1
|
Zhu S, Jagadeesh Y, Tran AT, Imaeda S, Boraston A, Alonzi DS, Poveda A, Zhang Y, Désiré J, Charollais-Thoenig J, Demotz S, Kato A, Butters TD, Jiménez-Barbero J, Sollogoub M, Blériot Y. Iminosugar C-Glycosides Work as Pharmacological Chaperones of NAGLU, a Glycosidase Involved in MPS IIIB Rare Disease*. Chemistry 2021; 27:11291-11297. [PMID: 34106504 DOI: 10.1002/chem.202101408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidosis type IIIB is a devastating neurological disease caused by a lack of the lysosomal enzyme, α-N-acetylglucosaminidase (NAGLU), leading to a toxic accumulation of heparan sulfate. Herein we explored a pharmacological chaperone approach to enhance the residual activity of NAGLU in patient fibroblasts. Capitalizing on the three-dimensional structures of two modest homoiminosugar-based NAGLU inhibitors in complex with bacterial homolog of NAGLU, CpGH89, we have synthesized a library of 17 iminosugar C-glycosides mimicking N-acetyl-D-glucosamine and bearing various pseudo-anomeric substituents of both α- and β-configuration. Elaboration of the aglycon moiety results in low micromolar selective inhibitors of human recombinant NAGLU, but surprisingly it is the non-functionalized and wrongly configured β-homoiminosugar that was proved to act as the most promising pharmacological chaperone, promoting a 2.4 fold activity enhancement of mutant NAGLU at its optimal concentration.
Collapse
Affiliation(s)
- Sha Zhu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Yerri Jagadeesh
- Glycochemistry Group of "OrgaSynth" Team, IC2MP, UMR-CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| | - Anh Tuan Tran
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Shuki Imaeda
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Alisdair Boraston
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Station CSC V8W 3P6, Victoria, BC, Canada
| | - Dominic S Alonzi
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Ana Poveda
- CIC bioGUNE, Bizkaia Technological Park, Building 801A-1°, 48160, Derio-Bizkaia, Spain
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Jérôme Désiré
- Glycochemistry Group of "OrgaSynth" Team, IC2MP, UMR-CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| | | | - Stéphane Demotz
- Dorphan SA, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Terry D Butters
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technological Park, Building 801A-1°, 48160, Derio-Bizkaia, Spain
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Yves Blériot
- Glycochemistry Group of "OrgaSynth" Team, IC2MP, UMR-CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| |
Collapse
|
2
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|
3
|
Prichard K, Campkin D, O'Brien N, Kato A, Fleet GWJ, Simone MI. Biological activities of 3,4,5-trihydroxypiperidines and their N
- and O
-derivatives. Chem Biol Drug Des 2018; 92:1171-1197. [DOI: 10.1111/cbdd.13182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kate Prichard
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| | - David Campkin
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| | - Nicholas O'Brien
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; Toyama Japan
| | | | - Michela I. Simone
- Discipline of Chemistry; University of Newcastle; Callaghan NSW Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology; University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
4
|
Yilmazer B, Yagci ZB, Bakar E, Ozden B, Ulgen K, Ozkirimli E. Investigation of novel pharmacological chaperones for Gaucher Disease. J Mol Graph Model 2017; 76:364-378. [DOI: 10.1016/j.jmgm.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
5
|
