1
|
Ye J, Li C, Yao X, Jin M, Wan D. Customizing a Hyperbranched Ligand Confers Supported Platinum Nanoclusters with Unexpected Catalytic Activity toward the Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38038684 DOI: 10.1021/acs.langmuir.3c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We here show that a dendritic molecule combined with ligand merit confers supported platinum nanoclusters (PtNCs) with unprecedented catalytic performance. Branched polyethylenimine (PEI, Mn = 2000 D) patched on a porous bead is modified with 2-(diphenylphosphino)benzaldehyde (dppb) before being used to mediate a platinum nanoparticle/nanocluster (Pt0). The catalytic activity of Pt0 toward the reduction of 4-nitrophenol (4-NP) is evaluated from the parameter of Pt-normalized rate constant (kc). Optimization of the dppb level along with transformation of the PEI hydrogens into diol or trimethylammonium groups imparts supported Pt0 unprecedented activity (kc = 19.2 L mmol-1 s-1 and turnover frequency (TOF) = 1041 h-1). The supported Pt0 at an extremely low dosage of 0.1 ppm promotes 98% conversion of 4-NP within minutes and is well recyclable. The striking catalytic activity is attributed to the combination of orthogonal ligand properties such as weak ligand nature, catalyst-activating ability, excellent substrate affinity, and effect on PtNC-size mediation of the ligand.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Chenhui Li
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Xiaoqiu Yao
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| |
Collapse
|
2
|
Juhász Á, Gombár G, Várkonyi EF, Wojnicki M, Ungor D, Csapó E. Thermodynamic Characterization of the Interaction of Biofunctionalized Gold Nanoclusters with Serum Albumin Using Two- and Three-Dimensional Methods. Int J Mol Sci 2023; 24:16760. [PMID: 38069083 PMCID: PMC10706308 DOI: 10.3390/ijms242316760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fluorescent gold nanoclusters have been successfully used as fluorescent markers for imaging of cells and tissues, and their potential role in drug delivery monitoring is coming to the fore. In addition, the development of biosensors using structure-tunable fluorescent nanoclusters is also a prominent research field. In the case of these sensor applications, the typical goal is the selective identification of, e.g., metal ions, small molecules having neuroactive or antioxidant effects, or proteins. During these application-oriented developments, in general, there is not enough time to systematically examine the interaction between nanoclusters and relevant biomolecules/proteins from a thermodynamic viewpoint. In this way, the primary motivation of this article is to carry out a series of tests to partially fill this scientific gap. Besides the well-known fluorescent probes, the mentioned interactions were investigated using such unique measurement methods as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). These two-dimensional (at the solid/liquid interface) and three-dimensional (in the bulk phase) measuring techniques provide a unique opportunity for the thermodynamic characterization of the interaction between different gold nanoclusters containing various surface functionalizing ligands and bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Ádám Juhász
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Gyöngyi Gombár
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Egon F. Várkonyi
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland;
| | - Ditta Ungor
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| |
Collapse
|
3
|
Li Y, Zhao S, Zang S. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. EXPLORATION (BEIJING, CHINA) 2023; 3:20220005. [PMID: 37933377 PMCID: PMC10624382 DOI: 10.1002/exp.20220005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 11/08/2023]
Abstract
The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.
Collapse
Affiliation(s)
- Ya‐Hui Li
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
4
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
5
|
Cheng D, Liu R, Hu K. Gold nanoclusters: Photophysical properties and photocatalytic applications. Front Chem 2022; 10:958626. [PMID: 35928211 PMCID: PMC9343704 DOI: 10.3389/fchem.2022.958626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Atomically precise gold nanoclusters (Au NCs) have high specific surface area and abundant unsaturated active sites. Traditionally, Au NCs are employed as thermocatalysts for multielectron transfer redox catalysis. Meanwhile, Au NCs also exhibit discrete energy levels, tunable photophysical and electrochemical properties, including visible to near infrared absorption, microsecond long-lived excited-state lifetime, and redox chemistry. In recent years, Au NCs are increasingly employed as visible to near infrared photocatalysts for their high photocatalytic activity and unique selectivity. This review focuses on the photophysical properties of a variety of Au NCs and their employment as photocatalysts in photocatalytic reactions and related applications including solar energy conversion and photodynamic therapies.
