo
- Ben-May Institute for Cancer Research, The University of Chicago, W421 Chicago, IL, USA
| | - Nathalie Hennuyer
- Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; INSERM U1011 Nuclear Receptors, Cardiovascular Diseases and Diabetes, Lille F-59000, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille F-59000, France
| | - Xavier Marechal
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Julie Dumont
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Malika Hamdane
- Univ Lille Nord de France, Lille F-59000, France; INSERM U837 Neurodegenerative Diseases and Neuronal Death, Lille F-59000, France; CHRU, Lille F-59000, France
| | - Virginie Pottiez
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Valerie Landry
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Olivier Sperandio
- CDithem Platform/IGM, Paris, France; Inserm UMR-S 973/MTi, University Paris Diderot, Paris, France
| | - Marion Flipo
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Luc Buee
- Univ Lille Nord de France, Lille F-59000, France; INSERM U837 Neurodegenerative Diseases and Neuronal Death, Lille F-59000, France; CHRU, Lille F-59000, France
| | - Bart Staels
- Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; INSERM U1011 Nuclear Receptors, Cardiovascular Diseases and Diabetes, Lille F-59000, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille F-59000, France
| | - Florence Leroux
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France
| | - Wei-Jen Tang
- Ben-May Institute for Cancer Research, The University of Chicago, W421 Chicago, IL, USA
| | - Benoit Deprez
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France.
| | - Rebecca Deprez-Poulain
- INSERM U761 Biostructures and Drug Discovery, Lille, France; Univ Lille Nord de France, Lille F-59000, France; Institut Pasteur de Lille, IFR 142, Lille F-59000, France; PRIM, Lille F-59000, France; CDithem Platform/IGM, Paris, France.
| |
Collapse
|