1
|
Alijani HQ, Pourseyedi S, Torkzadeh-Mahani M, Khatami M. Porous α-Fe 2O 3 nanocarriers: Biosynthesis and in vitro gene delivery applications. Heliyon 2024; 10:e28676. [PMID: 38617951 PMCID: PMC11015384 DOI: 10.1016/j.heliyon.2024.e28676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Non-viral gene delivery is a new therapeutic in the treating genetic disorders. The most important challenge in nonviral gene transformation is the immunogenicity of carriers. Nowadays, The immunogenicity of nanocarriers as a deliverer of nucleic acid molecules has received significant attention. In this research, hematite green nanocarriers were prepared in one step with rosemary extract. Synthetic nanocarriers were investigated by using XRD (X-ray diffraction analysis), FESEM-EDX (field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy), HR-TEM (high-resolution transmission electron microscopy), VSM (value stream mapping), TGA- DTG (thermal gravimetric analysis-differential thermal analysis), FT-IR (fourier-transform infrared spectroscopy), BET (brunauer-emmett-teller) and BJH (barrett-joyner-halenda) analyses. The cytotoxicity of synthetic nanocarriers was evaluated on HEK-293Tcell lines at concentration of 1-500 μg/ml using MTT method. Finally, targeted transfection of GFP plasmid using green porous particles was performed using an external magnetic field. Biogenic hematite nanoparticles with hexagonal crystal structures have a 3D pile flower-like morphology. The existence of rosemary phytochemicals in the construction of nanoparticles has caused minimal toxicity and high biocompatibility of nanocarriers. Also, TGA studies confirmed the stability of bionic nanoparticles. Superparamagnetic green nanocarriers at concentrations above 500 μg/ml is not toxic to HEK293T cells. The delivery efficiency of the plasmid was optimal at an N/P ratio of 3. Therefore, the porous α-Fe2O3 green nanocarriers are non-viral and safe carriers with potential applications in gene therapy.
Collapse
Affiliation(s)
- Hajar Q. Alijani
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahram Pourseyedi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
- Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Mahmood R, Mananquil T, Scenna R, Dennis ES, Castillo-Rodriguez J, Koivisto BD. Light-Driven Energy and Charge Transfer Processes between Additives within Electrospun Nanofibres. Molecules 2023; 28:4857. [PMID: 37375412 DOI: 10.3390/molecules28124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrospinning is a cost-effective and efficient method of producing polymeric nanofibre films. The resulting nanofibres can be produced in a variety of structures, including monoaxial, coaxial (core@shell), and Janus (side-by-side). The resulting fibres can also act as a matrix for various light-harvesting components such as dye molecules, nanoparticles, and quantum dots. The addition of these light-harvesting materials allows for various photo-driven processes to occur within the films. This review discusses the process of electrospinning as well as the effect of spinning parameters on resulting fibres. Building on this, we discuss energy transfer processes that have been explored in nanofibre films, such as Förster resonance energy transfer (FRET), metal-enhanced fluorescence (MEF), and upconversion. A charge transfer process, photoinduced electron transfer (PET), is also discussed. This review highlights various candidate molecules that have been used for photo-responsive processes in electrospun films.
Collapse
Affiliation(s)
- Reeda Mahmood
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Tristan Mananquil
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Rebecca Scenna
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Emma S Dennis
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Judith Castillo-Rodriguez
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Bryan D Koivisto
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| |
Collapse
|
3
|
Preliminary Findings on the Effect of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles and Acute Stress on Selected Markers of Oxidative Stress in Normotensive and Hypertensive Rats. Antioxidants (Basel) 2022; 11:antiox11040751. [PMID: 35453436 PMCID: PMC9030389 DOI: 10.3390/antiox11040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have reported that the administration of various nanoparticles in vivo can cause oxidative stress. The combination of ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) and acute stress was selected because, during intravenous application of a contrast agent, patients are exposed to psycho-emotional stress. This study was designed to investigate the effect of acute stress and USPIONs on selected markers of oxidative stress (antioxidant capacity, superoxide dismutase, glutathione peroxidase and catalase activities, levels of advanced oxidation protein products, protein carbonyls, lipoperoxides and 8-isoprostanes) in plasma and erythrocytes in normotensive Wistar–Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). In the WKY and SHR groups, there was a significant main effect of genotype between groups on studied markers except protein carbonyls and lipoperoxides. In SHR, the combination of acute stress and USPIONs increased the antioxidant capacity of plasma and the selected enzyme activities of erythrocytes. In WKY, the combination of acute stress and USPIONs decreased the antioxidant capacity of erythrocytes and reduced levels of advanced oxidation protein products in plasma. Our study points to the fact that, when hypertensive subjects are treated with iron oxide nanoparticles, caution should be taken, especially in stress conditions, since they seem to be more vulnerable to oxidative stress produced by USPIONs.