Collapse
|
6
|
Shaikh NM, Sawant AD, Bagihalli GB, Challa M, Adimule VM. Highly Active Mixed Au–Pd Nanoparticles Supported on RHA Silica Through Immobilised Ionic Liquid for Suzuki Coupling Reaction. Top Catal 2022. [DOI: 10.1007/s11244-021-01547-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Nasaruddin RR, Hülsey MJ, Xie J. Enhancing catalytic properties of ligand-protected gold-based 25-metal atom nanoclusters by silver doping. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Chu K, Luo Y, Wu D, Su Z, Shi J, Zhang JZ, Su CY. Charge State of Au 25(SG) 18 Nanoclusters Induced by Interaction with a Metal Organic Framework Support and Its Effect on Catalytic Performance. J Phys Chem Lett 2021; 12:8003-8008. [PMID: 34433276 DOI: 10.1021/acs.jpclett.1c02090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated the charge transfer between Au25(SG)18 nanoclusters and metal-organic framework (MOF) supports including Mil-101-Cr, Mil-125-Ti, and ZIF-8 by an X-ray photoemission technique and discussed the influence of resulted charge states of supported Au25(SG)18 nanoclusters on the 4-nitrophenol reduction reaction. Charge transfer from Au25(SG)18 to Mil-101-Cr induces positive charge Auδ+ (0 < δ < 1) while charge transfer from ZIF-8 to Au25(SG)18 generates negative charge Auδ- due to different metal-support interactions. Au25(SG)18 on Mil-125 shows metallic Au0, similar to unsupported Au25(SG)18, due to negligible charge transfer. The resulted charge state of Auδ- inhibits the formation of adsorbed hydride (H-) species because of electrostatic repulsion, while Auδ+ impairs the reductive ability of adsorbed hydride (H-) species due to strong affinity between them. In comparison, metallic Au0 in Au25(SG)18/Mil-125 and unsupported Au25(SG)18 presents the optimum catalytic activity. The current work provides guidelines to design effective metal nanoclusters in heterogeneous catalysis through metal-support interaction exerted by metal-oxo/nitric clusters within MOFs.
Collapse
Affiliation(s)
- Kunlin Chu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yucheng Luo
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dongjun Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhifang Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jianying Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Cheng-Yong Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
9
|
Shokoohi S, Rayati S. Surface decorated magnetic nanoparticles with Mn-porphyrin as an effective catalyst for oxidation of sulfides. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mn-porphyrin complex was anchored coordinatively to silica-coated surface of magnetic nanoparticles (SMNP). Afterward, a heterogeneous nanocatalyst (Fe3O4@SiO2-MnTCPP) has been characterized by Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), and transmission electron microscope (TEM). A thermal stability up to around 350[Formula: see text]C was verified for prepared nanocatalyst based on thermogravimetric analysis. Finally, the catalytic performance of magnetically recoverable Mn-catalyst was exploited in the green oxidation of different sulfides with urea hydrogen peroxide (UHP) in the presence of imidazole as co-catalyst in ethanol under heterogeneous conditions. The eco-friendly property of ethanol strongly induced us to employ it as the reaction solvent in this oxidation system. Complete conversion ([Formula: see text]99) of sulfides to the corresponding sulfoxide or sulfones was obtained for ethyl phenyl sulfide, phenyl vinyl sulfide, diallyl sulfide, thiocyanatoethane, 2-ethyl mercaptoethanol and tetrahydrothiophene. Moreover, the recovered catalysts keep constant conversion yield up to at least three cycles.
Collapse
Affiliation(s)
- Saeedeh Shokoohi
- Department of Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran
| | - Saeed Rayati
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418, Iran
| |
Collapse
|
10
|
Zhang B, Chen J, Cao Y, Chai OJH, Xie J. Ligand Design in Ligand-Protected Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004381. [PMID: 33511773 DOI: 10.1002/smll.202004381] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The design of surface ligands is crucial for ligand-protected gold nanoclusters (Au NCs). Besides providing good protection for Au NCs, the surface ligands also play the following two important roles: i) as the outermost layer of Au NCs, the ligands will directly interact with the exterior environment (e.g., solvents, molecules and cells) influencing Au NCs in various applications; and ii) the interfacial chemistry between ligands and gold atoms can determine the structures, as well as the physical and chemical properties of Au NCs. A delicate ligand design in Au NCs (or other metal NCs) needs to consider the covalent bonds between ligands and gold atoms (e.g., gold-sulfur (Au-S) and gold-phosphorus (Au-P) bond), the physics forces between ligands (e.g., hydrophobic and van der Waals forces), and the ionic forces between the functional groups of ligands (e.g., carboxylic (COOH) and amine group (NH2 )); which form the underlying chemistry and discussion focus of this review article. Here, detailed discussions on the effects of surface ligands (e.g., thiolate, phosphine, and alkynyl ligands; or hydrophobic and hydrophilic ligands) on the synthesis, structures, and properties of Au NCs; highlighting the design principles in the surface engineering of Au NCs for diverse emerging applications, are provided.