Sánchez-Fernández EM, García Fernández JM, Mellet CO. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem Commun (Camb) 2016; 52:5497-515. [PMID: 27043200 DOI: 10.1039/c6cc01564f] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lysosomal storage disorders (LSDs) are often caused by mutations that destabilize native folding and impair the trafficking of enzymes, leading to premature endoplasmic reticulum (ER)-associated degradation, deficiencies of specific hydrolytic functions and aberrant storage of metabolites in the lysosomes. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) are available for a few of these conditions, but most remain orphan. A main difficulty is that virtually all LSDs involve neurological decline and neither proteins nor the current SRT drugs can cross the blood-brain barrier. Twenty years ago a new therapeutic paradigm better suited for neuropathic LSDs was launched, namely pharmacological chaperone (PC) therapy. PCs are small molecules capable of binding to the mutant protein at the ER, inducing proper folding, restoring trafficking and increasing enzyme activity and substrate processing in the lysosome. In many LSDs the mutated protein is a glycosidase and the accumulated substrate is an oligo- or polysaccharide or a glycoconjugate, e.g. a glycosphingolipid. Although it might appear counterintuitive, substrate analogues (glycomimetics) behaving as competitive glycosidase inhibitors are good candidates to perform PC tasks. The advancements in the knowledge of the molecular basis of LSDs, including enzyme structures, binding modes, trafficking pathways and substrate processing mechanisms, have been put forward to optimize PC selectivity and efficacy. Moreover, the chemical versatility of glycomimetics and the variety of structures at hand allow simultaneous optimization of chaperone and pharmacokinetic properties. In this Feature Article we review the advancements made in this field in the last few years and the future outlook through the lessons taught by three archetypical LSDs: Gaucher disease, GM1-gangliosidosis and Fabry disease.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| |
Collapse
|
6
|
Wang J, Wang X, Zhao Y, Ma X, Wan Y, Chen Z, Chen H, Gan H, Li J, Li L, Wang PG, Zhao W. Synthesis and biological evaluation of d-gluconhydroximo-1,5-lactam and its oxime-substituted derivatives as pharmacological chaperones for the treatment of Gaucher disease. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00501a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
38 was an efficient pharmacological chaperone for GCase-related cell line N370S, which can effectively promote the activity of the mutant protein by 1.93-fold at 12.5 μM.
Collapse
|
7
|
Kuno S, Ogawa S. From Quercitols to Biologically Active Valienamine and Conduramine Derivatives: Development of Pharmacological Chaperones. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1435.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shinichi Kuno
- Central Research Laboratories, Hokko Chemical Industry, Co., Ltd
| | - Seiichiro Ogawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University
| |
Collapse
|
8
|
Kuno S, Ogawa S. From Quercitols to Biologically Active Valienamine and Conduramine Derivatives: Development of Pharmacological Chaperones. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1435.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shinichi Kuno
- Central Research Laboratories, Hokko Chemical Industry, Co., Ltd
| | - Seiichiro Ogawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University
| |
Collapse
|
9
|
A stereoselective transformation of (−)-shikimic acid into (3R,4S,5R,7R)-7-(hydroxymethyl)azepane-3,4,5-triol, a potential glycosidase inhibitor. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Bhuma N, Vangala M, Nair RJ, Sabharwal SG, Dhavale DD. Halogenated d-xylono-δ-lactams: synthesis and enzyme inhibition study. Carbohydr Res 2015; 402:215-24. [DOI: 10.1016/j.carres.2014.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/18/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
|
11
|
Désiré J, Mondon M, Fontelle N, Nakagawa S, Hirokami Y, Adachi I, Iwaki R, Fleet GWJ, Alonzi DS, Twigg G, Butters TD, Bertrand J, Cendret V, Becq F, Norez C, Marrot J, Kato A, Blériot Y. N- and C-alkylation of seven-membered iminosugars generates potent glucocerebrosidase inhibitors and F508del-CFTR correctors. Org Biomol Chem 2014; 12:8977-96. [DOI: 10.1039/c4ob00325j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and biological evaluation of a library of novel seven-membered iminosugars is reported.