Collapse
|
4
|
Long-chain ligand design in creating magnetic nano adsorbents for separation of REE from LTM. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Bahniuk MS, Ortega VA, Alshememry AK, Stafford JL, Goss GG, Unsworth LD. Effect of amino acid composition of elastin-like polypeptide nanoparticles on nonspecific protein adsorption, macrophage cell viability and phagocytosis. Biopolymers 2021; 112:e23468. [PMID: 34363693 DOI: 10.1002/bip.23468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Development of elastin-like polypeptide (ELP) biomaterials is widespread, but information critical for clinical deployment is limited, with biocompatibility studies focused on a narrow cross-section of ELP sequences. Macrophages can impair biomaterial systems by degrading or isolating the biomaterial and by activating additional immune functions. Their phagocytic response will reveal early immune biocompatibility of ELP nanoparticles (NPs). This study examines that response, induced by the adsorbed protein corona, as a function of ELP guest amino acid, chain length and NP diameter. The breadth of proteins adsorbed to ELP NPs varied, with valine-containing ELP NPs adsorbing fewer types of proteins than leucine-containing constructs. Particle diameter was also a factor, with smaller leucine-containing ELP NPs adsorbing the broadest range of proteins. Macrophage viability was unaffected by the ELP NPs, and their phagocytic capabilities were unimpeded except when incubated with a 500 nm valine-containing 40-mer. This NP significantly decreased the phagocytic capacity of macrophages relative to the control and to a corresponding 500 nm leucine-containing 40-mer. NP size and the proportion of opsonin to dysopsonin proteins likely influenced this outcome. These results suggest that certain combinations of ELP sequence and particle size can result in an adsorbed protein corona, which may hinder macrophage function.
Collapse
Affiliation(s)
- Markian S Bahniuk
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Van A Ortega
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Abdullah K Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Canivet L, Denayer FO, Dubot P, Garçon G, Lo Guidice JM. Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J Appl Toxicol 2020; 41:203-215. [PMID: 32767597 DOI: 10.1002/jat.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
Air pollution is a public health issue and the toxicity of ambient particulate matter (PM) is well-recognized. Although it does not mostly contribute to the total mass of PM, increasing evidence indicates that the ultrafine fraction has generally a greater toxicity than the others do. A better knowledge of the underlying mechanisms involved in the pathological disorders related to nanoparticles (NPs) remains essential. Hence, the goal of this study was to determine better whether the exposure to a relatively low dose of well-characterized iron-rich NPs (Fe-NPs) might alter some critical toxicological endpoints in a relevant primary culture model of human bronchial epithelial cells (HBECs). We sought to use Fe-NPs representative of those frequently found in the industrial smokes of metallurgical industries. After having noticed the effective internalization of Fe-NPs, oxidative, inflammatory, DNA repair, and apoptotic endpoints were investigated within HBECs, mainly through transcriptional screening. Taken together, these results revealed that, despite it only produced relatively low levels of reactive oxygen species without any significant oxidative damage, low-dose Fe-NPs quickly significantly deregulated the transcription of some target genes closely involved in the proinflammatory response. Although this inflammatory process seemed to stay under control over time in case of this acute scenario of exposure, the future study of its evolution after a scenario of repeated exposure could be very interesting to evaluate the toxicity of Fe-NPs better.
