1
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Wang X, Wang Y, Yin L, Zhang Q, Wang S. Surfactant-free synthesis of fluorescent platinum nanoclusters using HEPES buffer for hypochlorous acid sensing and imaging. RSC Adv 2022; 12:10395-10400. [PMID: 35424968 PMCID: PMC8978884 DOI: 10.1039/d1ra09064j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
A surfactant-free synthesis of noble-metal nanoclusters (NMNCs) with specific function has recently remained more attractive and superior in bio-applications. Herein, by employing the weak reducibility of non-toxic HEPES, we prepared novel water-soluble fluorescent HEPES@Pt NCs by a simple surfactant-free synthesis strategy for hypochlorous acid (HClO) sensing. The as-prepared Pt NCs featured ultra-small size (∼2 nm), bright blue fluorescence, high stability and biocompatibility, and the fluorescence of the Pt NC nanoprobe can be specifically quenched with hypochlorous acid by a static quenching process. Moreover, the surfactant-free Pt NC probe displays fascinating performances for HClO sensing, including fast response to HClO, high stability and specificity, and is further applied for imaging the fluctuations of the HClO concentration in living cells with satisfactory results for the first time. Thereby, we anticipate that it is a reliable and attractive approach to develop versatile NMNCs through the surfactant-free synthesis for further applications in biological research.
Collapse
Affiliation(s)
- Xiaoying Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| | - Yusong Wang
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College Wuhu 241002 P. R. China
| | - Liping Yin
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College Wuhu 241002 P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| | - Shaozhen Wang
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College Wuhu 241002 P. R. China
| |
Collapse
|
3
|
Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature. Nat Commun 2021; 12:5814. [PMID: 34608162 PMCID: PMC8490350 DOI: 10.1038/s41467-021-26089-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Achieving CO oxidation at room temperature is significant for gas purification but still challenging nowadays. Pt promoted by 3d transition metals (TMs) is a promising candidate for this reaction, but TMs are prone to be deeply oxidized in an oxygen-rich atmosphere, leading to low activity. Herein we report a unique structure design of graphene-isolated Pt from CoNi nanoparticles (PtǀCoNi) for efficiently catalytic CO oxidation in an oxygen-rich atmosphere. CoNi alloy is protected by ultrathin graphene shell from oxidation and therefore modulates the electronic property of Pt-graphene interface via electron penetration effect. This catalyst can achieve near 100% CO conversion at room temperature, while there are limited conversions over Pt/C and Pt/CoNiOx catalysts. Experiments and theoretical calculations indicate that CO will saturate Pt sites, but O2 can adsorb at the Pt-graphene interface without competing with CO, which facilitate the O2 activation and the subsequent surface reaction. This graphene-isolated system is distinct from the classical metal-metal oxide interface for catalysis, and it provides a new thought for the design of heterogeneous catalysts. Achieving CO oxidation at room temperature is significant for gas purification but remains challenging to perform. Here, the authors report design of graphene-isolated Pt from cobalt-nickel nanoparticles for efficiently catalytic CO oxidation in an oxygen-rich atmosphere.
Collapse
|
4
|
Chen L, Azeem S, Ruan M, Xu W, Barck A, Kornowski A, Parak WJ, Chakraborty I. Rapid template‐guided ligand‐free synthesis of ultrasmall Pt nanoclusters with efficient hydrogen evolution reaction activity and their versatile release. NANO SELECT 2021. [DOI: 10.1002/nano.202000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lizhen Chen
- Fachbereich Physik Center for Hybrid Nanostructures (CHyN) Universität Hamburg Hamburg Germany
| | - Shoaib Azeem
- Fachbereich Physik Philipps Universität Marburg Marburg Germany
| | - Mingbo Ruan
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun P. R. China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun P. R. China
| | - Almut Barck
- Fachbereich Chemie Universität Hamburg Hamburg Germany
| | | | - Wolfgang J. Parak
- Fachbereich Physik Center for Hybrid Nanostructures (CHyN) Universität Hamburg Hamburg Germany
- Fachbereich Chemie Universität Hamburg Hamburg Germany
- CIC Biomagune San Sebastian Spain
| | - Indranath Chakraborty
- Fachbereich Physik Center for Hybrid Nanostructures (CHyN) Universität Hamburg Hamburg Germany
| |
Collapse
|
5
|
Song X, Li N, Zhang H, Wang L, Yan Y, Wang H, Wang L, Bian Z. Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17519-17527. [PMID: 32195568 DOI: 10.1021/acsami.0c01278] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen peroxide (H2O2) production by electrocatalytic two-electron oxygen reduction shows promise as a replacement for energy-intensive anthraquinone oxidation or H2/O2 direct synthesis. Here, we report on graphene-supported Ni single-atom (SA) electrocatalysts, which are synthesized by a simple surfactant-free reduction process with enhanced electrocatalytic activity and stability. Unlike conventional Ni nanoparticles or alloy catalysts, the well-dispersed Ni-SA sites lack adjacent Ni atoms. This structure promotes H2O2 production by a two-electron oxygen reduction pathway under an alkaline condition (pH = 13). This catalyst exhibited enhanced H2O2 selectivity (>94%) with a considerable mass activity (2.11 A mgNi-1 at 0.60 V vs reversible hydrogen electrode), owing to the presence of oxygen functional groups and isolated Ni sites. Density functional theory calculations provide insights into the role of this catalyst in optimizing the two-electron oxygen reduction reaction pathway with high H2O2 selectivity. This work suggests a new method for controlling reaction pathways in atomically dispersed non-noble catalysts.