Collapse
Affiliation(s)
- J. Désiré
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - M. Mondon
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - N. Fontelle
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - S. Nakagawa
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - Y. Hirokami
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - I. Adachi
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - R. Iwaki
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - G. W. J. Fleet
- Chemistry Research Laboratory
- Oxford University
- Oxford OX1 3TA, UK
| | - D. S. Alonzi
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QY, UK
| | - G. Twigg
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QY, UK
| | - T. D. Butters
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QY, UK
| | - J. Bertrand
- Institut de Physiologie et Biologie Cellulaires
- Université de Poitiers
- FRE 3511 CNRS
- 86022 Poitiers cedex, France
| | - V. Cendret
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| | - F. Becq
- Institut de Physiologie et Biologie Cellulaires
- Université de Poitiers
- FRE 3511 CNRS
- 86022 Poitiers cedex, France
| | - C. Norez
- Institut de Physiologie et Biologie Cellulaires
- Université de Poitiers
- FRE 3511 CNRS
- 86022 Poitiers cedex, France
| | - J. Marrot
- Institut Lavoisier de Versailles
- UMR CNRS 8180
- 78035 Versailles cedex, France
| | - A. Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194, Japan
| | - Y. Blériot
- UMR-CNRS7285
- IC2MP
- Equipe “Synthèse Organique”
- Groupe “Glycochimie”
- Université de Poitiers
| |
Collapse
|
12
|
Joosten A, Decroocq C, de Sousa J, Schneider JP, Etamé E, Bodlenner A, Butters TD, Compain P. A Systematic Investigation of Iminosugar Click Clusters as Pharmacological Chaperones for the Treatment of Gaucher Disease. Chembiochem 2013; 15:309-19. [DOI: 10.1002/cbic.201300442] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Indexed: 01/08/2023]
|
13
|
Abstract
Gaucher disease is a progressive lysosomal storage disorder caused by a deficiency in the activity of β-glucocerebrosidase and is characterized by the accumulation of the glycosphingolipid glucosylceramide in the lysosomes of macrophages that leads to dysfunction in multiple organ system. An emerging strategy for the treatment of Gaucher disease is pharmacological chaperone therapy, based on the use of β-glucocerebrosidase inhibitors that are capable of enhancing residual hydrolytic activity at subinhibitory concentrations. In this article, the most common lysosomal storage disorder, Gaucher disease, is introduced and the current therapeutic strategies based on the use of enzyme inhibitors to ameliorate this disease are discussed, with a focus on the efforts being made toward finding and optimizing novel molecules as pharmacological chaperones for Gaucher disease that offer the promise to remedy this malady.
Collapse
|
14
|
Cheng WC, Weng CY, Yun WY, Chang SY, Lin YC, Tsai FJ, Huang FY, Chen YR. Rapid modifications of N-substitution in iminosugars: Development of new β-glucocerebrosidase inhibitors and pharmacological chaperones for Gaucher disease. Bioorg Med Chem 2013; 21:5021-8. [DOI: 10.1016/j.bmc.2013.06.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/21/2022]
|
15
|
Li Z, Li T, Dai S, Xie X, Ma X, Zhao W, Zhang W, Li J, Wang PG. New Insights into the Pharmacological Chaperone Activity of C2-Substituted Glucoimidazoles for the Treatment of Gaucher Disease. Chembiochem 2013; 14:1239-47. [DOI: 10.1002/cbic.201300197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 12/23/2022]
|
16
|
Boyd RE, Lee G, Rybczynski P, Benjamin ER, Khanna R, Wustman BA, Valenzano KJ. Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem 2013; 56:2705-25. [PMID: 23363020 DOI: 10.1021/jm301557k] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysosomal enzymes are responsible for the degradation of a wide variety of glycolipids, oligosaccharides, proteins, and glycoproteins. Inherited mutations in the genes that encode these proteins can lead to reduced stability of newly synthesized lysosomal enzymes. While often catalytically competent, the mutated enzymes are unable to efficiently pass the quality control mechanisms of the endoplasmic reticulum, resulting in reduced lysosomal trafficking, substrate accumulation, and cellular dysfunction. Pharmacological chaperones (PCs) are small molecules that bind and stabilize mutant lysosomal enzymes, thereby allowing proper cellular translocation. Such compounds have been shown to increase enzyme activity and reduce substrate burden in a number of preclinical models and clinical studies. In this Perspective, we review several of the lysosomal diseases for which PCs have been studied and the SAR of the various classes of molecules.