Collapse
Affiliation(s)
- Ludivine Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Franck-Olivier Denayer
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Pierre Dubot
- CNRS UMR 7182, Métaux et céramiques à microstructure contrôlée, Institut de Chimie et des Matériaux, Paris Est, Thiais, France
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| |
Collapse
|
7
|
Pązik R, Lewińska A, Adamczyk-Grochala J, Kulpa-Greszta M, Kłoda P, Tomaszewska A, Dziedzic A, Litwienienko G, Noga M, Sikora D, Wnuk M. Energy Conversion and Biocompatibility of Surface Functionalized Magnetite Nanoparticles with Phosphonic Moieties. J Phys Chem B 2020; 124:4931-4948. [PMID: 32407114 DOI: 10.1021/acs.jpcb.0c02808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Magnetite nanoparticles (MNPs) were synthesized using two distinctly different approaches, co-precipitation (CP) and thermal decomposition (TD), and further surface functionalized with organophosphonic ligands containing different numbers of phosphonic groups. We have shown that it is possible to fabricate flower-like assemblies of MNPs through TD at lower temperatures, whereas CP MNPs formed agglomerates of particles with broad size distribution and irregular shapes. The effect of the organophosphonic ligands on the heating efficiency of the TD and CP MNPs under dual mode stimulation (simultaneous action of AMF and NIR laser radiation) was studied for the first time. It was found that in the case of the cost-effective CP MNP synthesis surface functionalization with chosen phosphonic ligands leads to higher heating efficiency upon laser stimulation, whereas better performance of TD MNPs was found under the action of AMF due to the significant difference of nanoparticle properties. The biocompatibility of surface functionalized MNPs with organophosphonic ligands was evaluated through thorough studies of the metabolic activity of MNPs in normal human foreskin fibroblasts as well as oxidative stress induction and oxidation stress response which has not been previously reported for most of the organophosphonic moieties used in this study.
Collapse
Affiliation(s)
- Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Magdalena Kulpa-Greszta
- Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstan ́ców Warszawy 12, 35-959 Rzeszow, Poland
| | - Patrycja Kłoda
- Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstan ́ców Warszawy 12, 35-959 Rzeszow, Poland
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | | | - Maciej Noga
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Daniel Sikora
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
8
|
Zachanowicz E, Pigłowski J, Grzymajło M, Poźniak B, Tikhomirov M, Pierunek N, Śniadecki Z, Idzikowski B, Marycz K, Marędziak M, Kisała J, Hęclik K, Pązik R. Efficient synthesis of PMMA@Co 0.5Ni 0.5Fe 2O 4 organic-inorganic hybrids containing hyamine 1622 - Physicochemical properties, cytotoxic assessment and antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:248-256. [PMID: 29853088 DOI: 10.1016/j.msec.2018.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/23/2018] [Accepted: 04/15/2018] [Indexed: 11/30/2022]
Abstract
The PMMA@Co0.5Ni0.5Fe2O4 ferrite containing hybrid nanomaterials with hyamine were prepared using emulsion polymerization method. Structural and morphological properties were evaluated using XRD, FT-IR, SEM techniques. The TGA and DTA analysis were performed in order to study the thermal properties of hybrid materials in contrast to reference material. Magnetic properties were studied using Quantum Design PPMS (VSM option) in a constant external magnetic field equal (100 Oe and 1000 Oe) in the temperature range from 2 to 380 K. Both the pure Co0.5Ni0.5Fe2O4and the sample with 85% of PMMA exhibit superparamagnetic behavior whereas blocking temperatureTB decreases with increase of PMMA content. The cytotoxicity assessment of PMMA@Co0.5Ni0.5Fe2O4 with hyamine in J774.E murine macrophages and U2OS human osteosarcoma cell lines was performed. Additionally, sensitivity of bacteria Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25923 to hybrid materials (with/without hyamine) was investigated using a of Kirby-Bauer disc method.
Collapse
Affiliation(s)
- E Zachanowicz
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - J Pigłowski
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - M Grzymajło
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - B Poźniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Scineces, Ul. Norwida 25, 50-375 Wrocław, Poland
| | - M Tikhomirov
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Scineces, Ul. Norwida 25, 50-375 Wrocław, Poland
| | - N Pierunek
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Z Śniadecki
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - B Idzikowski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - K Marycz
- University of Environmental and Life Sciences Wroclaw, Faculty of Biology, Kożuchowska 5b, 50-631 Wroclaw, Poland
| | - M Marędziak
- University of Environmental and Life Sciences Wroclaw, Faculty of Biology, Kożuchowska 5b, 50-631 Wroclaw, Poland
| | - J Kisała
- Institute of Biotechnology, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland
| | - K Hęclik
- Institute of Biotechnology, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland
| | - R Pązik
- Institute of Biotechnology, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland.
