1
|
Hou C, Gao L, Wang Y, Yan LT. Entropic control of nanoparticle self-assembly through confinement. NANOSCALE HORIZONS 2022; 7:1016-1028. [PMID: 35762392 DOI: 10.1039/d2nh00156j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Entropy can be the sole driving force for the construction and regulation of ordered structures of soft matter systems. Specifically, under confinement, the entropic penalty could induce enhanced entropic effects which potentially generate visually ordered structures. Therefore, spatial confinement or a crowding environment offers an important approach to control entropy effects in these systems. Here, we review how spatial confinement-mediated entropic effects accurately and even dynamically control the self-assembly of nanoscale objects into ordered structures, focusing on our efforts towards computer simulations and theoretical analysis. First, we introduce the basic principle of entropic ordering through confinement. We then introduce the applications of this concept to various systems containing nanoparticles, including polymer nanocomposites, biological macromolecular systems and macromolecular colloids. Finally, the future directions and challenges for tailoring nanoparticle organization through spatial confinement-mediated entropic effects are detailed. We expect that this review could stimulate further efforts in the fundamental research on the relationship between confinement and entropy and in the applications of this concept for designer nanomaterials.
Collapse
Affiliation(s)
- Cuiling Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
2
|
Abstract
The last two decades have seen great advancements in fundamental understanding and applications of metallic nanoparticles stabilized by mixed-ligand monolayers. Identifying and controlling the organization of multiple ligands in the nanoparticle monolayer has been studied, and its effect on particle properties has been examined. Mixed-ligand protected particles have shown advantages over monoligand protected particles in fields such as catalysis, self-assembly, imaging, and drug delivery. In this Review, the use of mixed-ligand monolayer protected nanoparticles for sensing applications will be examined. This is the first time this subject is examined as a whole. Mixed-ligand nanoparticle-based sensors are revealed to be divided into four groups, each of which will be discussed. The first group consists of ligands that work cooperatively to improve the sensors' properties. In the second group, multiple ligands are utilized for sensing multiple analytes. The third group combines ligands used for analyte recognition and signal production. In the final group, a sensitive, but unstable, functional ligand is combined with a stabilizing ligand. The Review will conclude by discussing future challenges and potential research directions for this promising subject.
Collapse
Affiliation(s)
- Offer Zeiri
- Department of Analytical Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| |
Collapse
|
3
|
Elbert KC, Vo T, Krook NM, Zygmunt W, Park J, Yager KG, Composto RJ, Glotzer SC, Murray CB. Dendrimer Ligand Directed Nanoplate Assembly. ACS NANO 2019; 13:14241-14251. [PMID: 31756073 DOI: 10.1021/acsnano.9b07348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many studies on nanocrystal (NC) self-assembly into ordered superlattices have focused mainly on attractive forces between the NCs, whereas the role of organic ligands on anisotropic NCs is only in its infancy. Herein, we report the use of a series of dendrimer ligands to direct the assembly of nanoplates into 2D and 3D geometries. It was found that the dendrimer-nanoplates consistently form a directionally offset architecture in 3D films. We present a theory to predict ligand surface distribution and Monte Carlo simulation results that characterize the ligand shell around the nanoplates. Bulky dendrimer ligands create a nontrivial corona around the plates that changes with ligand architecture. When this organic-inorganic effective shape is used in conjunction with thermodynamic perturbation theory to predict both lattice morphology and equilibrium relative orientations between NCs, a lock-and-key type of mechanism is found for the 3D assembly. We observe excellent agreement between our experimental results and theoretical model for 2D and 3D geometries, including the percent of offset between the layers of NCs. Such level of theoretical understanding and modeling will help guide future design frameworks to achieve targeted assemblies of NCs.