Collapse
Affiliation(s)
- Robert E Boyd
- Amicus Therapeutics, 1 Cedar Brook Drive, Cranbury, New Jersey 08512, United States.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pharmacological chaperones for enzyme enhancement therapy in genetic diseases. Pharm Pat Anal 2013; 2:109-24. [DOI: 10.4155/ppa.12.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacological chaperone therapy (PCT) is a rather new approach consisting in targeting incorrectly folded proteins by small molecules, thus, facilitating the correct folding of the protein and inducing a recovery of its functionality. Many diseases result from mutations on specific genes; this patent review focuses on those pathologies where PCT has a potential application for enzymatic enhancement. Rare diseases are the main area where PCT has been applied and the most advanced compounds are aiming to cure lysosomal storage disorders such as Fabry, Pompe or Gaucher. Until now, most compounds used as pharmacological chaperones were based on substrate-like chemical structures but recently new nonsubstrate-like and non-inhibitory compounds have been disclosed for Gaucher and Pompe diseases. This initiates a new era for pharmacological chaperones with more diverse chemical structures and binding modes. This review covers the patents relating to enzyme enhancement on pharmacological chaperone therapy. Only an update is presented for Gaucher disease, where PCT is highly applied and recently reviewed.
Collapse
|
18
|
Bendikov-Bar I, Maor G, Filocamo M, Horowitz M. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells Mol Dis 2012; 50:141-5. [PMID: 23158495 PMCID: PMC3547170 DOI: 10.1016/j.bcmd.2012.10.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/13/2012] [Indexed: 12/25/2022]
Abstract
Gaucher disease (GD) is characterized by accumulation of glucosylceramide in lysosomes due to mutations in the GBA1 gene encoding the lysosomal hydrolase β-glucocerebrosidase (GCase). The disease has a broad spectrum of phenotypes, which were divided into three different Types; Type 1 GD is not associated with primary neurological disease while Types 2 and 3 are associated with central nervous system disease. GCase molecules are synthesized on endoplasmic reticulum (ER)-bound polyribosomes, translocated into the ER and following modifications and correct folding, shuttle to the lysosomes. Mutant GCase molecules, which fail to fold correctly, undergo ER associated degradation (ERAD) in the proteasomes, the degree of which is one of the factors that determine GD severity. Several pharmacological chaperones have already been shown to assist correct folding of mutant GCase molecules in the ER, thus facilitating their trafficking to the lysosomes. Ambroxol, a known expectorant, is one such chaperone. Here we show that ambroxol increases both the lysosomal fraction and the enzymatic activity of several mutant GCase variants in skin fibroblasts derived from Type 1 and Type 2 GD patients.
Collapse
Affiliation(s)
- Inna Bendikov-Bar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Gali Maor
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS G. Gaslini, Genova, Italy
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
- Corresponding author. Fax: + 972 3 6422046.
| |
Collapse
|
19
|
Synthesis and evaluation of glucosamine-6-phosphate analogues as activators of glmS riboswitch. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Trapero A, González-Bulnes P, Butters TD, Llebaria A. Potent aminocyclitol glucocerebrosidase inhibitors are subnanomolar pharmacological chaperones for treating gaucher disease. J Med Chem 2012; 55:4479-88. [PMID: 22512696 DOI: 10.1021/jm300342q] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amino-myo-inositol derivatives have been found to be potent inhibitors of glucocerebrosidase (GCase), the β-glucosidase enzyme deficient in Gaucher disease (GD). When tested using lymphoblasts derived from patients with GD homozygous for N370S or L444P mutations, the compounds enhanced GCase activity at very low concentrations. The most potent inhibitor, (1R,2S,3R,4S,5S,6R)-5-(nonylamino)-6-(nonyloxy)cyclohexane-1,2,3,4-tetraol had a K(i) of 1 nM using isolated enzyme and an IC(50) of 4.3 nM when assayed in human fibroblast cell culture. This aminocyclitol produced maximum increases of GCase activities of 90% in N370S lymphoblasts at 1 nM and 40% in L444P at 0.01 nM following a three-day incubation. In addition to inhibitory potency, this compound has the permeability, subcellular distribution, and cell metabolism characteristics that are important for use as a pharmacological chaperone. It is a remarkable finding that picomolar concentrations of aminocyclitols are sufficient to enhance activity in the L444P variant, which produces a severe neuronopathic form of GD without clinical treatment.
Collapse
Affiliation(s)
- Ana Trapero
- Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|