| |
Collapse
|
9
|
Ekdahl KN, Davoodpour P, Ekstrand-Hammarström B, Fromell K, Hamad OA, Hong J, Bucht A, Mohlin C, Seisenbaeva GA, Kessler VG, Nilsson B. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:735-744. [DOI: 10.1016/j.nano.2017.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/19/2022]
|
10
|
Timmusk S, Seisenbaeva G, Behers L. Titania (TiO 2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 2018; 8:617. [PMID: 29330479 PMCID: PMC5766586 DOI: 10.1038/s41598-017-18939-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022] Open
Abstract
A novel use of nanotitania (TNs) as agents in the nanointerface interaction between plants and colonization of growth promoting rhizobacteria (PGPR) is presented. The effectiveness of PGPRs is related to the effectiveness of the technology used for their formulation. TNs produced by the Captigel patented SolGel approach, characterized by the transmission and scanning electron microscopy were used for formulation of the harsh environment PGPR strains. Changes in the biomass of wheat seedlings and in the density of single and double inoculants with and without TNs were monitored during two weeks of stress induced by drought salt and by the pathogen Fusarium culmorum. We show that double inoculants with TNs can attach stably to plant roots. Regression analysis indicates that there is a positive interaction between seedling biomass and TN-treated second inoculant colonization. We conclude that TN treatment provides an effectual platform for PGPR rational application via design of root microbial community. Our studies illustrate the importance of considering natural soil nanoparticles for PGPR application and thereby may explain the generally observed inconsistent behavior of PGPRs in the field. These new advancements importantly contribute towards solving food security issues in changing climates. The model systems established here provide a basis for new PGPR nanomaterials research.
Collapse
Affiliation(s)
- Salme Timmusk
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, SLU, SE-75007, Uppsala, Sweden.
- The Bashan Institute of Science 1730 Post Oak Court, Auburn, AL, 36830, USA.
| | - Gulaim Seisenbaeva
- Department of Molecular Sciences, Uppsala BioCenter, SLU, SE-75007, Uppsala, Sweden
| | - Lawrence Behers
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, SLU, SE-75007, Uppsala, Sweden
- The Bashan Institute of Science 1730 Post Oak Court, Auburn, AL, 36830, USA
| |
Collapse
|
11
|
Pązik R, Zachanowicz E, Pożniak B, Małecka M, Zięcina A, Marciniak Ł. Non-contact Mn1−xNixFe2O4 ferrite nano-heaters for biological applications – heat energy generated by NIR irradiation. RSC Adv 2017. [DOI: 10.1039/c7ra01904a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effective heat generation achieved on Mn1−xNixFe2O4ferrite nano-heaters using NIR light irradiation instead of AC magnetic field.
Collapse
Affiliation(s)
- Robert Pązik
- Institute of Low Temperature and Structure Research
- 50-422 Wrocław
- Poland
- Medicinal Chemistry Department
- Institute of Biotechnology
| | - Emilia Zachanowicz
- Polymer Engineering and Technology Division
- Wroclaw University of Technology
- 50-370 Wrocław
- Poland
| | - Błażej Pożniak
- Department of Pharmacology and Toxicology
- Faculty of Veterinary Medicine
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | | | | | - Łukasz Marciniak
- Institute of Low Temperature and Structure Research
- 50-422 Wrocław
- Poland
| |
Collapse
|
12
|
Zachanowicz E, Zięcina A, Mikołajczyk PA, Rogacki K, Małecka M, Marycz K, Marędziak M, Poźniak B, Nowakowska M, Tikhomirov M, Miller J, Wiglusz RJ, Pązik R. Cytotoxic Effects of Co1-xMnxFe2O4Ferrite Nanoparticles Synthesized under Non-Hydrolytic Conditions (Bradley's Reaction) - In Vitro. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emilia Zachanowicz
- Polymer Engineering and Technology Division; Wroclaw University of Technology; 50-370 Wrocław Poland
| | - Aleksander Zięcina
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
| | - Paulina A. Mikołajczyk
- Polymer Engineering and Technology Division; Wroclaw University of Technology; 50-370 Wrocław Poland
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
| | - Krzysztof Rogacki
- International Laboratory of High Magnetic Fields and Low Temperatures; 53-421 Wroclaw Poland
- Centre for Advanced Materials and Smart Structures; Polish Academy of Sciences; Okolna 2 50-950 Wroclaw Poland
