1
|
Kim MS, Selvaraj B, Yeo HT, Park JS, Lee JW, Park JS. Discovery of 15-deoxynaphthomycins activating the antioxidant NRF2-ARE pathway from Streptomyces sp. N50 via genome mining, global regulator introduction, and molecular networking. Microb Cell Fact 2025; 24:14. [PMID: 39794808 PMCID: PMC11724615 DOI: 10.1186/s12934-024-02641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Genome mining is a promising avenue for expanding the repertoire of microbial natural products, which are important for drug development. This approach involves predicting genetically encoded small molecules by examining bacterial genomes via accumulated knowledge of microbial biosynthesis. However, it is also important that the microbes produce the predicted molecule in practice. Here, we introduce an endophytic Streptomyces sp. N50, which was isolated from the medicinal plant Selaginella tamariscina. Upon sequencing its entire genome, 33 biosynthetic gene clusters (BGCs) were identified in a chromosome and a megaplasmid. Subsequent genome mining revealed that the new 15-deoxynaphthomycin could be produced due to the presence of an enoyl reductase domain, which is absent in the known BGC of naphthomycin, a type of ansamycin antibiotics. In addition, the engineered strain with the introduction of the global regulatory gene afsR2 into N50 successfully produced 15-deoxynaphthomycins. Furthermore, molecular network analysis via MS/MS selectively confirmed the presence of additional sulfur-containing 15-deoxynaphthomycin congeners. Eventually, six new 15-deoxynaphthomycins were isolated and elucidated from the engineered strain N50. This family of compounds is known to exhibit various biological activities. Also, the presence of quinone moieties in these compounds, which are known to activate NRF2, they were tested for their ability to activate NRF2. Among the new compounds, three (1, 5, and 6) activated the antioxidant NRF2-ARE signaling pathway. Treatment with these compounds significantly elevated NRF2 levels in HepG2 cells and further induced the expression of NRF2 target genes associated with the antioxidant response. This study suggests that the combination of genome mining, gene engineering and molecular networking is helpful for generating new small molecules as pharmaceutical candidates from microorganisms.
Collapse
Affiliation(s)
- Min-Seon Kim
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Baskar Selvaraj
- Center for Natural Product Efficacy Optimization, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Hee-Tae Yeo
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Jun-Su Park
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Jae Wook Lee
- Center for Natural Product Efficacy Optimization, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, 25451, Republic of Korea.
| | - Jin-Soo Park
- Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
2
|
Li K, Zhu H, Sun C, Tian G, Ma X, Saravana Kumar P, Weng X, Yang H, Fang R, Liu W, Shang Z, Ma J, Ju J. Metabolic Blockade-Based Genome Mining of Saccharopolyspora erythraea SCSIO 07745: Discovery and Biosynthetic Pathway of Aminoquinolinone Alkaloids Bearing 6/6/5 Tricyclic and 6/6/6/5 Tetracyclic Scaffolds. Org Lett 2025; 27:476-481. [PMID: 39705017 DOI: 10.1021/acs.orglett.4c04491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Metabolic blockade-based genome mining of the marine sediment-derived Saccharopolyspora erythraea SCSIO 07745 led to the discovery of 11 novel aminoquinolinone alkaloids, oxazoquinolinones A-J (1-10), characterized by an oxazolidone[3,2-α]quinoline-5,8-dione scaffold, and oxazoquinolinone K (11), featuring an unprecedented fused 6/6/6/5 tetracyclic core ring system. Additionally, 5 new biosynthetic intermediates or shunt products (12-16) and a known metabolite sannanine (17) were identified. Their structures were elucidated by extensive spectroscopic analyses and a comparison of electronic circular dichroism and single-crystal X-ray diffraction. On the basis of the functional gene analyses and structures of the intermediates or shunt products, plausible biosynthetic pathways for compounds 1-17 were proposed. Additionally, oxazoquinolinone K (11) obviously inhibited cell invasion of human glioma cell line LN229 cells at 10 μM.
Collapse
Affiliation(s)
- Kunlong Li
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Hongjie Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
| | - Ge Tian
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Ma
- Equipment Public Service Center of South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
| | - Pachaiyappan Saravana Kumar
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong 266400, China
| | - Xiang Weng
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Hu Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Runping Fang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Weilong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhuo Shang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong 266400, China
| | - Jianhua Ju
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong 266400, China
| |
Collapse
|
3
|
Wang J, Lu C, Tang Y, Shen Y. Microansamycins J and K from Micromonospora sp. HK160111mas13OE. Nat Prod Res 2024; 38:3854-3858. [PMID: 37740639 DOI: 10.1080/14786419.2023.2261606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Microansamycins were novel pentaketide ansamycins isolated from Micromonospora sp. HK160111mas13OE with AHBA-C2-C2-C3-C3 skeleton and diverse post-PKS modifications. In this paper, two new congeners, namely microansamycins J (1) and K (2), were identified based on their NMR, HRESIMS data and compared with those of microansamycins F and E. Neither showed antibacterial activity against Staphy-lococcus aureus ATCC25923 and Escherichia coli at 40 µg/mL.
Collapse
Affiliation(s)
- Jianxiong Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yajie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Chen J, Zhu H, Peng M, Zhang S, Li Q, Gu YC, Ju J. Flavin-Dependent Monooxygenase Kmy13 Mediates Formation of the Carbocyclic ansa System during Kendomycin B Biosynthesis. J Am Chem Soc 2024. [PMID: 39370618 DOI: 10.1021/jacs.4c08774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Kendomycin B is distinguished from other ansamycins by its unique, fully carbogenic ansa scaffold. We show here that FAD-dependent monooxygenase Kmy13 is solely responsible for installing the rare ansa structural framework; in vivo gene disruption/complementation experiments and in vitro enzymatic assays are described in detail. Moreover, the compound with a β-keto ester, kendolactone A (2), was confirmed as the natural substrate of Kmy13 and a bona fide biosynthetic intermediate en route to kendomycin B. Further structural prediction and biochemical assays have provided significant insights into the catalytic mechanism of Kmy13.
Collapse
Affiliation(s)
- Jiang Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Hongjie Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ming Peng
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shanwen Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
6
|
Mahmoud Mohamed MM, Yang Z, Lum KY, Peschel G, Rosenbaum MA, Weber T, Coriani S, Gotfredsen CH, Ding L. Genome-Driven Discovery of Hygrocins in Streptomyces rapamycinicus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1321-1329. [PMID: 38647518 DOI: 10.1021/acs.jnatprod.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ansamycins, represented by the antituberculosis drug rifamycin, are an important family of natural products. To obtain new ansamycins, Streptomyces rapamycinicus IMET 43975 harboring an ansamycin biosynthetic gene cluster was fermented in a 50 L scale, and subsequent purification work led to the isolation of five known and four new analogues, where hygrocin W (2) belongs to benzoquinonoid ansamycins, and the other three hygrocins, hygrocins X-Z (6-8), are new seco-hygrocins. The structures of ansamycins (1-8) were determined by the analysis of spectroscopic (1D/2D NMR and ECD) and MS spectrometric data. The Baeyer-Villiger enzyme which catalyzed the ester formation in the ansa-ring was confirmed through in vivo CRISPR base editing. The discovery of these compounds further enriches the structural diversity of ansamycins.