Collapse
Affiliation(s)
- Katherine C Elbert
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Thi Vo
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Nadia M Krook
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - William Zygmunt
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jungmi Park
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kevin G Yager
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Russell J Composto
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Sharon C Glotzer
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Department of Materials Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Christopher B Murray
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
4
|
Kim A, Zhou S, Yao L, Ni S, Luo B, Sing CE, Chen Q. Tip-Patched Nanoprisms from Formation of Ligand Islands. J Am Chem Soc 2019; 141:11796-11800. [DOI: 10.1021/jacs.9b05312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Merz SN, Hoover E, Egorov SA, DuBay KH, Green DL. Predicting the effect of chain-length mismatch on phase separation in noble metal nanoparticle monolayers with chemically mismatched ligands. SOFT MATTER 2019; 15:4498-4507. [PMID: 31094390 DOI: 10.1039/c9sm00264b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) protected with a ligand monolayer hold promise for a wide variety of applications, from photonics and catalysis to drug delivery and biosensing. Monolayers that include a mixture of ligand types can have multiple chemical functionalities and may also self-assemble into advantageous patterns. Previous work has shown that both chemical and length mismatches among these surface ligands influence phase separation. In this work, we examine the interplay between these driving forces, first by using our previously-developed configurationally-biased Monte Carlo (CBMC) algorithm to predict, then by using our matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) technique to experimentally probe, the surface morphologies of a series of two-ligand mixtures on the surfaces of ultrasmall silver NPs. Specifically, we examine three such mixtures, each of which has the same chemical mismatch (consisting of a hydrophobic alkanethiol and a hydrophilic mercapto-alcohol), but varying degrees of chain-length mismatch. This delicate balance between chemical and length mismatches provides a challenging test for our CBMC prediction algorithm. Even so, the simulations are able to quantitatively predict the MALDI-MS results for all three ligand mixtures, while also providing atomic-scale details from the equilibrated ligand structures, such as patch sizes and co-crystallization patterns. The resulting monolayer morphologies range from randomly-mixed to Janus-like, demonstrating that chain-length modifications are an effective way to tune monolayer morphology without needing to alter chemical functionalities.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904, USA.
| | | | | | | | | |
Collapse
|
6
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
7
|
Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. Nat Commun 2018; 9:181. [PMID: 29330415 PMCID: PMC5766503 DOI: 10.1038/s41467-017-02579-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Viscoelastic properties are central for gels and other materials. Simultaneously, high storage and loss moduli are difficult to attain due to their contrarian requirements to chemical structure. Biomimetic inorganic nanoparticles offer a promising toolbox for multiscale engineering of gel mechanics, but a conceptual framework for their molecular, nanoscale, mesoscale, and microscale engineering as viscoelastic materials is absent. Here we show nanoparticle gels with simultaneously high storage and loss moduli from CdTe nanoparticles. Viscoelastic figure of merit reaches 1.83 MPa exceeding that of comparable gels by 100–1000 times for glutathione-stabilized nanoparticles. The gels made from the smallest nanoparticles display the highest stiffness, which was attributed to the drastic change of GSH configurations when nanoparticles decrease in size. A computational model accounting for the difference in nanoparticle interactions for variable GSH configurations describes the unusual trends of nanoparticle gel viscoelasticity. These observations are generalizable to other NP gels interconnected by supramolecular interactions and lead to materials with high-load bearing abilities and energy dissipation needed for multiple technologies. Achieving simultaneous high storage and loss moduli in gels is difficult due to the opposite chemical structure requirements needed for such properties. Here the authors show a spectrum of gels containing CdTe nanoparticles stabilized by glutathione that have such properties which can be rationalised through the developed model.
Collapse
|
8
|
Ang J, Ma D, Jung BT, Keten S, Xu T. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation. Biomacromolecules 2017; 18:3572-3580. [DOI: 10.1021/acs.biomac.7b00917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- JooChuan Ang
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Dan Ma
- Department
of Civil and Environmental Engineering and Department of Mechanical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benson T. Jung
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Sinan Keten
- Department
of Civil and Environmental Engineering and Department of Mechanical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ting Xu
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Material
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Meena SK, Goldmann C, Nassoko D, Seydou M, Marchandier T, Moldovan S, Ersen O, Ribot F, Chanéac C, Sanchez C, Portehault D, Tielens F, Sulpizi M. Nanophase Segregation of Self-Assembled Monolayers on Gold Nanoparticles. ACS NANO 2017; 11:7371-7381. [PMID: 28613838 DOI: 10.1021/acsnano.7b03616] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanophase segregation of a bicomponent thiol self-assembled monolayer is predicted using atomistic molecular dynamics simulations and experimentally confirmed. The simulations suggest the formation of domains rich in acid-terminated chains, on one hand, and of domains rich in amide-functionalized ethylene glycol oligomers, on the other hand. In particular, within the amide-ethylene glycol oligomers region, a key role is played by the formation of interchain hydrogen bonds. The predicted phase segregation is experimentally confirmed by the synthesis of 35 and 15 nm gold nanoparticles functionalized with several binary mixtures of ligands. An extensive study by transmission electron microscopy and electron tomography, using silica selective heterogeneous nucleation on acid-rich domains to provide electron contrast, supports simulations and highlights patchy nanoparticles with a trend toward Janus nano-objects depending on the nature of the ligands and the particle size. These results validate our computational platform as an effective tool to predict nanophase separation in organic mixtures on a surface and drive further exploration of advanced nanoparticle functionalization.