Collapse
Affiliation(s)
- Bihan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Jishi Chen
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Sonia, Komal, Kukreti S, Kaushik M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021; 234:122623. [PMID: 34364432 DOI: 10.1016/j.talanta.2021.122623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Gold nanoclusters (Au NCs) with a core size below 2 nm form an exciting class of functional nano-materials with characteristic physical and chemical properties. The properties of Au NCs are more prominent and extremely different from their bulk counterparts. The synthesis of Au NCs is generally assisted by template or ligand, which impart excellent cluster stability and high quantum yield. The tunable and sensitive physicochemical properties of Au NCs open horizons for their advanced applications in various interdisciplinary fields. In this review, we briefly summarize the solution phase synthesis and origin of the characteristic properties of Au NCs. A vast review of recent research work introducing biosensors based on Au NCs has been presented along with their specifications and detection limits. This review also highlights recent progress in the use of Au NCs as bio-imaging probe, enzyme mimic, temperature sensing probe and catalysts. A speculation on present challenges and certain future prospects have also been provided to enlighten the path for advancement of multifaceted applications of Au NCs.
Collapse
Affiliation(s)
- Sonia
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Komal
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
12
|
Shi Q, Qin Z, Sharma S, Li G. Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal Nanoclusters. CHEM REC 2021; 21:879-892. [DOI: 10.1002/tcr.202100001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Quanquan Shi
- College of Science College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot 010018 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Sachil Sharma
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Gao Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
13
|
Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem Rev 2020; 121:567-648. [DOI: 10.1021/acs.chemrev.0c00495] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Sachil Sharma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Neal RD, Hughes RA, Sapkota P, Ptasinska S, Neretina S. Effect of Nanoparticle Ligands on 4-Nitrophenol Reduction: Reaction Rate, Induction Time, and Ligand Desorption. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02759] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Robert D. Neal
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A. Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Pitambar Sapkota
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, Unites States
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sylwia Ptasinska
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, Unites States
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, Unites States
| |
Collapse
|
15
|
Fang L, Xu Q, Qi Y, Wu X, Fu Y, Xiao Q, Zhang F, Zhu W. Fe/Fe3C@N-doped porous carbon microspindles templated from a metal–organic framework as highly selective and stable catalysts for the catalytic oxidation of sulfides to sulfoxides. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Al-Shankiti B, Al-Maksoud W, Habeeb Muhammed MA, Anjum DH, Moosa B, Basset JM, Khashab NM. Ligand-free gold nanoclusters confined in mesoporous silica nanoparticles for styrene epoxidation. NANOSCALE ADVANCES 2020; 2:1437-1442. [PMID: 36132309 PMCID: PMC9417287 DOI: 10.1039/c9na00781d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
We present a novel approach to produce gold nanoclusters (Au NCs) in the pores of mesoporous silica nanoparticles (MSNs) by sequential and controlled addition of metal ions and reducing agents. This impregnation technique was followed to confine Au NCs inside the pores of MSNs without adding external ligands or stabilizing agents. TEM images show a uniform distribution of monodisperse NCs with an average size of 1.37 ± 0.4 nm. Since the NCs are grown in situ in MSN pores, additional support and high temperature calcination are not required to use them as catalysts. The use of Au NC/MSNs as a catalyst for the epoxidation of styrene in the presence of tert-butyl hydroperoxide (TBHP) as a terminal oxidant resulted in an 88% conversion of styrene in 12 h with a 74% selectivity towards styrene epoxide. Our observations suggest that this remarkable catalytic performance is due to the small size of Au NCs and the strong interaction between gold and the MSNs. This catalytic conversion is environmentally friendly as it is solvent free. We believe our synthetic approach can be extended to other metal NCs offering a wide range of applications.
Collapse
Affiliation(s)
- Buthainah Al-Shankiti
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Walid Al-Maksoud
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) 4700 KAUST Thuwal 23955-6900 Saudi Arabia
| | - Madathumpady Abubaker Habeeb Muhammed
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Dalaver H Anjum
- Advanced Nanofabrication Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jean-Marie Basset
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) 4700 KAUST Thuwal 23955-6900 Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
17
|
Elucidating the stability of ligand-protected Au nanoclusters under electrochemical reduction of CO2. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2488-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Kawawaki T, Negishi Y. Gold Nanoclusters as Electrocatalysts for Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E238. [PMID: 32013164 PMCID: PMC7075145 DOI: 10.3390/nano10020238] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Gold nanoclusters (Aun NCs) exhibit a size-specific electronic structure unlike bulk gold and can therefore be used as catalysts in various reactions. Ligand-protected Aun NCs can be synthesized with atomic precision, and the geometric structures of many Aun NCs have been determined by single-crystal X-ray diffraction analysis. In addition, Aun NCs can be doped with various types of elements. Clarification of the effects of changes to the chemical composition, geometric structure, and associated electronic state on catalytic activity would enable a deep understanding of the active sites and mechanisms in catalytic reactions as well as key factors for high activation. Furthermore, it may be possible to synthesize Aun NCs with properties that surpass those of conventional catalysts using the obtained design guidelines. With these expectations, catalyst research using Aun NCs as a model catalyst has been actively conducted in recent years. This review focuses on the application of Aun NCs as an electrocatalyst and outlines recent research progress.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan;
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan;
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278−8510, Japan
| |
Collapse
|
19
|
Tian S, Cao Y, Chen T, Zang S, Xie J. Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chem Commun (Camb) 2020; 56:1163-1174. [DOI: 10.1039/c9cc08215h] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This feature article provides a systematic overview and outlook on the oxidation reactions catalyzed by gold nanoclusters.