Collapse
Affiliation(s)
- Manar Magdy Mahmoud Mohamed
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Kah Yean Lum
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Ma X, Ye F, Zhang X, Li Z, Ding Y, Lu C, Shen Y. Proansamycin B derivatives from the post-PKS modification gene deletion mutant of Amycolatopsis mediterranei S699. J Antibiot (Tokyo) 2024; 77:278-287. [PMID: 38409261 DOI: 10.1038/s41429-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Ten new proansamycin B congeners (1-10) together with one known (11) were isolated and characterized on the basis of 1D and 2D NMR spectroscopic and HRESIMS data from the Amycolatopsis mediterranei S699 ΔPM::rifR+rif-orf19 mutant. Compounds 8 and 9 featured with six-membered ring and five-membered ring hemiketal, respectively. Compounds 1, 2, and 9 displayed antibacterial activity against MRSA (methicillin-resistant Staphylococcus aureus), with the MIC (minimal inhibitory concentration) values of 64, 8, and 128 µg/mL, respectively. Compound 1 showed significant cytotoxicity against MDA-MB-231, HepG2 and Panc-1 cell lines with IC50 (half maximal inhibitory concentration) values of 2.3 ± 0.2, 2.5 ± 0.3 and 3.8 ± 0.5 μM, respectively.
Collapse
Affiliation(s)
- Xinyu Ma
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhan Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yanjiao Ding
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Liu Z, Sun W, Hu Z, Wang W, Zhang H. Marine Streptomyces-Derived Novel Alkaloids Discovered in the Past Decade. Mar Drugs 2024; 22:51. [PMID: 38276653 PMCID: PMC10821133 DOI: 10.3390/md22010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Natural alkaloids originating from actinomycetes and synthetic derivatives have always been among the important suppliers of small-molecule drugs. Among their biological sources, Streptomyces is the highest and most extensively researched genus. Marine-derived Streptomyces strains harbor unconventional metabolic pathways and have been demonstrated to be efficient producers of biologically active alkaloids; more than 60% of these compounds exhibit valuable activity such as antibacterial, antitumor, anti-inflammatory activities. This review comprehensively summarizes novel alkaloids produced by marine Streptomyces discovered in the past decade, focusing on their structural features, biological activity, and pharmacological mechanisms. Future perspectives on the discovery and development of novel alkaloids from marine Streptomyces are also provided.
Collapse
Affiliation(s)
| | | | | | | | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.L.); (W.S.); (Z.H.); (W.W.)
| |
Collapse
|
10
|
Bhuyan M, Sharma S, Dutta NB, Baishya G. tert-Butylhydroperoxide mediated radical cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2023; 21:9255-9269. [PMID: 37969100 DOI: 10.1039/d3ob01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A novel sustainable methodology based on one-pot cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s involving a three-component radical cascade pathway has been achieved. Here, tert-butylhydroperoxide (TBHP) acts as an efficient oxidant, and it smoothly drives the reaction, producing the three-component products in very good to excellent yields. This cascade reaction eliminates the use of any base, additive, metal and hazardous cyanating agent. Additionally, this protocol exclusively delivers a stereospecific product in the case of arylalkynes. The involvement of radicals is evidenced through various radical trapping experiments.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | | | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
11
|
Weeraphan T, Supong K, Sripreechasak P, Jutakanoke R, Kowinthanaphat S, Tanasupawat S, Pittayakhajonwut P, Phongsopitanun W. Streptomyces rugosispiralis sp. nov., a Novel Actinobacterium Isolated from Peat Swamp Forest Soil That Produces Ansamycin Derivatives and Nocardamines. Antibiotics (Basel) 2023; 12:1467. [PMID: 37760763 PMCID: PMC10525797 DOI: 10.3390/antibiotics12091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Actinomycetes, especially the genus Streptomyces, are one of the most promising sources of bioactive natural products. In this study, a novel Streptomyces strain, RCU-064T, was isolated from a soil sample collected from a peat swamp forest in Thailand. Strain RCU-064T showed the highest 16S rRNA gene sequence similarity (99.06%) with Streptomyces malaysiensis NBRC 16446T. Based on a polyphasic approach, strain RCU-064T represents a novel species of the genus Streptomyces, for which the name Streptomyces rugosispiralis sp. nov. is proposed. The chemical isolation of the crude ethyl acetate extracts of the strain led to the isolation of six compounds: (1) geldanamycin, (2) 17-O-demethylgeldanamycin, (3) reblastatin, (4) 17-demethoxyreblastatin, (5) nocardamine, and (6) dehydroxynocardamine. These compounds were evaluated for their biological activities. All compounds showed no antimicrobial activity against tested microorganisms used in this study. Compounds (1)-(4) displayed cytotoxic activity against the NCI-H187 cell line, with IC50 values ranging from 0.045-4.250 µg/mL. Cytotoxicity against the MCF-7 cell line was found in compounds (1) and (3) with IC50 values of 3.51 and 1.27 µg/mL, respectively. Compounds (5) and (6) exhibited cytotoxicity only against Vero cells (IC50 of 16.57 µg/mL) and NCI-H187 cells (IC50 of 13.96 µg/mL), respectively. These results indicate that peat swamp forest soil remains a promising reservoir of novel actinomycetes capable of producing bioactive natural products.
Collapse
Affiliation(s)
- Trinset Weeraphan
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
| | - Khomsan Supong
- Department of Applied Science and Biotechnology, Faculty of Agro-Industrial Technology, Rajamangala University of Technology Tawan-ok, Chantaburi 22210, Thailand
| | - Paranee Sripreechasak
- Office of Educational Affairs, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Supalerk Kowinthanaphat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
- Natural Products and Nanoparticles Research Units (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Ye F, Zhao X, Shi Y, Hu Y, Ding Y, Lu C, Li Y, Wang H, Lu G, Shen Y. Deciphering the Timing of Naphthalenic Ring Formation in the Biosynthesis of 8-Deoxyrifamycins. Org Lett 2023; 25:6474-6478. [PMID: 37634191 DOI: 10.1021/acs.orglett.3c02039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Although the biosynthesis of rifamycin has been studied for three decades, the biosynthetic formation of the naphthalenic ring remains unclear. In this study, by deletion of all post-PKS modification genes, we identified macrolactam precursors released from rif PKS. Isolated prorifamycins (M3 and M4) have a benzenic chromophore and exist in two sets of macrocyclic atropisomers. The transformation from prorifamycins to benzenoid (5) and naphthalenoid (6) was suggested to be a non-enzymatic process, which is an off-PKS assembly.