| | - Małgorzata Małecka
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
| | - Krzysztof Marycz
- Wroclaw Research Centre EIT+; Stablowicka 147 54-066 Wroclaw Poland
- University of Environmental and Life Sciences Wroclaw; Faculty of Biology; Kożuchowska 5b 50-631 Wroclaw Poland
| | - Monika Marędziak
- Department of Animal Physiology and Biostructure; Faculty of Veterinary Medicine; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Błazej Poźniak
- Department of Biochemistry, Pharmacology and Toxicology; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Marta Nowakowska
- Department of Biochemistry, Pharmacology and Toxicology; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Marta Tikhomirov
- Department of Biochemistry, Pharmacology and Toxicology; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Julia Miller
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine; Faculty of Veterinary Medicine; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Rafał J. Wiglusz
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
- Centre for Advanced Materials and Smart Structures; Polish Academy of Sciences; Okolna 2 50-950 Wroclaw Poland
| | - Robert Pązik
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
- Centre for Advanced Materials and Smart Structures; Polish Academy of Sciences; Okolna 2 50-950 Wroclaw Poland
| |
Collapse
|
13
|
Grau-Atienza A, Serrano E, Linares N, Svedlindh P, Seisenbaeva G, García-Martínez J. Magnetically separable mesoporous Fe3O4/silica catalysts with very low Fe3O4 content. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2015.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Ahlinder L, Wiklund Lindström S, Lejon C, Geladi P, Österlund L. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles. NANOMATERIALS 2016; 6:nano6050083. [PMID: 28335211 PMCID: PMC5302504 DOI: 10.3390/nano6050083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Abstract
The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.
Collapse
Affiliation(s)
- Linnea Ahlinder
- Swedish Defence Research Agency, FOI, Cementvägen 20, SE-901 82 Umeå, Sweden.
| | | | - Christian Lejon
- Swedish Defence Research Agency, FOI, Cementvägen 20, SE-901 82 Umeå, Sweden.
| | - Paul Geladi
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Lars Österlund
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden.
| |
Collapse
|
15
|
Pązik R, Zięcina A, Zachanowicz E, Małecka M, Poźniak B, Miller J, Śniadecki Z, Pierunek N, Idzikowski B, Mrówczyńska L, Ekner-Grzyb A, Wiglusz RJ. Synthesis, Structural Features, Cytotoxicity, and Magnetic Properties of Colloidal Ferrite Spinel Co1-xNixFe2O4(0.1 ≤ x ≤ 0.9) Nanoparticles. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Gustafsson Å, Bergström U, Ågren L, Österlund L, Sandström T, Bucht A. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles. Toxicol Appl Pharmacol 2015; 288:1-11. [PMID: 26163175 DOI: 10.1016/j.taap.2015.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Abstract
The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials.
Collapse
Affiliation(s)
- Åsa Gustafsson
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden; Dept of Public Health and Clinical Medicine, Umeå University, Sweden.
| | - Ulrika Bergström
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden; Dept of Organismal Biology, Uppsala University, SE-751 Uppsala, Sweden
| | - Lina Ågren
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden
| | - Lars Österlund
- Dept of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 Uppsala, Sweden
| | - Thomas Sandström
- Dept of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Anders Bucht
- Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå, Sweden; Dept of Public Health and Clinical Medicine, Umeå University, Sweden
| |
Collapse
|
17
|
Polido Legaria E, Topel SD, Kessler VG, Seisenbaeva GA. Molecular insights into the selective action of a magnetically removable complexone-grafted adsorbent. Dalton Trans 2015; 44:1273-82. [DOI: 10.1039/c4dt03096f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The IDA–RE3+ complexation of RE3+ on the surface of a hybrid silica adsorbent occurs under neutral or weakly acidic conditions apparently not via chelation but via the concerted action of the negatively charged carboxylate oxygen atoms, opening the possibility for enhanced selectivity.