Collapse
Affiliation(s)
- Shubo Tian
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 4 Engineering Drive 4
- Singapore 117585
- Singapore
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 4 Engineering Drive 4
- Singapore 117585
- Singapore
| | - Tiankai Chen
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 4 Engineering Drive 4
- Singapore 117585
- Singapore
| | - Shuangquan Zang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 4 Engineering Drive 4
- Singapore 117585
- Singapore
| |
Collapse
|
20
|
Visible-light-mediated high-efficiency catalytic oxidation of sulfides using wrinkled C3N4 nanosheets. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Kang X, Xu F, Wei X, Wang S, Zhu M. Valence self-regulation of sulfur in nanoclusters. SCIENCE ADVANCES 2019; 5:eaax7863. [PMID: 31803835 PMCID: PMC6874481 DOI: 10.1126/sciadv.aax7863] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/25/2019] [Indexed: 05/29/2023]
Abstract
The valence self-regulation of sulfur from the "-2" valence state in thiols to the "-1" valence state in hydroxylated thiolates has been accomplished using the Pt1Ag28 nanocluster as a platform-the first time that the "-1" valent sulfur has been detected as S-1. Two previously unknown nanoclusters, Pt1Ag28(SR)20 and Pt1Ag28(SR)18(HO-SR)2 (where SR represents 2-adamantanethiol), have been synthesized and characterized-in the latter nanocluster, the presence of hydroxyl induces the valence regulation of two special S atoms from "-2" (in SR) to "-1" valence state in the HO-S(Ag)R. Because of the contrasting nature of the capping ligands in these two nanoclusters [i.e., only SR in Pt1Ag28(SR)20 or both SR- and HO-SR- in Pt1Ag28(SR)18(HO-SR)2], they exhibit differing shell architectures, even though their cores (Pt1Ag12) are in the same icosahedral configuration. Single-crystal x-ray diffraction analysis revealed their 1:1 cocrystallization, and mass spectrometry verified the presence of hydroxyls on Pt1Ag28(SR)18(HO-SR)2.
Collapse
|
22
|
Shi Q, Qin Z, Xu H, Li G. Heterogeneous Cross-Coupling over Gold Nanoclusters. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E838. [PMID: 31159397 PMCID: PMC6630966 DOI: 10.3390/nano9060838] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 11/16/2022]
Abstract
Au clusters with the precise numbers of gold atoms, a novel nanogold material, have recently attracted increasing interest in the nanoscience because of very unique and unexpected properties. The unique interaction and electron transfer between gold clusters and reactants make the clusters promising catalysts during organic transformations. The AunLm nanoclusters (where L represents organic ligands and n and m mean the number of gold atoms and ligands, respectively) have been well investigated and developed for selective oxidation, hydrogenation, photo-catalysis, and so on. These gold clusters possess unique frameworks, providing insights into the catalytic processes and an excellent arena to correlate the atomic frameworks with their intrinsic catalytic properties and to further investigate the tentative reaction mechanisms. This review comprehensively summarizes the very latest advances in the catalytic applications of the Au nanoclusters for the C-C cross-coupling reactions, e.g., Ullmann, Sonogashira, Suzuki cross-couplings, and A3-coupling reactions. It is found that the proposed catalytically active sites are associated with the exposure of gold atoms on the surface of the metal core when partial capping organic ligands are selectively detached under the reaction conditions. Finally, the tentative catalytic mechanisms over the ligand-capped Au nanoclusters and the relationship of structure and catalytic performances at the atomic level using computational methods are explored in detail.