Collapse
Affiliation(s)
- Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
13
|
Zafar S, Armaghan M, Khan K, Hassan N, Sharifi-Rad J, Habtemariam S, Kieliszek M, Butnariu M, Bagiu IC, Bagiu RV, Cho WC. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother 2023; 165:115039. [PMID: 37364476 DOI: 10.1016/j.biopha.2023.115039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan.
| | - Nazia Hassan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania.
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Preventive Medicine Study Center, Timisoara, Romania
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Nouioui I, Ghodhbane-Gtari F, Jando M, Klenk HP, Gtari M. Frankia colletiae sp. nov., a nitrogen-fixing actinobacterium isolated from Colletia cruciata. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748481 DOI: 10.1099/ijsem.0.005656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A nitrogen-fixing actinobacterium strain (Cc1.17T) isolated from a root nodule of Colletia cruciata was subjected to polyphasic taxonomic studies. The strain was characterized by the presence of meso-diaminopimelic acid in its peptidoglycan, galactose, glucose, mannose, rhamnose, ribose and xylose as cell-wall sugars, phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, glycophospholipid and uncharacterized lipids as its polar lipids, and C16 : 0, iso-C16 : 0, C17 : 1 ω9 and C18 : 1 ω9 as major fatty acids (>10 %). Strain Cc1.17T showed 16S rRNA gene sequence similarities of 97.4-99.8 % to validly named Frankia species. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain Cc1.17T in a new lineage within the genus Frankia. Digital DNA-DNA hybridization and average nucleotide identity values between strain Cc1.17T and its closest phylogenomic neighbours were well below the thresholds recommended for prokaryotic species delineation. Therefore, strain Cc1.17T (=DSM 43829T=CECT 9313T) merits recognition as the type strain of a new species for which the name Frankia colletiae sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Faten Ghodhbane-Gtari
- Institut Supérieur de Biotechnologie de Sidi Thabet, Université La Manouba, Manouba, Tunisia.,USCR Bactériologie Moléculaire & génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, 1080 Tunis Cedex, Tunisia
| | - Marlen Jando
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- USCR Bactériologie Moléculaire & génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, 1080 Tunis Cedex, Tunisia
| |
Collapse
|
15
|
Yang X, Wu W, Li H, Zhang M, Chu Z, Wang X, Sun P. Natural occurrence, bioactivity, and biosynthesis of triene-ansamycins. Eur J Med Chem 2022; 244:114815. [DOI: 10.1016/j.ejmech.2022.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
16
|
Gao Q, Deng S, Jiang T. Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms. ENGINEERING MICROBIOLOGY 2022; 2:100047. [PMID: 39628704 PMCID: PMC11611020 DOI: 10.1016/j.engmic.2022.100047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2024]
Abstract
Secondary metabolites in microorganisms represent a resource for drug discovery and development. In particular, microbial-derived antitumor agents are in clinical use worldwide. Herein, we provide an overview of the development of classical antitumor drugs derived from microorganisms. Currently used drugs and drug candidates are comprehensively described in terms of pharmacological activities, mechanisms of action, microbial sources, and biosynthesis. We further discuss recent studies that have demonstrated the utility of gene-editing technologies and synthetic biology tools for the identification of new gene clusters, expansion of natural products, and elucidation of biosynthetic pathways. This review summarizes recent progress in the discovery and development of microbial-derived anticancer compounds with emphasis on biosynthesis.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Sizhe Deng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tianyu Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
17
|
Devi M, Kumar P, Singh R, Narayan L, Kumar A, Sindhu J, Lal S, Hussain K, Singh D. A comprehensive review on synthesis, biological profile and photophysical studies of heterocyclic compounds derived from 2,3-diamino-1,4-naphthoquinone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Dong Q, Li J, Liu L, Aisa HA, Yili A. Unusual ring B-seco isosteroidal alkaloid, yibeiglycoalkaloids A-E from Fritillaria pallidiflora schrenk. PHYTOCHEMISTRY 2022; 203:113351. [PMID: 35973613 DOI: 10.1016/j.phytochem.2022.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Five previously undescribed steroidal glycoalkaloids(SGAs)and a rare ring B-seco isosteroidal alkaloid, were isolated from Fritillaria pallidiflora Schrenk, along with six known alkaloids. The structures of these alkaloids were established by comprehensive analyses of the 1D, 2D-NMR and HR-ESI-MS data. Configurations of sugar moieties were resolved by chemical derivations. The isolated compounds showed nitric oxide (NO) inhibitory activities in lipopolysaccharide (LPS) induced RAW264.7 cells, and yibeinone exhibited the strongest inhibitory effects among them. This study revealed that the alkaloids from F. pallidiflora might have significant anti-inflammatory potentials.
Collapse
Affiliation(s)
- Qiang Dong
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
19
|
Jang JP, Lee B, Heo KT, Oh TH, Lee HW, Ko SK, Hwang BY, Jang JH, Hong YS. Hygrolansamycins A-D, O-Heterocyclic Macrolides from Streptomyces sp. KCB17JA11. J Microbiol Biotechnol 2022; 32:1299-1306. [PMID: 36198661 PMCID: PMC9668088 DOI: 10.4014/jmb.2206.06039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022]
Abstract
Six ansamycin derivatives were isolated from the culture broth of Streptomyces sp. KCB17JA11, including four new hygrolansamycins A-D (1-4) and known congeners divergolide O (5) and hygrocin C (6). Compounds 1-5 featured an unusual six-membered O-heterocyclic moiety. The isolation workflow was guided by a Molecular Networking-based dereplication strategy. The structures of 1-4 were elucidated using NMR and HRESIMS experiments, and the absolute configuration was established by the Mosher's method. Compound 2 exhibited mild cytotoxicity against five cancer cell lines with IC50 values ranging from 24.60 ± 3.37 μM to 49.93 ± 4.52 μM.