Collapse
Affiliation(s)
- Elizabeth Polido Legaria
- Department of Chemistry and Biotechnology
- BioCenter
- Swedish University of Agricultural Sciences
- 75007 Uppsala
- Sweden
| | - Seda Demirel Topel
- Department of Chemistry and Biotechnology
- BioCenter
- Swedish University of Agricultural Sciences
- 75007 Uppsala
- Sweden
| | - Vadim G. Kessler
- Department of Chemistry and Biotechnology
- BioCenter
- Swedish University of Agricultural Sciences
- 75007 Uppsala
- Sweden
| | - Gulaim A. Seisenbaeva
- Department of Chemistry and Biotechnology
- BioCenter
- Swedish University of Agricultural Sciences
- 75007 Uppsala
- Sweden
| |
Collapse
|
18
|
Ahlinder L, Henych J, Lindström SW, Ekstrand-Hammarström B, Stengl V, Österlund L. Graphene oxide nanoparticle attachment and its toxicity on living lung epithelial cells. RSC Adv 2015. [DOI: 10.1039/c5ra09351a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since its discovery graphene and its oxidized form graphene oxide have attracted interest in a wide range of applications, which calls for scrutinized studies about their possible toxicity.
Collapse
Affiliation(s)
- Linnea Ahlinder
- FOI
- Division for CBRN Defence and Security
- Umeå
- Sweden
- Department of Engineering Sciences
| | - Jiří Henych
- Department of Material Chemistry
- Institute of Inorganic Chemistry AS CR v.v.i
- Czech Republic
| | | | | | - Václav Stengl
- Department of Material Chemistry
- Institute of Inorganic Chemistry AS CR v.v.i
- Czech Republic
| | - Lars Österlund
- Department of Engineering Sciences
- The Ångström Laboratory, Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
19
|
Heger Z, Kominkova M, Cernei N, Krejcova L, Kopel P, Zitka O, Adam V, Kizek R. Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology. Electrophoresis 2014; 35:3290-301. [DOI: 10.1002/elps.201400166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/23/2014] [Accepted: 08/11/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Marketa Kominkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
20
|
Heger Z, Cernei N, Blazkova I, Kopel P, Masarik M, Zitka O, Adam V, Kizek R. γ-Fe2O3 Nanoparticles Covered with Glutathione-Modified Quantum Dots as a Fluorescent Nanotransporter. Chromatographia 2014. [DOI: 10.1007/s10337-014-2732-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Seisenbaeva GA, Kessler VG. Precursor directed synthesis--"molecular" mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures. NANOSCALE 2014; 6:6229-44. [PMID: 24681614 DOI: 10.1039/c3nr06336d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.
Collapse
Affiliation(s)
- Gulaim A Seisenbaeva
- Department of Chemistry and Biotechnology, Biocenter, Swedish University of Agricultural Sciences (SLU), Box 7015, SE-75007, Uppsala, Sweden.
| | | |
Collapse
|
22
|
Verstraelen S, Remy S, Casals E, De Boever P, Witters H, Gatti A, Puntes V, Nelissen I. Gene expression profiles reveal distinct immunological responses of cobalt and cerium dioxide nanoparticles in two in vitro lung epithelial cell models. Toxicol Lett 2014; 228:157-69. [PMID: 24821434 DOI: 10.1016/j.toxlet.2014.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/27/2022]
Abstract
Fragmentary knowledge exists on cellular signaling responses underlying possible adverse health effects of CoO- and CeO2-nanoparticles (NP)s after inhalation. We aimed to perform a time kinetic study of gene expression profiles induced by these NPs in alveolar A549 and bronchial BEAS-2B epithelial cells, and investigated possible immune system modulation. The kinetics of the cell responses induced by the NPs were different between the lung epithelial models. Both CoO- and CeO2-NP exposure induced mainly downregulation of gene transcription. BEAS-2B cells were found to be more sensitive, as they showed a higher number of differentially expressed transcripts (DET) at a 10-fold lower NP-concentration than A549 cells. Hierarchical clustering of all DET indicated that the transcriptional responses were heterogeneous among the two cell types and two NPs. Between 1% and 14% DET encoding markers involved in immune processes were observed. The transcriptional impact of the metal oxide NPs appeared to be cell-dependent, both at the general and immune response level, whereas each lung epithelial cell model responded differently to the two NP types. Thus, the study provides gene expression markers and immune processes involved in CoO- and CeO2-NP-induced toxicity, and demonstrates the usefulness of comprehensive-omics studies to differentiate between NP responses.
Collapse
Affiliation(s)
- Sandra Verstraelen
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| | - Eudald Casals
- Institut Català de Nanotecnologia (ICN), Barcelona, Spain.
| | - Patrick De Boever
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium.
| | - Hilda Witters
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| | - Antonietta Gatti
- Università di Modena e Reggio Emilia, Laboratorio Biomateriali, Modena, Italy.
| | - Victor Puntes
- Institut Català de Nanotecnologia (ICN), Barcelona, Spain.