Collapse
Affiliation(s)
- Santosh Kumar Meena
- Institute of Physics, Johannes Gutenberg University Mainz , Staudingerweg 7, 55099 Mainz, Germany
| | - Claire Goldmann
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
| | - Douga Nassoko
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
- Ecole Normale Supérieure , Rue du 22 Octobre, Quartier du Fleuve, BP 241 Bamako, Mali
| | - Mahamadou Seydou
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS , 15 rue J.-A. de Baïf, 75205 CEDEX 13 Paris, France
| | - Thomas Marchandier
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
| | - Simona Moldovan
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 du CNRS , 23 rue du Loess, 67087 Strasbourg, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 du CNRS , 23 rue du Loess, 67087 Strasbourg, France
| | - François Ribot
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
| | - Corinne Chanéac
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
| | - Clément Sanchez
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
| | - David Portehault
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
| | - Frederik Tielens
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Universités , 11 place Marcelin Berthelot, 75005 Paris, France
| | - Marialore Sulpizi
- Institute of Physics, Johannes Gutenberg University Mainz , Staudingerweg 7, 55099 Mainz, Germany
| |
Collapse
|
10
|
Merz SN, Farrell ZJ, Dunn CJ, Swanson RJ, Egorov SA, Green DL. Theoretical and Experimental Investigation of Microphase Separation in Mixed Thiol Monolayers on Silver Nanoparticles. ACS NANO 2016; 10:9871-9878. [PMID: 27744676 DOI: 10.1021/acsnano.6b02091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles with mixed ligand self-assembled monolayers were synthesized from dodecanethiol and another ligand from a homologous series of alkanethiols (butanethiol, pentanethiol, heptanethiol, octanethiol, nonanethiol, decanethiol, undecanethiol, or dodecanethiol[D25]). These were hypothesized to exhibit ligand phase separation that increases with degree of physical mismatch between the ligands based on the difference in the number of carbons in the two ligands. Dodecanethiol/dodecanethiol[D25] was expected to exhibit minimal phase separation as the ligands have only isotopic differences, while dodecanethiol/butanethiol was hypothesized to exhibit the most phase separation due to the difference in chain length. Phase separation of all other ligand mixtures was expected to fall between these two extremes. Matrix-assisted laser desorption ionization (MALDI) mass spectroscopy provided a value for ligand phase separation by comparison with a binomial (random) model and subsequent calculation of the sum-of-squares error (SSR). These nanoparticle systems were also modeled using the Scheutjens and Fleer self-consistent mean-field theory (SCFT), which determined the most thermodynamically favorable arrangement of ligands on the surface. From MALDI, it was found that dodecanethiol/dodecanethiol[D25] formed a well-mixed monolayer with SSR = 0.002, and dodecanethiol/butanethiol formed a microphase separated monolayer with SSR = 0.164; in intermediate dodecanethiol/alkanethiol mixtures, SSR increased with increasing ligand length difference as expected. For comparison with experiment, an effective SSR value was calculated from SCFT simulations. The SSR values obtained by experiment and theory show good agreement and provide strong support for the validity of SCFT predictions of monolayer structure. These approaches represent robust methods of characterization for ligand phase separation on silver nanoparticles.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Zachary J Farrell
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Caroline J Dunn
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Richard J Swanson
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Sergei A Egorov
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - David L Green
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
11
|
Castelli A, de Graaf J, Prato M, Manna L, Arciniegas MP. Tic-Tac-Toe Binary Lattices from the Interfacial Self-Assembly of Branched and Spherical Nanocrystals. ACS NANO 2016; 10:4345-53. [PMID: 27027973 DOI: 10.1021/acsnano.5b08018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The self-organization of nanocrystals has proven to be a versatile route to achieve increasingly sophisticated structures of materials, where the shape and properties of individual particles impact the final functionalities. Recent works have addressed this topic by combining various shapes to achieve more complex arrangements of particles than are possible in single-component samples. However, the ability to create intricate architectures over large regions by exploiting the shape of multiply branched nanocrystals to host a second component remains unexplored. Here, we show how