Collapse
Affiliation(s)
- Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Hoon Oh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Hyeok-Won Lee
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea,
J.-H. Jang Phone: +82-43-240-6164 Fax: +82-43-240-6169 E-mail:
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea,Corresponding authors Y.-S. Hong Phone: +82-43-240-6144 Fax: +82-43-240-6169 E-mail:
| |
Collapse
|
20
|
Yi W, Newaz AW, Yong K, Ma M, Lian XY, Zhang Z. New Hygrocins K-U and Streptophenylpropanamide A and Bioactive Compounds from the Marine-Associated Streptomyces sp. ZZ1956. Antibiotics (Basel) 2022; 11:1455. [PMID: 36358111 PMCID: PMC9686540 DOI: 10.3390/antibiotics11111455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 05/12/2024] Open
Abstract
Marine-derived Streptomyces actinomycetes are one of the most important sources for the discovery of novel bioactive natural products. This study characterized the isolation, structural elucidation and biological activity evaluation of thirty compounds, including twelve previously undescribed compounds, namely hygrocins K-U (5-13, 17 and 18) and streptophenylpropanamide A (23), from the marine-associated actinomycete Streptomyces sp. ZZ1956. Structures of the isolated compounds were determined by a combination of extensive NMR spectroscopic analyses, HRESIMS data, the Mosher's method, ECD calculations, single crystal X-ray diffraction and comparison with reported data. Hygrocins C (1), D (2), F (4), N (8), Q (11) and R (12), 2-acetamide-6-hydroxy-7-methyl-1,4-naphthoquinone (22), echoside C (27), echoside A (28) and 11,11'-O-dimethylelaiophylin (30) had antiproliferative activity (IC50: 0.16-19.39 μM) against both human glioma U87MG and U251 cells with hygrocin C as the strongest active compound (IC50: 0.16 and 0.35 μM, respectively). The analysis of the structure-activity relationship indicated that a small change in the structures of the naphthalenic ansamycins had significant influence on their antiglioma activities. Hygrocins N (8), O (9), R (12), T (17) and U (18), 2-amino-6-hydroxy-7-methyl-1,4-naphthoquinone (21), 2-acetamide-6-hydroxy-7-methyl-1,4-naphthoquinone (22), 3'-methoxy(1,1',4',1″-terphenyl)-2',6'-diol (26), echoside C (27) and echoside A (28) showed antibacterial activity against methicillin-resistant Staphylococcus aureus and Escherichia coli with MIC values of 3-48 μg/mL.
Collapse
Affiliation(s)
- Wenwen Yi
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Asif Wares Newaz
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Kuo Yong
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Mingzhu Ma
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
- Zhejiang Marine Development Research Institute, Zhoushan 316000, China
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
21
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
22
|
Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the proposed review, the pharmacological profile of unique, rare, and unusual fatty acids derived from natural amides is considered. These amides are produced by various microorganisms, lichens, and fungi. The biological activity of some natural fatty acid amides has been determined by their isolation from natural sources, but the biological activity of fatty acids has not been practically studied. According to QSAR data, the biological activity of fatty acids is shown, which demonstrated strong antifungal, antibacterial, antiviral, antineoplastic, anti-inflammatory activities. Moreover, some fatty acids have shown rare activities such as antidiabetic, anti-infective, anti-eczematic, antimutagenic, and anti-psoriatic activities. For some fatty acids that have pronounced biological properties, 3D graphs are shown that show a graphical representation of unique activities. These data are undoubtedly of both theoretical and practical interest for chemists, pharmacologists, as well as for the pharmaceutical industry, which is engaged in the synthesis of biologically active drugs.
Collapse
|
23
|
Sittihan S, Ruchirawat S. Total Synthesis of Pentaketide Ansamycin Microansamycin H. Org Lett 2022; 24:4470-4473. [PMID: 35700387 DOI: 10.1021/acs.orglett.2c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the first total synthesis of pentaketide ansamycin microansamycin H. Key to our success was the endo-selective epoxide-opening O-alkylation to construct the elusive seven-membered benzoxepane core. Due to the electron-rich disposition of the aromatic substrate, our pivotal transformation was hindered by competing electrophilic aromatic substitution at multiple C-based nucleophilic sites that generated kinetically favored products. Judicious choices of transition metal Lewis acid promoters biased toward the formation of the desired oxepane.
Collapse
Affiliation(s)
- Satapanawat Sittihan
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 906 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 906 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
24
|
Han T, Zhang K, Tang G, Zhou Q. Characterizing
Post‐PKS
Modifications of
16‐Demethyl
‐rifamycin Revealed Two Dehydrogenases Diverting the Aromatization Mode of Naphthalenic Ring in Ansamycin Biosynthesis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ting‐Yan Han
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kai Zhang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sublane Xiangshan Hangzhou 310024 China
| | - Qiang Zhou
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
25
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
26
|
Skrzypczak N, Przybylski P. Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins. Nat Prod Rep 2022; 39:1653-1677. [PMID: 35244668 DOI: 10.1039/d2np00002d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2011 to 2021Structural division of natural naphthalenoid ansamycins, regarding the type of the core and length of the ansa chain, and their biosynthetic pathways in microorganisms are discussed. The great biosynthetic plasticity of natural naphthalenoid ansamycins is reflected in their structural variety due to the alterations within ansa bridge or naphthalenoid core portions. A comparison between the biological potency of natural and semisynthetic naphthalenoid ansamycins was performed and discussed in relation to the molecular targets in cells. The antibacterial potency of naphthalenoid ansamycins seems to be dependent on the ansa chain length and conformational flexibility - the higher flexibility of the ansa chain the better biological outcome is noted.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
27
|
Caffrey P, Hogan M, Song Y. New Glycosylated Polyene Macrolides: Refining the Ore from Genome Mining. Antibiotics (Basel) 2022; 11:334. [PMID: 35326797 PMCID: PMC8944477 DOI: 10.3390/antibiotics11030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/26/2023] Open
Abstract
Glycosylated polyene macrolides include effective antifungal agents, such as pimaricin, nystatin, candicidin, and amphotericin B. For the treatment of systemic mycoses, amphotericin B has been described as a gold-standard antibiotic because of its potent activity against a broad spectrum of fungal pathogens, which do not readily become resistant. However, amphotericin B has severe toxic side effects, and the development of safer alternatives remains an important objective. One approach towards obtaining such compounds is to discover new related natural products. Advances in next-generation sequencing have delivered a wealth of microbial genome sequences containing polyene biosynthetic gene clusters. These typically encode a modular polyketide synthase that catalyzes the assembly of the aglycone core, a cytochrome P450 that oxidizes a methyl branch to a carboxyl group, and additional enzymes for synthesis and attachment of a single mycosamine sugar residue. In some cases, further P450s catalyze epoxide formation or hydroxylation within the macrolactone. Bioinformatic analyses have identified over 250 of these clusters. Some are predicted to encode potentially valuable new polyenes that have not been uncovered by traditional screening methods. Recent experimental studies have characterized polyenes with new polyketide backbones, previously unknown late oxygenations, and additional sugar residues that increase water-solubility and reduce hemolytic activity. Here we review these studies and assess how this new knowledge can help to prioritize silent polyene clusters for further investigation. This approach should improve the chances of discovering better antifungal antibiotics.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (M.H.); (Y.S.)