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| |
Collapse
|
23
|
Pogorilyi RP, Melnyk IV, Zub YL, Carlson S, Daniel G, Svedlindh P, Seisenbaeva GA, Kessler VG. New product from old reaction: uniform magnetite nanoparticles from iron-mediated synthesis of alkali iodides and their protection from leaching in acidic media. RSC Adv 2014. [DOI: 10.1039/c4ra02217c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Magnetic material stable to acid leaching was produced by silica coating of byproduct from the industrial synthesis of alkali iodides.
Collapse
Affiliation(s)
- R. P. Pogorilyi
- Chuiko Institute of Surface Chemistry
- National Academy of Sciences of Ukraine
- Kyiv 03164, Ukraine
| | - I. V. Melnyk
- Chuiko Institute of Surface Chemistry
- National Academy of Sciences of Ukraine
- Kyiv 03164, Ukraine
| | - Y. L. Zub
- Chuiko Institute of Surface Chemistry
- National Academy of Sciences of Ukraine
- Kyiv 03164, Ukraine
| | - S. Carlson
- MAX IV Laboratory
- Lund University
- 22100 Lund, Sweden
| | - G. Daniel
- Department of Forest Products
- Swedish University of Agricultural Sciences
- 75007 Uppsala, Sweden
| | - P. Svedlindh
- Solid State Physics
- Department of Engineering
- Uppsala University
- SE-751 21 Uppsala, Sweden
| | - G. A. Seisenbaeva
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- 750 07 Uppsala, Sweden
| | - V. G. Kessler
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- 750 07 Uppsala, Sweden
| |
Collapse
|
24
|
Lee CM, Cheong SJ, Kim EM, Lim ST, Jeong YY, Sohn MH, Jeong HJ. Nonpolymeric surface-coated iron oxide nanoparticles for in vivo molecular imaging: biodegradation, biocompatibility, and multiplatform. J Nucl Med 2013; 54:1974-80. [PMID: 24050935 DOI: 10.2967/jnumed.113.122267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED A new approach to the surface engineering of superparamagnetic iron oxide nanoparticles (SPIONs) may encourage their development for clinical use. In this study, we demonstrated that nonpolymeric surface modification of SPIONs has the potential to be an advanced biocompatible contrast agent for biomedical applications, including diagnostic imaging in vivo. METHODS Adenosine triphosphate (ATP), which is an innate biomaterial derived from the body, was coated onto the surface of SPIONs. An in vivo degradation study of ATP-coated SPIONs (ATP@SPIONs) was performed for 28 d. To diminish phagocytosis, ATP@SPIONs were surface-modified with gluconic acid. We next studied the ability of the SPIONs to serve as a specific targeted contrast agent after conjugation of cMet-binding peptide. The SPIONs were conjugated with Cy5.5 and labeled with (125)I for multimodality imaging. In vivo and in vitro tumor-targeted binding studies were performed on U87MG cells or a U87MG tumor model using animal SPECT/CT, an optical imaging system, and a 1.5-T clinical MR scanner. RESULTS ATP@SPIONs showed rapid degradation in vivo and in vitro, compared with ferumoxides. ATP@SPIONs modified with gluconic acid reduced phagocytic uptake, showed improved biodistribution, and provided good targetability in vivo. The gluconic acid-conjugated ATP@SPIONs, when conjugated with cMet-binding peptide, were successfully visualized on the U87MG tumors implanted in mice via multimodality imaging. CONCLUSION We suggest that ATP@SPIONs can be used as a multiplatform to target a region of interest in molecular imaging. When we consider the biocompatibility of contrast agents in vivo, ATP@SPIONs are superior to polymeric surface-modified SPIONs.