Collapse
Affiliation(s)
- Xiaozhe Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ning Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Huan Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Li Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Yanjun Yan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Linyuan Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
6
|
Balu R, Knott R, Elvin CM, Hill AJ, R Choudhury N, Dutta NK. A Sustainable Biomineralization Approach for the Synthesis of Highly Fluorescent Ultra-Small Pt Nanoclusters. BIOSENSORS 2019; 9:E128. [PMID: 31671878 PMCID: PMC6956208 DOI: 10.3390/bios9040128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022]
Abstract
Herein we report the first example of a facile biomineralization process to produce ultra-small-sized highly fluorescent aqueous dispersions of platinum noble metal quantum clusters (Pt-NMQCs) using a multi-stimulus responsive, biomimetic intrinsically disordered protein (IDP), Rec1-resilin. We demonstrate that Rec1-resilin acts concurrently as the host, reducing agent, and stabilizer of the blue-green fluorescent Pt-NMQCs once they are being formed. The photophysical properties, quantum yield, and fluorescence lifetime measurements of the synthesized Pt-NMQCs were examined using UV-Vis and fluorescence spectroscopy. The oxidation state of the Pt-NMQCs was quantitatively analyzed using X-ray photoelectron spectroscopy. Both a small angle X-ray scattering technique and a modeling approach have been attempted to present a detailed understanding of the structure and conformational dynamics of Rec1-resilin as an IDP during the formation of the Pt-NMQCs. It has been demonstrated that the green fluorescent Pt-NMQCs exhibit a high quantum yield of ~7.0% and a lifetime of ~9.5 ns in aqueous media. The change in photoluminescence properties due to the inter-dot interactions between proximal dots and aggregation of the Pt-NMQCs by evaporation was also measured spectroscopically and discussed.
Collapse
Affiliation(s)
- Rajkamal Balu
- Chemical and Environment Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Robert Knott
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia.
| | - Christopher M Elvin
- CSIRO Agriculture, Level 6, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia.
| | - Anita J Hill
- CSIRO Manufacturing, Bayview Ave, Clayton, VIC 3168, Australia.
| | - Namita R Choudhury
- Chemical and Environment Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Naba K Dutta
- Chemical and Environment Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
|
8
|
Cook AW, Hayton TW. Case Studies in Nanocluster Synthesis and Characterization: Challenges and Opportunities. Acc Chem Res 2018; 51:2456-2464. [PMID: 30240192 DOI: 10.1021/acs.accounts.8b00329] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomically precise nanoclusters (APNCs) are an emerging area of nanoscience. Their monodispersity and well-defined arrangement of capping ligands facilitates the interrogation of their fundamental physical properties, allowing for the development of structure-function relationships, as well as their optimization for a variety of applications, including quantum computing, solid-state memory, catalysis, sensing, and imaging. However, APNCs present several unique synthetic and characterization challenges. For example, nanocluster syntheses are infamously low yielding and often generate complicated mixtures. This combination of factors makes nanocluster purification and characterization more difficult than that of typical inorganic or organometallic complexes. Yet, while this fact is undoubtedly true, the past lessons learned from the characterization of inorganic complexes are still useful today. In this Account, we discuss six case studies taken from the recent literature in an attempt to identify common challenges and pitfalls encountered in APNC synthesis and characterization. For example, we show that several reducing agents employed in APNC synthesis, including the commonly used reagent NaBH4, do not always behave as anticipated. Indeed, we highlight one case where NaBH4 reduces the ligand and not the metal center, and other cases where NaBH4 acts as a Brønstead base instead of a reducing agent. In addition, we have identified several instances where the use of phase transfer agents, which were added to mediate APNC formation, played no role in the nanocluster synthesis, and likely made the isolation of pure material more difficult. We have also identified several cases of cluster misidentification driven by spurious or ambiguous characterization data, most commonly collected by mass spectrometry. To address these challenges, we propose that the nanocluster community adopt a standard protocol of characterization, similar to those used by the organometallic and coordination chemistry communities. This protocol requires that many complementary techniques be used in concert to confirm formulation, structure, and analytical purity of APNC samples. Two techniques that are underutilized in this regard are combustion analysis and NMR spectroscopy. NMR spectroscopy, in particular, can provide information on purity and formulation that are difficult to collect with any other technique. X-ray absorption spectroscopy is another powerful method of nanocluster characterization, especially in cases where single crystals for X-ray diffraction are not forthcoming. Chromatographic techniques can also be extremely valuable for assessing purity, but are rarely used during APNC characterization. Our goal with this Account is to begin a discussion with respect to the best protocols for nanocluster synthesis and characterization. We believe that embracing a standard characterization protocol would make APNC synthesis more reliable, thereby accelerating their integration into a variety of technologies.