| | | | | |
Collapse
|
28
|
Li H, Chen S, Wang J, Zhang M, Wu W, Liu W, Sun P. Ansafurantrienins, Unprecedented Ansatrienin Derivatives Formed via Photocatalytic Intramolecular [3 + 2] Oxidative Cycloaddition. Org Lett 2022; 24:592-596. [PMID: 34981945 DOI: 10.1021/acs.orglett.1c04032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ansafurantrienins A-H, bearing a unique 5/6/8 dihydrofuran-fused benzo[b]azocine chromophore, were isolated from Streptomyces flaveolus. Their structures, especially in the dihydrofuran unit, were unambiguously established by spectroscopic analyses, molecular modeling, and TDDFT/ECD calculations. The ansafurantrienins were proposed to be generated via intramolecular [3 + 2] oxidative cycloaddition, which was achieved by photocatalytic reaction with UV light and oxygen and found to have solvent-dependent stereoselectivity. Ansafurantrienins showed significant antiproliferative effects against pancreatic cancer cells. The results led to a structural revision of strecacansamycins.
Collapse
Affiliation(s)
- Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Shuo Chen
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Mengxue Zhang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
29
|
Escalante A, Mendoza-Flores R, Gosset G, Bolívar F. The aminoshikimic acid pathway in bacteria as source of precursors for the synthesis of antibacterial and antiviral compounds. J Ind Microbiol Biotechnol 2021; 48:6347350. [PMID: 34374768 PMCID: PMC8788734 DOI: 10.1093/jimb/kuab053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
The aminoshikimic acid (ASA) pathway comprises a series of reactions resulting in the synthesis of 3-amino-5-hydroxybenzoic acid (AHBA), present in bacteria such as Amycolatopsis mediterranei and Streptomyces. AHBA is the precursor for synthesizing the mC7N units, the characteristic structural component of ansamycins and mitomycins antibiotics, compounds with important antimicrobial and anticancer activities. Furthermore, aminoshikimic acid, another relevant intermediate of the ASA pathway, is an attractive candidate for a precursor for oseltamivir phosphate synthesis, the most potent anti-influenza neuraminidase inhibitor treatment of both seasonal and pandemic influenza. This review discusses the relevance of the key intermediate AHBA as a scaffold molecule to synthesize diverse ansamycins and mitomycins. We describe the structure and control of the expression of the model biosynthetic cluster rif in A. mediterranei to synthesize ansamycins and review several current pharmaceutical applications of these molecules. Additionally, we discuss some relevant strategies developed for overproducing these chemicals, focusing on the relevance of the ASA pathway intermediates kanosamine, AHAB, and ASA.
Collapse
Affiliation(s)
- Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rubén Mendoza-Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| |
Collapse
|
30
|
Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin. Molecules 2021; 26:molecules26226791. [PMID: 34833880 PMCID: PMC8621148 DOI: 10.3390/molecules26226791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein–protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein–protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein–protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.
Collapse
|
31
|
Liu Y, Cui X, Li Z, Chen X, Zeng G, Sun Y. Production of 3-desmethyl protostreptovaricin I from the genetically engineered Streptomyces spectabilis CCTCC M2017417. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1015-1021. [PMID: 32945189 DOI: 10.1080/10286020.2020.1816976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
A new streptovaricin analogue, namely 3-desmethyl protostreptovaricin I (1), was isolated from the culture of the genetically engineered strain ΔstvM2 derived from Streptomyces spectabilis CCTCC M2017417. Its structure was elucidated on the basis of extensive spectroscopic analyses, including 1D and 2D NMR tests, and high resolution mass spectrometry analysis. Compound 1 is the first example of 3-desmethyl streptovaricin analogues reported so far, however, it showed no antibacterial activities against Staphylococcus aureus ATCC 29213.
Collapse
Affiliation(s)
- Yuanzhen Liu
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Hubei University of Education, Wuhan 430205, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiqing Cui
- Deqiang Biology Co., Ltd, Harbin 150060, China
| | - Zhengyuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guoping Zeng
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Hubei University of Education, Wuhan 430205, China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
32
|
Comparative Genomics Reveals a Remarkable Biosynthetic Potential of the Streptomyces Phylogenetic Lineage Associated with Rugose-Ornamented Spores. mSystems 2021; 6:e0048921. [PMID: 34427515 PMCID: PMC8407293 DOI: 10.1128/msystems.00489-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Streptomyces is one of the richest sources of secondary metabolite biosynthetic gene clusters (BGCs). Sequencing of a large number of genomes has provided evidence that this well-known bacterial genus still harbors a large number of cryptic BGCs, and their metabolites are yet to be discovered. When taking a gene-first approach for new natural product discovery, BGC prioritization would be the most crucial step for the discovery of novel chemotypes. We hypothesized that strains with a greater number of BGCs would also contain a greater number of silent unique BGCs due to the presence of complex regulatory systems. Based on this hypothesis, we employed a comparative genomics approach to identify a specific Streptomyces phylogenetic lineage with the highest and yet-uncharacterized biosynthetic potential. A comparison of BGC abundance and genome size across 158 phylogenetically diverse Streptomyces type strains identified that members of the phylogenetic group characterized by the formation of rugose-ornamented spores possess the greatest number of BGCs (average, 50 BGCs) and also the largest genomes (average, 11.5 Mb). The study of genetic and biosynthetic diversities using comparative genomics of 11 sequenced genomes and a genetic similarity network analysis of BGCs suggested that members of this group carry a large number of unique BGCs, the majority of which are cryptic and not associated with any known natural product. We believe that members of this Streptomyces phylogenetic group possess a remarkable biosynthetic potential and thus would be a good target for a metabolite characterization study that could lead to the discovery of novel chemotypes. IMPORTANCE It is now well recognized that members of the genus Streptomyces still harbor a large number of cryptic BGCs in their genomes, which are mostly silent under laboratory culture conditions. Activation of transcriptionally silent BGCs is technically challenging and thus forms a bottleneck when taking a gene-first approach for the discovery of new natural products. Thus, it is important to focus activation efforts on strains with BGCs that have the potential to produce novel metabolites. The clade-level analysis of biosynthetic diversity could provide insights into the relationship between phylogenetic lineage and biosynthetic diversity. By exploring BGC abundance in relation to Streptomyces phylogeny, we identified a specific monophyletic lineage associated with the highest BGC abundance. Then, using a combined analysis of comparative genomics and a genetic network, we demonstrated that members of this lineage are genetically and biosynthetically diverse, contain a large number of cryptic BGCs with novel genotypes, and thus would be a good target for metabolite characterization studies.