Collapse
Affiliation(s)
- Quanquan Shi
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Hui Xu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
23
|
Xiong J, Xu K, Hou X, Wu P. AuNCs-Catalyzed Hydrogen Selenide Oxidation: Mechanism and Application for Headspace Fluorescent Detection of Se(IV). Anal Chem 2019; 91:6141-6148. [PMID: 30990020 DOI: 10.1021/acs.analchem.9b00738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The excellent fluorescence property of Au nanoclusters (AuNCs) has received great attention for various chemosensing and biorelated applications, but the sample matrix is still an important problem that causes undesirable fluorescence variation. On the one hand, hydride generation (HG) is an effective strategy to separate the target analyte from the complex sample matrices, but the implementation of HG with AuNC-based fluorescent assays was not realized. On the other hand, due to the ultrasmall size of AuNCs and good catalytic performance of Au, AuNCs are also featuring intriguing catalytic applications. Herein, we proposed a new type of AuNC-based fluorescence assay for Se(IV) detection, in which hydride generation of Se(IV) was coupled with the fluorescence/catalytic dual functions of AuNCs. In a batch hydride generation mode, Se(IV) was first converted to volatile H2Se. When it spread in the headspace to contact with AuNCs supported paper, AuNC-catalyzed oxidation of H2Se by O2 to yield elemental selenium occurred, which further deposited on the surface of AuNCs to induce fluorescence quenching. The catalytic effect of AuNCs was studied in depth via both experimental and theoretical (density functional theory) investigations. Three main steps for H2Se oxidation were identified, with energy barriers in the presence of AuNCs significantly lower than those without. Benefiting from the reduced matrix interference by hydride generation and the unique catalysis/fluorescence of AuNCs, the proposed assay featured high selectivity, good sensitivity, and simplicity, with successful applications for selenium detection in real samples.
Collapse
|
24
|
Munir A, Joya KS, Ul Haq T, Babar NUA, Hussain SZ, Qurashi A, Ullah N, Hussain I. Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. CHEMSUSCHEM 2019; 12:1517-1548. [PMID: 30485695 DOI: 10.1002/cssc.201802069] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Indexed: 05/12/2023]
Abstract
A sustainable future demands innovative breakthroughs in science and technology today, especially in the energy sector. Earth-abundant resources can be explored and used to develop renewable and sustainable resources of energy to meet the ever-increasing global energy demand. Efficient solar-powered conversion systems exploiting inexpensive and robust catalytic materials for the photo- and photo-electro-catalytic water splitting, photovoltaic cells, fuel cells, and usage of waste products (such as CO2 ) as chemical fuels are appealing solutions. Many electrocatalysts and nanomaterials have been extensively studied in this regard. Low overpotentials, catalytic stability, and accessibility remain major challenges. Metal nanoclusters (NCs, ≤3 nm) with dimensions between molecule and nanoparticles (NPs) are innovative materials in catalysis. They behave like a "superatom" with exciting size- and facet-dependent properties and dynamic intrinsic characteristics. Being an emerging field in recent scientific endeavors, metal NCs are believed to replace the natural photosystem II for the generation of green electrons in a viable way to facilitate the challenging catalytic processes in energy-conversion schemes. This Review aims to discuss metal NCs in terms of their unique physicochemical properties, possible synthetic approaches by wet chemistry, and various applications (mostly recent advances in the electrochemical and photo-electrochemical water splitting cycle and the oxygen reduction reaction in fuel cells). Moreover, the significant role that MNCs play in dye-sensitized solar cells and nanoarrays as a light-harvesting antenna, the electrochemical reduction of CO2 into fuels, and concluding remarks about the present and future perspectives of MNCs in the frontiers of surface science are also critically reviewed.
Collapse
Affiliation(s)
- Akhtar Munir
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Tanveer Ul Haq
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Noor-Ul-Ain Babar
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Ahsanulhaq Qurashi
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Najeeb Ullah
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), University of Engineering & Technology (UET-Peshawar),Jamrud Road, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| |
Collapse
|
25
|
Du Y, Sheng H, Astruc D, Zhu M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem Rev 2019; 120:526-622. [DOI: 10.1021/acs.chemrev.8b00726] [Citation(s) in RCA: 526] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanxin Du
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
26
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
27
|
Shirsath SE, Liu X, Assadi MHN, Younis A, Yasukawa Y, Karan SK, Zhang J, Kim J, Wang D, Morisako A, Yamauchi Y, Li S. Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe 2O 4 thin films. NANOSCALE HORIZONS 2019; 4:434-444. [PMID: 32254095 DOI: 10.1039/c8nh00278a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For the first time, this work presents a novel room temperature time-effective concept to manipulate the crystallization kinetics and magnetic responses of thin films grown on amorphous substrates. Conventionally, metal-induced crystallization is adopted to minimize the crystallization temperature of the upper-layer thin film. However, due to the limited surface area of the continuous metal under-layer, the degree of crystallization is insufficient and post-annealing is required. To expose a large surface area of the metal under-layer, we propose a simple and novel approach of using an Au nanodots array instead of a continuous metallic under-layer to obtain crystallization of upper-layer thin films. Spinel cobalt ferrite (CFO) thin film as a 'model' was deposited on an Au nano-dots array to realize this methodology. Our findings revealed that the addition of quantum-sized Au nano-dots as a metal under-layer dramatically enhanced the crystallization of the cobalt ferrite upper layer at room temperature. The appearance of major X-ray diffraction peaks with high intensity and well-defined crystallized lattice planes observed via transmission electron microscopy confirmed the crystallization of the CFO thin film deposited at room temperature on 4 nm-sized Au nano-dots. This crystallized CFO thin film exhibits 18-fold higher coercivity (Hc = 4150 Oe) and 4-fold higher saturation magnetization (Ms = 262 emu cm-3) compared to CFO deposited without the Au under-layer. The development of this novel concept of room-temperature crystallization without the aid of additives and solvents represents a crucial breakthrough that is highly significant for exploring the green and energy-efficient synthesis of a variety of oxide and metal thin films.