Collapse
Affiliation(s)
- Andrew W. Cook
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Molaabasi F, Sarparast M, Shamsipur M, Irannejad L, Moosavi-Movahedi AA, Ravandi A, Hajipour Verdom B, Ghazfar R. Shape-Controlled Synthesis of Luminescent Hemoglobin Capped Hollow Porous Platinum Nanoclusters and their Application to Catalytic Oxygen Reduction and Cancer Imaging. Sci Rep 2018; 8:14507. [PMID: 30267025 PMCID: PMC6162304 DOI: 10.1038/s41598-018-32918-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Engineering hollow and porous platinum nanostructures using biomolecular templates is currently a significant focus for the enhancement of their facet-dependent optical, electronic, and electrocatalytic properties. However, remains a formidable challenge due to lack of appropriate biomolecules to have a structure-function relationship with nanocrystal facet development. Herein, human hemoglobin found to have facet-binding abilities that can control the morphology and optical properties of the platinum nanoclusters (Pt NCs) by regulation of the growth kinetics in alkaline media. Observations revealed the growth of unusual polyhedra by shape-directed nanocluster attachment along a certain orientation accompanied by Ostwald ripening and, in turn, yield well-dispersed hollow single-crystal nanotetrahedrons, which can easily self-aggregated and crystallized into porous and polycrystalline microspheres. The spontaneous, biobased organization of Pt NCs allow the intrinsic aggregation-induced emission (AIE) features in terms of the platinophilic interactions between Pt(II)-Hb complexes on the Pt(0) cores, thereby controlling the degree of aggregation and the luminescent intensity of Pt(0)@Pt(II)−Hb core−shell NCs. The Hb-Pt NCs exhibited high-performance electrocatalytic oxygen reduction providing a fundamental basis for outstanding catalytic enhancement of Hb-Pt catalysts based on morphology dependent and active site concentration for the four-electron reduction of oxygen. The as-prepared Hb-Pt NCs also exhibited high potential to use in cellular labeling and imaging thanks to the excellent photostability, chemical stability, and low cytotoxicity.
Collapse
Affiliation(s)
- Fatemeh Molaabasi
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran. .,Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran.
| | - Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824-1322, United States
| | - Mojtaba Shamsipur
- Department of Chemistry, Faculty of Basic Sciences, Razi University, Kermanshah, Iran.
| | - Leila Irannejad
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | | | - Abouzar Ravandi
- Department of Chemistry, Faculty of Basic Sciences, Sharif University of Technology, Tehran, Iran
| | - Behnam Hajipour Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Reza Ghazfar
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824-1322, United States
| |
Collapse
|
10
|
Jiang X, Du B, Huang Y, Zheng J. Ultrasmall Noble Metal Nanoparticles: Breakthroughs and Biomedical Implications. NANO TODAY 2018; 21:106-125. [PMID: 31327979 PMCID: PMC6640873 DOI: 10.1016/j.nantod.2018.06.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a bridge between individual atoms and large plasmonic nanoparticles, ultrasmall (core size <3 nm) noble metal nanoparticles (UNMNPs) have been serving as model for us to fundamentally understand many unique properties of noble metals that can only be observed at an extremely small size scale. With decades'efforts, many significant breakthroughs in the synthesis, characterization and functionalization of UNMNPs have laid down a solid foundation for their future applications in the healthcare. In this review, we aim to tightly correlate these breakthroughs with their biomedical applications and illustrate how to utilize these breakthroughs to address long-standing challenges in the clinical translation of nanomedicines. In the end, we offer our perspective on the remaining challenges and opportunities at the frontier of biomedical-related UNMNPs research.