Collapse
|
33
|
Liu SH, Wei YY, Xing YN, Chen Y, Wang W, Wang KB, Liang Y, Jiao RH, Zhang B, Ge HM. A BBE-like Oxidase, AsmF, Dictates the Formation of Naphthalenic Hydroxyl Groups in Ansaseomycin Biosynthesis. Org Lett 2021; 23:3724-3728. [PMID: 33877854 DOI: 10.1021/acs.orglett.1c01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ansaseomycins are ansamycin-type natural products produced through expression of the asm gene cluster in a heterologous host. A rare berberine bridge enzyme (BBE) like oxidase, AsmF, is encoded in the asm gene cluster. Deletion of asmF led to the accumulation of a series of structurally diverse compounds, all of which lacked the 23-hydroxyl group in naphthalenic motif. Our work demonstrated that AsmF dictated the formation of the naphthalenic hydroxyl group in ansaseomycin biosynthesis.
Collapse
Affiliation(s)
- Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuan Yuan Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yin Nan Xing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kai Biao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
|
35
|
Sun B, Shi X, Zhuang X, Huang P, Shi R, Zhu R, Jin C. Photoinduced EDA Complexes Enabled Radical Tandem Cyclization/Arylation of Unactivated Alkene with 2-Amino-1,4-naphthoquinones. Org Lett 2021; 23:1862-1867. [DOI: 10.1021/acs.orglett.1c00268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Panyi Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rongcheng Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
36
|
Patil R, Jadhav M, Salunke-Gawali S, Lande DN, Gejji SP, Chakravarty D. 1H and 13C NMR chemical shifts of 2- n-alkylamino-naphthalene-1,4-diones. Heliyon 2021; 7:e06044. [PMID: 33553738 PMCID: PMC7848645 DOI: 10.1016/j.heliyon.2021.e06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/29/2020] [Accepted: 01/18/2021] [Indexed: 10/25/2022] Open
Abstract
1H as well as 13C chemical shifts of 32 compounds of C (3) substituted 2-(n-alkylamino)-3R-naphthalene-1,4-dione (where n-alkyl: methyl, to octyl, R = H, Cl, Br, and CH3) are investigated through 1H, 13C, DEPT, gDQCOSY, and gHSQCAD NMR experiments and M06-2X/6-311++G (d,p) density functional theory are discussed. Single crystal X-ray structure of Br-3, as well as 18 different derivatives of naphthalene-1,4-diones, are revealed for its inter and intra-molecular hydrogen bonding interactions.
Collapse
Affiliation(s)
- Rishikesh Patil
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Mahesh Jadhav
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Sunita Salunke-Gawali
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Dipali N Lande
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Shridhar P Gejji
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| | - Debamitra Chakravarty
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune, 411007, Maharashtra State, India
| |
Collapse
|
37
|
Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 2021; 105:695-706. [PMID: 33394151 DOI: 10.1007/s00253-020-11044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022]
Abstract
Ansamitocin P-3 (AP-3) exhibits potent biological activities against various tumor cells. As an important drug precursor, reliable supply of AP-3 is limited by low fermentation yield. Although different strategies have been implemented to improve AP-3 yield, few have investigated the impact of efflux on AP-3 production. In this study, AP-3 efflux genes were identified through combined analysis of two sets of transcriptomes. The production-based transcriptome was implemented to search for efflux genes highly expressed in response to AP-3 accumulation during the fermentation process, while the resistance-based transcriptome was designed to screen for genes actively expressed in response to the exogenous supplementation of AP-3. After comprehensive analysis of two transcriptomes, six efflux genes outside the ansamitocin BGC were identified. Among the six genes, individual deletion of APASM_2704, APASM_6861, APASM_3193, and APASM_2805 resulted in decreased AP-3 production, and alternative overexpression led to AP-3 yield increase from 264.6 to 302.4, 320.4, 330.6, and 320.6 mg/L, respectively. Surprisingly, APASM_2704 was found to be responsible for exportation of AP-3 and another macro-lactam antibiotic pretilactam. Furthermore, growth of APASM_2704, APASM_3193, or APASM_2805 overexpression mutants was obviously improved under 300 mg/L AP-3 supplementation. In summary, our study has identified AP-3 efflux genes outside the ansamitocin BGC by comparative transcriptomic analysis, and has shown that enhancing the transcription of transporter genes can improve AP-3 production, shedding light on strategies used for exporter screening and antibiotic production improvement. KEY POINTS: • AP-3-related efflux genes were identified by transcriptomic analysis. • Deletion of the identified efflux genes led in AP-3 yield decrease. • Overexpression of the efflux genes resulted in increased AP-3 production.
Collapse
Affiliation(s)
- Xinran Wang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes for Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Luan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Wesemann F, Heutling A, Wienecke P, Kirschning A. First Ring-Expanded Maytansin Lactone Accessed by a New Mutasynthetic Variant. Chembiochem 2020; 21:2927-2930. [PMID: 32484951 PMCID: PMC7689855 DOI: 10.1002/cbic.202000336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/15/2022]
Abstract
A multiblocked mutant strain (ΔAHBA and Δasm12, asm21) of Actinosynnema pretiosum, the producer of the highly toxic maytansinoid ansamitocin, has been used for the mutasynthetic production of new proansamitocin derivatives. The use of mutant strains that are blocked in the biosynthesis of an early building block as well as in the expression of two tailoring enzymes broadens the scope of chemo-biosynthetic access to new maytansinoids. Remarkably, a ring-expanded macrolactone derived from ansamitocin was created for the first time.