the concave shape of a branched nanocrystal, the so-called octapod, is able to anchor a sphere. The two components self-assemble into a locally ordered monolayer consisting of an intercalated square lattice of octapods and spheres, which is reminiscent of the "tic-tac-toe" game. These tic-tac-toe domains form through an interfacial self-assembly that occurs by the dewetting of a hexane layer containing both particle types. By varying the experimental conditions and performing molecular dynamics simulations, we show that the ligands coating the octapods are crucial to the formation of this structure. We find that the tendency of an octapod to form an interlocking-type structure with a second octapod strongly depends on the ligand shell of the pods. Breaking this tendency by ligand exchange allows the octapods to assemble into a more relaxed configuration, which is able to form a lock-and-key-type structure with a sphere, when they have a suitable size ratio. Our findings provide an example of a more versatile use of branched nanocrystals in self-assembled functional materials.
Collapse
Affiliation(s)
- Andrea Castelli
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Joost de Graaf
- Institute for Computational Physics (ICP), University of Stuttgart , Allmandring 3, 70569 Stuttgart, Germany
| | - Mirko Prato
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Milena P Arciniegas
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| |
Collapse
|
12
|
Harris RD, Amin VA, Lau B, Weiss EA. Role of Interligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots. ACS NANO 2016; 10:1395-1403. [PMID: 26727219 DOI: 10.1021/acsnano.5b06837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Displacement of cadmium oleate (Cd(oleate)2) ligands for the exciton-delocalizing ligand 4-hexylphenyldithiocarbamate (C6-PTC) on the surfaces of CdS quantum dots (QDs) causes a decrease in the band gap (Eg) of the QD of ∼100 meV for QDs with a radius of 1.9 nm and ∼50 meV for QDs with a radius of 2.5 nm. The primary mechanism of this decrease in band gap, deduced in previous work, is a decrease in the confinement barrier for the excitonic hole. The increase in apparent excitonic radius of the QD that corresponds to this decrease in Eg is denoted ΔR. The dependence of ΔR on the surface coverage of C6-PTC, measured by (1)H NMR spectroscopy, appears to be nonlinear. Calculations of the excitonic energy of a CdS QD upon displacement of native insulating ligands with exciton-delocalizing ligands using a 3D spherical potential well model show that this response includes the contributions to ΔR from both isolated, bound C6-PTC ligands and groups of adjacent C6-PTC ligands. Fits to the experimental plots of ΔR vs surface coverage of C6-PTC with a statistical model that includes the probability of formation of clusters of bound C6-PTC on the QD surface allow for the extraction of the height of the confinement barrier presented by a single, isolated C6-PTC molecule to the excitonic hole. This barrier height is less than 0.6 eV for QDs with a radius of 1.9 nm and between 0.6 and 1.2 eV for QDs with a radius of 2.5 nm.
Collapse
Affiliation(s)
- Rachel D Harris
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Victor A Amin
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Bryan Lau
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
13
|
Rasheed N, Khorasani AA, Cebral J, Mut F, Löhner R, Salvador-Morales C. Mechanisms Involved in the Formation of Biocompatible Lipid Polymeric Hollow Patchy Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6639-6648. [PMID: 26057588 DOI: 10.1021/acs.langmuir.5b01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Patchy polymeric particles have anisotropic surface domains that can be remarkably useful in diverse medical and industrial fields because of their ability to simultaneously present two different surface chemistries on the same construct. In this article, we report the mechanisms involved in the formation of novel lipid-polymeric hollow patchy particles during their synthesis. By cross-sectioning the patchy particles, we found that a phase segregation phenomenon occurs between the core, shell, and patch. Importantly, we found that the shear stress that the polymer blend undergoes during the particle synthesis is the most important parameter for the formation of these patchy particles. In addition, we found that the interplay of solvent-solvent, polymer-solvent, and polymer-polymer-solvent interactions generates particles with different surface morphologies. Understanding the mechanisms involved in the formation of patchy particles allows us to have a better control on their physicochemical properties. Therefore, these fundamental studies are critical to achieve batch control and scalability, which are essential aspects that must be addressed in any type of particle synthesis to be safely used in medicine.