Collapse
Affiliation(s)
- Sagar E Shirsath
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2502, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nasaruddin RR, Yao Q, Chen T, Hülsey MJ, Yan N, Xie J. Hydride-induced ligand dynamic and structural transformation of gold nanoclusters during a catalytic reaction. NANOSCALE 2018; 10:23113-23121. [PMID: 30512030 DOI: 10.1039/c8nr07197g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quasi-homogeneous ligand-protected gold nanoclusters (Au NCs) with atomic precision and well-defined structure offer great opportunity for exploring the catalytic nature of nanogold catalysts at a molecular level. Herein, using real-time electrospray ionization mass spectrometry (ESI-MS), we have successfully identified the desorption and re-adsorption of p-mercaptobenzoic acid (p-MBA) ligands from Au25(p-MBA)18 NC catalysts during the hydrogenation of 4-nitrophenol in solution. This ligand dynamic (desorption and re-adsorption) would initiate structural transformation of Au25(p-MBA)18 NC catalysts during the reaction, forming a mixture of smaller Au NCs (Au23(p-MBA)16 as the major species) at the beginning of catalytic reaction, which could further be transformed into larger Au NCs (Au26(p-MBA)19 as the major species). The adsorption of hydrides (from NaBH4) is identified as the determining factor that could induce the ligand dynamic and structural transformation of NC catalysts. This study provides fundamental insights into the catalytic nature of Au NCs, including catalytic mechanism, active species and stability of Au NC catalysts during a catalytic reaction.
Collapse
Affiliation(s)
- Ricca Rahman Nasaruddin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | | | | | | | | | | |
Collapse
|
29
|
Ghorbani-Choghamarani A, Seydyosefi Z, Tahmasbi B. Tribromide ion supported on boehmite nanoparticles as a reusable catalyst for organic reactions. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Liang W, Zhang T, Liu Y, Huang Y, Liu Z, Liu Y, Yang B, Zhou X, Zhang J. Polydimethylsiloxane Sponge-Supported Nanometer Gold: Highly Efficient Recyclable Catalyst for Cross-Dehydrogenative Coupling in Water. CHEMSUSCHEM 2018; 11:3586-3590. [PMID: 30125475 DOI: 10.1002/cssc.201801180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Polydimethylsiloxane (PDMS, a stable hydrophobic polymer material) sponge-supported nanometer-sized gold can be used as a highly efficient recyclable catalyst for cross-dehydrogenative coupling of tertiary amines with various nucleophiles in water. This PDMS sponge nanometer gold catalyst can provide much better activity than the free nanometer gold in water. The reaction can be scaled up by using an easy-to-build continuous flow reactor. These results indicate the potential application of porous hydrophobic PDMS sponge material as a promising support for highly efficient recyclable catalysts in water.
Collapse
Affiliation(s)
- Weiwei Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Teng Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yufei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuxing Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhipeng Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junmin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
31
|
Ghiami S, Nasseri MA, Allahresani A, Kazemnejadi M. FeNi3@SiO2 nanoparticles: an efficient and selective heterogeneous catalyst for the epoxidation of olefins and the oxidation of sulfides in the presence of meta-chloroperoxybenzoic acid at room temperature. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1479-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Nasaruddin RR, Chen T, Yan N, Xie J. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Zhang G, Wang R, Li G. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Zhang X, Yang Z, Wu R. A Au monolayer on WC(0001) with unexpected high activity towards CO oxidation. NANOSCALE 2018; 10:4753-4760. [PMID: 29465726 DOI: 10.1039/c7nr09498a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Catalysts with weak adsorption yet high reactivity towards CO are urgently required to solve the serious problem of CO poisoning that occurs in many important reactions, e.g., in fuel cells. Using the combination of density functional calculations and ab initio molecular dynamic simulations, we found a promising electrocatalyst for this purpose: a Au monolayer on WC(0001) (AuML/WC), which has both high oxygen reduction activity and high tolerance to CO poisoning. The advantages of using AuML/WC as an electrocatalyst in fuel cells are demonstrated through analyses of energetics of different reaction steps as well as interaction properties of reactants and products. We anticipate that the present results are useful to advance the development of efficient catalysts with high tolerance to CO poisoning.