Collapse
Affiliation(s)
- Friederike Wesemann
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Anja Heutling
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Paul Wienecke
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
39
|
p-Aminophenylalanine Involved in the Biosynthesis of Antitumor Dnacin B1 for Quinone Moiety Formation. Molecules 2020; 25:molecules25184186. [PMID: 32932689 PMCID: PMC7570522 DOI: 10.3390/molecules25184186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/04/2022] Open
Abstract
Actinosynnema species produce diverse natural products with important biological activities, which represent an important resource of antibiotic discovery. Advances in genome sequencing and bioinformatics tools have accelerated the exploration of the biosynthetic gene clusters (BGCs) encoding natural products. Herein, the completed BGCs of dnacin B1 were first discovered in two Actinosynnema pretiosum subsp. auranticum strains DSM 44131T (hereafter abbreviated as strain DSM 44131T) and X47 by comparative genome mining strategy. The BGC for dnacin B1 contains 41 ORFs and spans a 66.9 kb DNA region in strain DSM 44131T. Its involvement in dnacin B1 biosynthesis was identified through the deletion of a 9.7 kb region. Based on the functional gene analysis, we proposed the biosynthetic pathway for dnacin B1. Moreover, p-amino-phenylalanine (PAPA) unit was found to be the dnacin B1 precursor for the quinone moiety formation, and this was confirmed by heterologous expression of dinV, dinE and dinF in Escherichia coli. Furthermore, nine potential PAPA aminotransferases (APAT) from the genome of strain DSM 44131T were explored and expressed. Biochemical evaluation of their amino group transformation ability was carried out with p-amino-phenylpyruvic acid (PAPP) or PAPA as the substrate for the final product formation. Two of those, APAT4 and APAT9, displayed intriguing aminotransferase ability for the formation of PAPA. The proposed dnacin B1 biosynthetic machinery and PAPA biosynthetic investigations not only enriched the knowledge of tetrahydroisoquinoline (THIQ) biosynthesis, but also provided PAPA building blocks to generate their structurally unique homologues.
Collapse
|
40
|
Ye F, Shi Y, Zhao S, Li Z, Wang H, Lu C, Shen Y. 8-Deoxy-Rifamycin Derivatives from Amycolatopsis mediterranei S699 ΔrifT Strain. Biomolecules 2020; 10:biom10091265. [PMID: 32887371 PMCID: PMC7563148 DOI: 10.3390/biom10091265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023] Open
Abstract
Proansamycin X, a hypothetical earliest macrocyclic precursor in the biosynthesis of rifamycin, had never been isolated and identified. According to bioinformatics analysis, it was proposed that RifT (a putative NADH-dependent dehydrogenase) may be a candidate target responsible for the dehydrogenation of proansamycin X. In this study, the mutant strain Amycolatopsis mediterranei S699 ΔrifT was constructed by deleting the rifT gene. From this strain, eleven 8-deoxy-rifamycin derivatives (1–11) and seven known analogues (12–18) were isolated. Their structures were elucidated by extensive analysis of 1D and 2D NMR spectroscopic data and high-resolution ESI mass spectra. Compound 1 is a novel amide N-glycoside of seco-rifamycin. Compounds 2 and 3 feature conserved 11,12-seco-rifamycin W skeleton. The diverse post-modifications in the polyketide chain led to the production of 4–11. Compounds 2, 3, 5, 6, 13 and 15 exhibited antibacterial activity against Staphylococcus aureus (MIC (minimal inhibitory concentration) values of 10, 20, 20, 20, 40 and 20 μg/mL, respectively). Compounds 14, 15, 16, 17 and 18 showed potent antiproliferative activity against KG1 cells with IC50 (half maximal inhibitory concentration) values of 14.91, 44.78, 2.16, 18.67 and 8.07 μM, respectively.
Collapse
Affiliation(s)
- Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Shengliang Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Zhiying Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
- Correspondence: ; Tel.: +86-531-8838-2108
| |
Collapse
|
41
|
Liu YZ, Chen X, Li ZY, Huang LX, Sun YH. Ansavaricin J, a New Heterocyclic Ring-Fused Streptovaricin from Gene stvP5-Deleted Mutant of Streptomyces spectabilis CCTCC M2017417. Chem Biodivers 2020; 17:e1900713. [PMID: 32492242 DOI: 10.1002/cbdv.201900713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 11/07/2022]
Abstract
A new ring-fused streptovaricin analogue, named ansavaricin J, was unprecedently isolated from the culture of the genetically modified strains ΔstvP5 which derived from Streptomyces spectabilis CCTCC M2017417. Its structure was elucidated via comprehensive spectroscopic analyses, including 1D- and 2D-NMR tests, and HR-ESI-MS data analysis. Notably, ansavaricin J and E represent the only two reported examples of heterocyclic ring-fused streptovaricins thus far, however, it only showed insignificant antibacterial activities against Staphylococcus aureus.
Collapse
Affiliation(s)
- Yuan-Zhen Liu
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, 430205, P. R. China.,Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients (Hubei University of Education), Wuhan, 430205, P. R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Xu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Zheng-Yuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Li-Xia Huang
- School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, 430205, P. R. China.,Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients (Hubei University of Education), Wuhan, 430205, P. R. China
| | - Yu-Hui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
42
|
Wu Y, Kang Q, Zhang LL, Bai L. Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes. Biomolecules 2020; 10:biom10060851. [PMID: 32503302 PMCID: PMC7356834 DOI: 10.3390/biom10060851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%. We also found that the expression of APASM_4178 is specifically regulated by an AdpA-like protein APASM_1021. Moreover, the mycelial fragmentation was alternatively alleviated by the overexpression of subtilisin inhibitor encoded genes, which also led to a 46.50 ± 0.79% yield increase of AP-3. Furthermore, APASM_4178 was overexpressed in salinomycin-producing Streptomyces albus BK 3-25 and validamycin-producing S. hygroscopicus TL01, which resulted in not only dispersed mycelia in both strains, but also a 33.80% yield improvement of salinomycin to 24.07 g/L and a 14.94% yield improvement of validamycin to 21.46 g/L. In conclusion, our work elucidates the involvement of a novel subtilisin-like serine peptidase in morphological differentiation, and modulation of its expression could be an effective strategy for morphology engineering and antibiotic yield improvement in actinomycetes.
Collapse
Affiliation(s)
- Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Li Zhang
- College of Life Science, Tarim University, Alar 843300, China;
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Tarim University, Alar 843300, China;
- Correspondence:
| |
Collapse
|
43
|
Nong XH, Tu ZC, Qi SH. Ansamycin derivatives from the marine-derived Streptomyces sp. SCSGAA 0027 and their cytotoxic and antiviral activities. Bioorg Med Chem Lett 2020; 30:127168. [DOI: 10.1016/j.bmcl.2020.127168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/26/2022]
|
44
|
The Antitumor Agent Ansamitocin P-3 Binds to Cell Division Protein FtsZ in Actinosynnema pretiosum. Biomolecules 2020; 10:biom10050699. [PMID: 32365857 PMCID: PMC7277737 DOI: 10.3390/biom10050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023] Open
Abstract
Ansamitocin P-3 (AP-3) is an important antitumor agent. The antitumor activity of AP-3 is a result of its affinity towards β-tubulin in eukaryotic cells. In this study, in order to improve AP-3 production, the reason for severe growth inhibition of the AP-3 producing strain Actinosynnema pretiosum WXR-24 under high concentrations of exogenous AP-3 was investigated. The cell division protein FtsZ, which is the analogue of β-tubulin in bacteria, was discovered to be the AP-3 target through structural comparison followed by a SPR biosensor assay. AP-3 was trapped into a less hydrophilic groove near the GTPase pocket on FtsZ by hydrogen bounding and hydrophobic interactions, as revealed by docking analysis. After overexpression of the APASM_5716 gene coding for FtsZ in WXR-30, the resistance to AP-3 was significantly improved. Moreover, AP-3 yield was increased from 250.66 mg/L to 327.37 mg/L. After increasing the concentration of supplemented yeast extract, the final yield of AP-3 reached 371.16 mg/L. In summary, we demonstrate that the cell division protein FtsZ is newly identified as the bacterial target of AP-3, and improving resistance is an effective strategy to enhance AP-3 production.