Collapse
Affiliation(s)
- Chang-Moon Lee
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 2013; 8:3255-69. [PMID: 24023514 PMCID: PMC3767489 DOI: 10.2147/ijn.s49770] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Improved understanding of interactions between nanoparticles and biological systems is needed to develop safety standards and to design new generations of nanomaterials. This article reviews the molecular mechanisms of cellular uptake of engineered nanoparticles, their intracellular fate, and their distribution within an organism. We have reviewed the available literature on the uptake and disposition of engineered nanoparticles. Special emphasis was placed on the analysis of experimental systems and their limitations with respect to their usefulness to predict the in vivo situation. The available literature confirms the need to study particle characteristics in an environment that simulates the situation encountered in biological systems. Phenomena such as protein binding and opsonization are of prime importance since they may have a strong impact on cellular internalization, biodistribution, and immunogenicity of nanoparticles in vitro and in vivo. Extrapolation from in vitro results to the in vivo situation in the whole organism remains a challenge. However, improved understanding of physicochemical properties of engineered nanoparticles and their influence on biological systems facilitates the design of nanomaterials that are safe, well tolerated, and suitable for diagnostic or therapeutic use in humans.
Collapse
Affiliation(s)
- Helene Kettiger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Angela Schipanski
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Materials-Biology Interactions, St Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Materials-Biology Interactions, St Gallen, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Zoppellaro G, Tuček J, Herchel R, Šafářová K, Zbořil R. Fe3O4 Nanocrystals Tune the Magnetic Regime of the Fe/Ni Molecular Magnet: A New Class of Magnetic Superstructures. Inorg Chem 2013; 52:8144-50. [DOI: 10.1021/ic4008729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giorgio Zoppellaro
- Regional Centre of Advanced
Technologies and Materials, Departments of Physical Chemistry and
Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional Centre of Advanced
Technologies and Materials, Departments of Physical Chemistry and
Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry,
Faculty of Science, Palacky University,
17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Klára Šafářová
- Regional Centre of Advanced
Technologies and Materials, Departments of Physical Chemistry and
Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced
Technologies and Materials, Departments of Physical Chemistry and
Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
27
|
Piraux H, Hai J, Verbeke P, Serradji N, Ammar S, Losno R, Ha-Duong NT, Hémadi M, El Hage Chahine JM. Transferrin receptor-1 iron-acquisition pathway - synthesis, kinetics, thermodynamics and rapid cellular internalization of a holotransferrin-maghemite nanoparticle construct. Biochim Biophys Acta Gen Subj 2013; 1830:4254-64. [PMID: 23648413 DOI: 10.1016/j.bbagen.2013.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Targeting nanoobjects via the iron-acquisition pathway is always reported slower than the transferrin/receptor endocytosis. Is there a remedy? METHODS Maghemite superparamagnetic and theragnostic nanoparticles (diameter 8.6nm) were synthesized, coated with 3-aminopropyltriethoxysilane (NP) and coupled to four holotransferrin (TFe2) by amide bonds (TFe2-NP). The constructs were characterized by X-ray diffraction, transmission electron microscopy, FTIR, X-ray Electron Spectroscopy, Inductively Coupled Plasma with Atomic Emission Spectrometry. The in-vitro protein/protein interaction of TFe2-NP with transferrin receptor-1 (R1) and endocytosis in HeLa cells were investigated spectrophotometrically, by fast T-jump kinetics and confocal microscopy. RESULTS In-vitro, R1 interacts with TFe2-NP with an overall dissociation constant KD=11nM. This interaction occurs in two steps: in the first, the C-lobe of the TFe2-NP interacts with R1 in 50μs: second-order rate constant, k1=6×10(10)M(-1)s(-1); first-order rate constant, k-1=9×10(4)s(-1); dissociation constant, K1d=1.5μM. In the second step, the protein/protein adduct undergoes a slow (10,000s) change in conformation to reach equilibrium. This mechanism is identical to that occurring with the free TFe2. In HeLa cells, TFe2-NP is internalized in the cytosol in less than 15min. CONCLUSION This is the first time that a nanoparticle-transferrin construct is shown to interact with R1 and is internalized in time scales similar to those of the free holotransferrin. GENERAL SIGNIFICANCE TFe2-NP behaves as free TFe2 and constitutes a model for rapidly targeting theragnostic devices via the main iron-acquisition pathway.
Collapse
Affiliation(s)
- Hélène Piraux
- Université Paris Diderot Sorbonne Paris Cité - CNRS UMR, Paris Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pązik R, Piasecka E, Małecka M, Kessler VG, Idzikowski B, Śniadecki Z, Wiglusz RJ. Facile non-hydrolytic synthesis of highly water dispersible, surfactant free nanoparticles of synthetic MFe2O4 (M–Mn2+, Fe2+, Co2+, Ni2+) ferrite spinel by a modified Bradley reaction. RSC Adv 2013. [DOI: 10.1039/c3ra40763b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|