Collapse
Affiliation(s)
- Nashaat Rasheed
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Ali A Khorasani
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Juan Cebral
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Fernando Mut
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Rainald Löhner
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Carolina Salvador-Morales
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
14
|
Ong QK, Zhao S, Reguera J, Biscarini F, Stellacci F. Comparative STM studies of mixed ligand monolayers on gold nanoparticles in air and in 1-phenyloctane. Chem Commun (Camb) 2014; 50:10456-9. [PMID: 25068154 DOI: 10.1039/c4cc04114c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Scanning tunnelling microscopy (STM) studies have found stripe-like domains on gold nanoparticles (NPs) coated with certain binary mixtures of ligand molecules. The majority of these NPs' properties have been investigated for particles in solvents. Yet, most STM studies are for NPs in a dry state. Images of the same particles in air and liquid have not been obtained yet. In this work, a judicious choice of ligand molecules led to NPs with close-to-ideal STM imaging conditions in air and in 1-phenyloctane (PO). Large datasets under both conditions were acquired and rapidly evaluated through power spectral density (PSD) analysis. The result is a quantitative comparison of stripe-like domains in air and PO on the same NPs. PSD analysis determines a characteristic length-scale for these domains of ~1.0 nm in air and in PO showing persistence of striped domains in these two media. A length scale of ~0.7 nm for homoligand NPs was found.
Collapse
Affiliation(s)
- Quy Khac Ong
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH 1015, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Chen C, Tang P, Qiu F. Binary hairy nanoparticles: Recent progress in theory and simulations. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cangyi Chen
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| | - Ping Tang
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| | - Feng Qiu
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| |
Collapse
|
16
|
Patra TK, Singh JK. Polymer directed aggregation and dispersion of anisotropic nanoparticles. SOFT MATTER 2014; 10:1823-1830. [PMID: 24652389 DOI: 10.1039/c3sm52216d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aggregation and dispersion of two anisotropic nanoparticles (NPs), cubes and tetrahedrons, in a polymer matrix are studied in this work using coarse-grained molecular dynamics simulations. We present the phase diagrams of NP-polymer composites, depicting microscopically phase-separated, dispersed, and bridged cubes and tetrahedrons in a polymer matrix, which depend on the interaction between the NPs and polymer (εnp), along with the NPs' volume fraction (ϕ). The microscopic phase separation occurs at very low εnp, where NPs self-organize into multidimensional structures, depending on ϕ. In particular, for tetrahedrons, a cross-over from an ordered spherical aggregate to a disordered sheet-like aggregate is observed with increasing ϕ. In the case of cubes, a transition from cubic array → square column → square array (sheet) is identified with increasing ϕ. The clusters of NPs are characterized by their asphericity and principal radii of gyration. The free energy profile for a structured assembly is estimated, which clearly shows that the successful assembly of NPs is energetically favorable at a lower temperature. However, there exists an energy barrier for the successful assembly of all the NPs in the system. At intermediate εnp, a transition from a clustered state to a state comprising dispersed cubes and tetrahedrons in a polymer matrix is observed. At higher εnp, a further transition takes place, where gas-like dispersed NPs form a liquid-like aggregate via polymer layers. Therefore, the findings in this work illustrate that the effective interaction between anisotropic NPs in a polymer matrix is very diverse, which can generate multidimensional structured assemblies, with the disordered clustering, dispersion, and bridging-induced aggregation of NPs.