Collapse
Affiliation(s)
- Xilin Zhang
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China.
| | | | | |
Collapse
|
35
|
Dononelli W, Klüner T. CO adsorption and oxygen activation on group 11 nanoparticles – a combined DFT and high level CCSD(T) study about size effects and activation processes. Faraday Discuss 2018; 208:105-121. [DOI: 10.1039/c7fd00225d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The focus of this study lies in the activation of molecular oxygen and reaction with CO within density functional theory (DFT) and high level CCSD(T) calculations.
Collapse
Affiliation(s)
- Wilke Dononelli
- Carl von Ossietzky Universität Oldenburg
- Institute for Chemistry
- 26129 Oldenburg
- Germany
| | - Thorsten Klüner
- Carl von Ossietzky Universität Oldenburg
- Institute for Chemistry
- 26129 Oldenburg
- Germany
| |
Collapse
|
36
|
Karimpour T, Safaei E, Karimi B, Lee YI. Iron(III) Amine Bis(phenolate) Complex Immobilized on Silica-Coated Magnetic Nanoparticles: A Highly Efficient Catalyst for the Oxidation of Alcohols and Sulfides. ChemCatChem 2017. [DOI: 10.1002/cctc.201701217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Touraj Karimpour
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Elham Safaei
- Department of Chemistry; College of Sciences; Shiraz University; Shiraz 71454 Iran
| | - Babak Karimi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Yong-Ill Lee
- Department of Chemistry; Changwon National University; Changwon 641-773 South Korea
| |
Collapse
|
37
|
Nasaruddin RR, Chen T, Li J, Goswami N, Zhang J, Yan N, Xie J. Ligands Modulate Reaction Pathway in the Hydrogenation of 4-Nitrophenol Catalyzed by Gold Nanoclusters. ChemCatChem 2017. [DOI: 10.1002/cctc.201701472] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ricca Rahman Nasaruddin
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Tiankai Chen
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jingguo Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Nirmal Goswami
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jiaguang Zhang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
38
|
Rezaei S, Ghorbani-Choghamarani A, Badri R, Nikseresht A. Fe3
O4
@S-ABENZ@VO: Magnetically separable nanocatalyst for the efficient, selective and mild oxidation of sulfides and oxidative coupling of thiols. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Somaieh Rezaei
- Department of Chemistry, Khuzestan Science and Research Branch; Islamic Azad University; Ahvaz Iran
- Department of Chemistry, Ahvaz Branch; Islamic Azad University; Ahvaz Iran
| | | | - Rashid Badri
- Department of Chemistry, Ahvaz Branch; Islamic Azad University; Ahvaz Iran
| | - Ahmad Nikseresht
- Department of Chemistry; Payame Noor University; PO Box 19395-4697 Tehran Iran
| |
Collapse
|
39
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 186.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
40
|
Li Z, Liu C, Abroshan H, Kauffman DR, Li G. Au38S2(SAdm)20 Photocatalyst for One-Step Selective Aerobic Oxidations. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00239] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhimin Li
- Gold
Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Chao Liu
- Gold
Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Hadi Abroshan
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Douglas R. Kauffman
- National
Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Gao Li
- Gold
Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
41
|
Schwartzkopf M, Hinz A, Polonskyi O, Strunskus T, Löhrer FC, Körstgens V, Müller-Buschbaum P, Faupel F, Roth SV. Role of Sputter Deposition Rate in Tailoring Nanogranular Gold Structures on Polymer Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5629-5637. [PMID: 28106380 DOI: 10.1021/acsami.6b15172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The reproducible low-cost fabrication of functional polymer-metal interfaces via self-assembly is of crucial importance in organic electronics and organic photovoltaics. In particular, submonolayer and nanogranular systems expose highly interesting electrical, plasmonic, and catalytic properties. The exploitation of their great potential requires tailoring of the structure on the nanometer scale and below. To obtain full control over the complex nanostructural evolution at the polymer-metal interface, we monitor the evolution of the metallic layer morphology with in situ time-resolved grazing-incidence small-angle X-ray scattering during sputter deposition. We identify the impact of different deposition rates on the growth regimes: the deposition rate affects primarily the nucleation process and the adsorption-mediated growth, whereas rather small effects on diffusion-mediated growth processes are observed. Only at higher rates are initial particle densities higher due to an increasing influence of random nucleation, and an earlier onset of thin film percolation occurs. The obtained results are discussed to identify optimized morphological parameters of the gold cluster ensemble relevant for various applications as a function of the effective layer thickness and deposition rate. Our study opens up new opportunities to improve the fabrication of tailored metal-polymer nanostructures for plasmonic-enhanced applications such as organic photovoltaics and sensors.