Collapse
|
45
|
Liu T, Jin Z, Wang Z, Chen J, Wei LJ, Hua Q. Metabolomics analysis of Actinosynnema pretiosum with improved AP-3 production by enhancing UDP-glucose biosynthesis. J Biosci Bioeng 2020; 130:36-47. [PMID: 32179024 DOI: 10.1016/j.jbiosc.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Ansamitocin P-3 (AP-3) shows strong anticancer effects and has used as a payload for antibody-drug conjugates. Our previous study have shown that although genetically engineered Actinosynnema pretiosum strains with enhanced UDP-glucose (UDPG) biosynthesis displayed improved AP-3 production compared to the wild-type strain, the increase in yield was far from meeting the industrial demand. In this study, comparative metabolomics analysis complemented with quantitative real-time PCR analysis was performed for the wild-type strain and two mutants (OpgmOugp, ΔzwfΔgnd) to identify possible metabolic bottlenecks and non-intuitive targets for further enhancement of AP-3 production. We observed that enhancing intracellular UDPG availability facilitated the accumulation of intracellular N-demethyl-AP-3 and AP-3, where the transporting of them outside the cell still needs to be developed. We also found that the UDPG biosynthesis was closely associated with the availability of fructose in the medium and a suitable fructose feeding strategy could promote the further improvement of AP-3 titer. In addition, pathway abundance analysis revealed that undesired fatty acid accumulation and down-regulation of amino acid metabolism may be unfavorable for ansamitocin biosynthesis in later stage of production. These results indicate that genetic modification of the UDPG biosynthetic pathways may have pleiotropic effects on AP-3 production. Efforts must be made to eliminate these newly identified metabolic bottlenecks to boost AP-3 production in A. pretiosum.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwen Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
46
|
Zhang C, Zhang H, Ju J. On-PKS Baeyer-Villiger-Type O-Atom Insertion Catalyzed by Luciferase-Like Monooxygenase OvmO during Olimycin Biosynthesis. Org Lett 2020; 22:1780-1784. [PMID: 32073277 DOI: 10.1021/acs.orglett.0c00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silent ansamycin biosynthetic gene cluster (ovm) was activated in Streptomyces olivaceus SCSIO T05 following mutagenesis and media optimization. A new shunt product, olimycin C (1a) was produced by the ovmO-inactivated mutant strain, along with a minor product, olimycin D (1b). The production of these linear olimycin counterparts suggest that luciferase-like monooxygenase (LLM) OvmO catalyzes an on-PKS Baeyer-Villiger-type oxidation during assembly of the olimycin A (2) linear polyketide backbone.
Collapse
Affiliation(s)
- Chunyan Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Huaran Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
47
|
Metabolomic change and pathway profiling reveal enhanced ansamitocin P-3 production in Actinosynnema pretiosum with low organic nitrogen availability in culture medium. Appl Microbiol Biotechnol 2020; 104:3555-3568. [PMID: 32114676 DOI: 10.1007/s00253-020-10463-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/07/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Ansamitocin P-3 (AP-3), a 19-membered polyketide macrocyclic lactam, has potent antitumor activity. Our previous study showed that a relatively low organic nitrogen concentration in culture medium could significantly improve AP-3 production of Actinosynnema pretiosum. In the present study, we aimed to reveal the possible reasons for this improvement through metabolomic and gene transcriptional analytical methods. At the same time, a metabolic pathway profile based on metabolome data and pathway correlation information was performed to obtain a systematic view of the metabolic network modulations of A. pretiosum. Orthogonal partial least squares discriminant analysis showed that nine and eleven key metabolites directly associated with AP-3 production at growth phase and ansamitocin production phase, respectively. In-depth pathway analysis results highlighted that low organic nitrogen availability had significant impacts on central carbon metabolism and amino acid metabolic pathways of A. pretiosum and these metabolic responses were found to be beneficial to precursor supply and ansamitocin biosynthesis. Furthermore, real-time PCR results showed that the transcription of genes involved in precursor and ansamitocin biosynthetic pathways were remarkably upregulated under low organic nitrogen condition thus directing increased carbon flux toward ansamitocin biosynthesis. More importantly, the metabolic pathway analysis demonstrated a competitive relationship between fatty acid and AP-3 biosynthesis could significantly affect the accumulation of AP-3. Our findings provided new knowledge on the organic nitrogen metabolism and ansamitocin biosynthetic precursor in A. pretiosum and identified several important rate-limiting steps involved in ansamitocin biosynthesis thus providing a theoretical basis of further improvement in AP-3 production.
Collapse
|
48
|
Choudhari D, Salunke-Gawali S, Chakravarty D, Shaikh SR, Lande DN, Gejji SP, Rao PK, Satpute S, Puranik VG, Gonnade R. Synthesis and biological activity of imidazole based 1,4-naphthoquinones. NEW J CHEM 2020. [DOI: 10.1039/c9nj04339j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and development of drugs in multi-drug resistant (MDR) infections have been of growing interest. The syntheses, structural studies, antibacterial and antifungal activities of imidazole-based 1,4-naphthoquinones are studied in this investigation.
Collapse
Affiliation(s)
- Dinkar Choudhari
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | | | - Samir R. Shaikh
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Dipali N. Lande
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Pradeep Kumar Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Surekha Satpute
- Department of Microbiology
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Vedavati G. Puranik
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Rajesh Gonnade
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
49
|
Liu LL, Chen ZF, Liu Y, Tang D, Gao HH, Zhang Q, Gao JM. Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins from Streptomyces cacaoi subsp. asoensis. Org Chem Front 2020. [DOI: 10.1039/d0qo00557f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins.
Collapse
Affiliation(s)
- Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Zhi-Fan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Yao Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Dan Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Hua-Hua Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| |
Collapse
|
50
|
Wei F, Wang Z, Lu C, Li Y, Zhu J, Wang H, Shen Y. Targeted Discovery of Pentaketide Ansamycin Aminoansamycins A–G. Org Lett 2019; 21:7818-7822. [DOI: 10.1021/acs.orglett.9b02804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feifei Wei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zishen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|