Collapse
Affiliation(s)
- Xingya Jiang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Bujie Du
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
11
|
|
12
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 186.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Bornacelli J, Torres-Torres C, Silva-Pereyra HG, Rodríguez-Fernández L, Avalos-Borja M, Cheang-Wong JC, Oliver A. Nanoscale influence on photoluminescence and third order nonlinear susceptibility exhibited by ion-implanted Pt nanoparticles in silica. Methods Appl Fluoresc 2017; 5:025001. [DOI: 10.1088/2050-6120/aa6d8c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Guo Y, Wu Y, Cao R, Zheng S, Yang Y, Chen M. Platinum nanoparticles functionalized with acetylene derivatives and the influence of ligand length on their electrocatalytic activity. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Liu L, Díaz U, Arenal R, Agostini G, Concepción P, Corma A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. NATURE MATERIALS 2017; 16:132-138. [PMID: 27669051 DOI: 10.1038/nmat4757] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Single metal atoms and metal clusters have attracted much attention thanks to their advantageous capabilities as heterogeneous catalysts. However, the generation of stable single atoms and clusters on a solid support is still challenging. Herein, we report a new strategy for the generation of single Pt atoms and Pt clusters with exceptionally high thermal stability, formed within purely siliceous MCM-22 during the growth of a two-dimensional zeolite into three dimensions. These subnanometric Pt species are stabilized by MCM-22, even after treatment in air up to 540 °C. Furthermore, these stable Pt species confined within internal framework cavities show size-selective catalysis for the hydrogenation of alkenes. High-temperature oxidation-reduction treatments result in the growth of encapsulated Pt species to small nanoparticles in the approximate size range of 1 to 2 nm. The stability and catalytic activity of encapsulated Pt species is also reflected in the dehydrogenation of propane to propylene.
Collapse
Affiliation(s)
- Lichen Liu
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Mariano Esquillor Edificio I+D, 50018 Zaragoza, Spain
- ARAID Foundation, 50018 Zaragoza, Spain
| | - Giovanni Agostini
- European Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble, BP 156, F-38042, France
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
- King Fahd University of Petroleum and Minerals, PO Box 989, Dhahran 31261, Saudi Arabia
| |
Collapse
|
16
|
George A, Asha KS, Reber AC, Biltek SR, Pedicini AF, Sen A, Khanna SN, Mandal S. Atom precise platinum-thiol crowns. NANOSCALE 2015; 7:19448-19452. [PMID: 26486562 DOI: 10.1039/c5nr05325k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ligand stabilized water soluble Pt nanoclusters were synthesized and characterized through electrospray ionization mass spectrometry. Glutathione was used as the ligand, and Pt5(SG)10, and Pt6(SG)12 clusters were synthesized. Theoretical investigations found that these clusters do not possess a metal core, but rather are most stable in a ring structure. The clusters are stabilized through the thiol ligands forming a square planar structure around each Pt atom to form a ring. The structural elucidation was confirmed through UV/Vis and IR spectroscopy.
Collapse
Affiliation(s)
- Anu George
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695016, India.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hu P, Duchesne PN, Song Y, Zhang P, Chen S. Self-assembly and chemical reactivity of alkenes on platinum nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:522-528. [PMID: 25511500 DOI: 10.1021/la503995c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stable platinum nanoparticles were synthesized by the self-assembly of alkene derivatives onto the platinum surface, possibly forming platinum-vinylidene (Pt═C═CH-) or -acetylide (Pt-C≡) interfacial bonds as a result of dehydrogenation and transformation of the olefin moieties catalyzed by platinum. Transmission electron microscopic measurements showed that the nanoparticles were well-dispersed without apparent agglomeration, indicating effective passivation of the nanoparticles by the ligands, and the average core was estimated to be 1.34 ± 0.39 nm. FTIR measurements showed the emergence of a new vibrational band at 2023 cm(-1), which was ascribed to the formation of Pt-H and C≡C from the dehydrogenation of alkene ligands on platinum surfaces. Consistent behaviors were observed in photoluminescence measurements, where the emission profiles were similar to those of alkyne-functionalized Pt nanoparticles that arose from intraparticle charge delocalization between the particle-bound acetylene moieties. Selective reactivity with imine derivatives further confirmed the formation of Pt═C═CH- or Pt-C≡ interfacial linkages, as manifested in NMR and electrochemical measurements. Further structural insights were obtained by X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure analysis, where the coordinate numbers and bond lengths of the Pt-Pt and Pt-C linkages suggested that the metal-ligand interfacial bonds were in the intermediate between those of Pt-C≡ and Pt-Csp(2).