Collapse
Affiliation(s)
- Matthias Schwartzkopf
- Photon Science, Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, D-22607 Hamburg, Germany
| | - Alexander Hinz
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Oleksandr Polonskyi
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Thomas Strunskus
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Franziska C Löhrer
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Str. 1, D-85748 Garching, Germany
| | - Volker Körstgens
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Str. 1, D-85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Str. 1, D-85748 Garching, Germany
| | - Franz Faupel
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Stephan V Roth
- Photon Science, Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, D-22607 Hamburg, Germany
- KTH Royal Institute of Technology , Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
42
|
Li J, Nasaruddin RR, Feng Y, Yang J, Yan N, Xie J. Tuning the Accessibility and Activity of Au25
(SR)18
Nanocluster Catalysts through Ligand Engineering. Chemistry 2016; 22:14816-14820. [DOI: 10.1002/chem.201603247] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Jingguo Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
| | - Ricca Rahman Nasaruddin
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
| | - Yan Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
- State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
| |
Collapse
|
43
|
Jin R, Zeng C, Zhou M, Chen Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem Rev 2016; 116:10346-413. [DOI: 10.1021/acs.chemrev.5b00703] [Citation(s) in RCA: 1953] [Impact Index Per Article: 244.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chenjie Zeng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuxiang Chen
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
44
|
|
45
|
S. C, C. C, T. M, G. S, N. R. Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos. Colloids Surf B Biointerfaces 2016; 143:472-480. [DOI: 10.1016/j.colsurfb.2016.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
|
46
|
Chen Y, Wang J, Liu C, Li Z, Li G. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application. NANOSCALE 2016; 8:10059-10065. [PMID: 26758553 DOI: 10.1039/c5nr08338a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S([double bond, length as m-dash]O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.
Collapse
Affiliation(s)
- Yongdong Chen
- The Center of New Energy Materials and Technology, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | | | | | | | | |
Collapse
|
47
|
Alemohammad T, Rayati S, Safari N. Highly selective and efficient oxidation of sulfide to sulfoxide catalyzed by platinum porphyrins. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424615501126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two platinum porphyrins, meso-tetramesitylporphyrinatoplatinum and meso-tetrakis(pentaflourophenyl) porphyrinatoplatinum, are explored for catalytic application in the selective oxidation of sulfide to sulfoxide by iodosylbenzene. The obtained overall turnover number of 90,000 in the oxidation of thioanisole in the presence of meso-tetrakis(pentaflourophenyl) porphyrinatoplatinum indicates the pronounced catalytic activity of the platinum porphyrins. Perfect selectivity toward sulfoxide or sulfone also was achieved via stoichiometric control of reactants.
Collapse
Affiliation(s)
- Tahereh Alemohammad
- Department of Chemistry, Shahid Beheshti University, P.O. Box 1983963113, G. C., Evin, Tehran, Iran
| | - Saeed Rayati
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418, Iran
| | - Nasser Safari
- Department of Chemistry, Shahid Beheshti University, P.O. Box 1983963113, G. C., Evin, Tehran, Iran
| |
Collapse
|
48
|
Liu J, Liu G, Liu C, Li W, Wang F. Nano-sized mesoporous sodium iron hydroxyphosphate supported gold: an effective catalyst for the oxidation of sulfides. Catal Sci Technol 2016. [DOI: 10.1039/c5cy02004b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-sized mesoporous sodium iron hydroxyphosphate (SIHP) was synthesized as a support. The supported gold catalyst showed excellent performance for the oxidation of sulfides to sulfoxides.
Collapse
Affiliation(s)
- Junhua Liu
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| | - Gui Liu
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Cheng Liu
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Wenxiu Li
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Fang Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
49
|
Pichugina DA, Kuz'menko NE, Shestakov AF. Ligand-protected gold clusters: the structure, synthesis and applications. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Wang F, Liu C, Liu G, Li W, Liu J. Selective oxidation of sulfides to sulfoxides using hydrogen peroxide over Au/CTN–silica catalyst. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|