Collapse
Affiliation(s)
- Tarak K Patra
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | |
Collapse
|
17
|
Ong QK, Reguera J, Silva PJ, Moglianetti M, Harkness K, Longobardi M, Mali KS, Renner C, De Feyter S, Stellacci F. High-resolution scanning tunneling microscopy characterization of mixed monolayer protected gold nanoparticles. ACS NANO 2013; 7:8529-39. [PMID: 24024977 DOI: 10.1021/nn402414b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold nanoparticles protected by a binary mixture of thiolate molecules have a ligand shell that can spontaneously separate into nanoscale domains. Complex morphologies arise in such ligand shells, including striped, patchy, and Janus domains. Characterization of these morphologies remains a challenge. Scanning tunneling microscopy (STM) imaging has been one of the key approaches to determine these structures, yet the imaging of nanoparticles' surfaces faces difficulty stemming from steep surface curvature, complex molecular structures, and the possibility of imaging artifacts in the same size range. Images obtained to date have lacked molecular resolution, and only domains have been resolved. There is a clear need for images that resolve the molecular arrangement that leads to domain formation on the ligand shell of these particles. Herein we report an advance in the STM imaging of gold nanoparticles, revealing some of the molecules that constitute the domains in striped and Janus gold nanoparticles. We analyze the images to determine molecular arrangements on parts of the particles, highlight molecular "defects" present in the ligand shell, show persistence of the features across subsequent images, and observe the transition from quasi-molecular to domain resolution. The ability to resolve single molecules in the ligand shell of nanoparticles could lead to a more comprehensive understanding of the role of the ligand structure in determining the properties of mixed-monolayer-protected gold nanoparticles.
Collapse
Affiliation(s)
- Quy Khac Ong
- Institute of Materials, École Politechnique Fédérale de Lausanne , Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ye X, Millan JA, Engel M, Chen J, Diroll BT, Glotzer SC, Murray CB. Shape alloys of nanorods and nanospheres from self-assembly. NANO LETTERS 2013; 13:4980-8. [PMID: 24044735 DOI: 10.1021/nl403149u] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mixtures of anisotropic nanocrystals promise a great diversity of superlattices and phase behaviors beyond those of single-component systems. However, obtaining a colloidal shape alloy in which two different shapes are thermodynamically coassembled into a crystalline superlattice has remained a challenge. Here we present a joint experimental-computational investigation of two geometrically ubiquitous nanocrystalline building blocks-nanorods and nanospheres-that overcome their natural entropic tendency toward macroscopic phase separation and coassemble into three intriguing phases over centimeter scales, including an AB2-type binary superlattice. Monte Carlo simulations reveal that, although this shape alloy is entropically stable at high packing fraction, demixing is favored at experimental densities. Simulations with short-ranged attractive interactions demonstrate that the alloy is stabilized by interactions induced by ligand stabilizers and/or depletion effects. An asymmetry in the relative interaction strength between rods and spheres improves the robustness of the self-assembly process.
Collapse
Affiliation(s)
- Xingchen Ye
- Department of Chemistry and ‡Department of Materials Science and Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Paik T, Murray CB. Shape-directed binary assembly of anisotropic nanoplates: a nanocrystal puzzle with shape-complementary building blocks. NANO LETTERS 2013; 13:2952-6. [PMID: 23668826 DOI: 10.1021/nl401370n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present the binary self-assembly of two anisotropic nanoplate building blocks mediated by shape complementarity. We use rhombic GdF3 and tripodal Gd2O3 nanoplates as building blocks in which the size and shape are designed to be optimal for complementary organization. A liquid interfacial assembly technique allows the formation of self-assembled binary superlattices from two anisotropic nanoplates over a micrometer length scale. Shape-directed self-assembly guides the position of each anisotropic nanoplate in the binary superlattices, allowing for long-range orientational and positional order of each building block. The design of shape complementary anisotropic building blocks offers the possibility to self-assemble binary superlattices with predictable and designable structures.
Collapse
Affiliation(s)
- Taejong Paik
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
21
|
Zeiri O, Wang Y, Neyman A, Stellacci F, Weinstock IA. Ligand-shell-directed assembly and depolymerization of patchy nanoparticles. Angew Chem Int Ed Engl 2013. [PMID: 23180612 DOI: 10.1002/anie.201207177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Offer Zeiri
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Sciences and Technology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | | | | | | | | |
Collapse
|
22
|
Zeiri O, Wang Y, Neyman A, Stellacci F, Weinstock IA. Ligand-Shell-Directed Assembly and Depolymerization of Patchy Nanoparticles. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Wang Y, Zeiri O, Meshi L, Stellacci F, Weinstock IA. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals. Chem Commun (Camb) 2012; 48:9765-7. [DOI: 10.1039/c2cc34697d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|