Collapse
Affiliation(s)
- Peiguang Hu
- Department of Chemistry and Biochemistry, University of California , 1156 High Street, Santa Cruz, California 95064, United States
| | | | | | | | | |
Collapse
|
18
|
Chakraborty I, Bhuin RG, Bhat S, Pradeep T. Blue emitting undecaplatinum clusters. NANOSCALE 2014; 6:8561-4. [PMID: 24975972 DOI: 10.1039/c4nr02778g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents.
Collapse
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | | | | | | |
Collapse
|
19
|
Wu X, Dong Y. Theoretical studies of structures and energies of Pd, Au–Pd, and Au–Pd–Pt clusters. NEW J CHEM 2014. [DOI: 10.1039/c4nj00984c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Yano H, Nakajima Y, Obora Y. N,N-Dimethylformamide-stabilized palladium nanoclusters as catalyst for Migita–Kosugi–Stille cross-coupling reactions. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Vankayala R, Gollavelli G, Mandal BK. Highly fluorescent and biocompatible iridium nanoclusters for cellular imaging. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1993-2000. [PMID: 23661257 DOI: 10.1007/s10856-013-4952-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Highly fluorescent iridium nanoclusters were synthesized and investigated its application as a potential intracellular marker. The iridium nanoclusters were prepared with an average size of ~2 nm. Further, these nanoclusters were refluxed with aromatic ligands, such as 2,2'-binaphthol (BINOL) in order to obtain fluorescence properties. The photophysical properties of these bluish-green emitting iridium nanoclusters were well characterized by using UV-Visible, fluorescence and lifetime decay measurements. The emission spectrum for these nanoclusters exhibit three characteristic peaks at 449, 480 and 515 nm. The fluorescence quantum yield of BINOL-Ir NCs were estimated to be 0.36 and the molar extinction co-efficients were in the order of 10(6) M(-1)cm(-1). In vitro cytotoxicity studies in HeLa cells reveal that iridium nanoclusters exhibited good biocompatibility with an IC50 value of ~100 μg/ml and also showed excellent co-localization and distribution throughout the cytoplasm region without entering into the nucleus. This research has opened a new window in developing the iridium nanoparticle based intracellular fluorescent markers and has wide scope to act as biomedical nanocarrier to carry many biological molecules and anticancer drugs.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China.
| | | | | |
Collapse
|
22
|
Yuan X, Yao Q, Yu Y, Luo Z, Dou X, Xie J. Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. J Phys Chem Lett 2013; 4:1811-1815. [PMID: 26283113 DOI: 10.1021/jz400807u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This letter reports an unexpected observation in the purification of ultrasmall (<2 nm) thiolate-protected Ag nanoclusters (NCs) via a common separation technique (e.g., desalting column and ultrafiltration), where the nonluminescent Ag NCs were spontaneously transformed to highly luminescent NCs during the separation. This interesting finding was then used to develop a facile and fast (<5 min) synthesis method for highly luminescent Ag NCs. The key strategy was to use the separation process to selectively remove small species (e.g., salts and excess protecting ligands) from the Ag NC solution, which induced a size or structure-focusing of Ag NCs in the solution, leading to the formation of highly luminescent Ag NCs. The concurrent synthesis and purification of highly luminescent Ag NCs via a common "physical separation unit" could be further advanced in a continuous mode for large-scale production of luminescent Ag NCs.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Yong Yu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Zhentao Luo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Xinyue Dou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| |
Collapse
|
23
|
Xie S, Paau MC, Zhang Y, Shuang S, Chan W, Choi MMF. High-performance liquid chromatographic analysis of as-synthesised N,N'-dimethylformamide-stabilised gold nanoclusters product. NANOSCALE 2012; 4:5325-32. [PMID: 22776957 DOI: 10.1039/c2nr30984j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au₁₀⁺, Au₁₀, Au₁₁, Au₁₂, Au₁₃, and Au₁₄ NCs stabilised with various numbers of DMF ligands.
Collapse
Affiliation(s)
- Shunping Xie
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | |
Collapse
|