1
|
Ramle AQ, Tiekink ER, Basirun WJ. Synthesis, functionalization and coordination chemistry of dibenzotetraaza[14]annulenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Ke YZ, Huang SL, Lai G, Luh TY. Selective ring-opening metathesis polymerization (ROMP) of cyclobutenes. Unsymmetrical ladderphane containing polycyclobutene and polynorbornene strands. Beilstein J Org Chem 2019; 15:44-51. [PMID: 30680037 PMCID: PMC6334803 DOI: 10.3762/bjoc.15.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022] Open
Abstract
At 0 °C in THF in the presence of Grubbs first generation catalyst, cyclobutene derivatives undergo ROMP readily, whereas norbornene derivatives remain intact. When the substrate contains both cyclobutene and norbornene moieties, the conditions using THF as the solvent at 0 °C offer a useful protocol for the selective ROMP of cyclobutene to give norbornene-appended polycyclobutene. Unsymmetrical ladderphane having polycyclobutene and polynorbornene as two strands is obtained by further ROMP of the norbornene appended polycyclobutene in the presence of Grubbs first generation catalyst in DCM at ambient temperature. Methanolysis of this unsymmetrical ladderphane gives polycyclobutene methyl ester and insoluble polynorbornene-amide-alcohol. The latter is converted into the corresponding soluble acetate. Both polymers are well characterized by spectroscopic means. No norbornene moiety is found to be incorporated into polycyclobutene strand at all. The double bonds in the polycyclobutene strand are mainly in cis configuration (ca 70%), whereas the E/Z ratio for polynorbornene strand is 8:1.
Collapse
Affiliation(s)
- Yuan-Zhen Ke
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Guoqiao Lai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
3
|
|
4
|
Paquette JA, Rabiee Kenaree A, Gilroy JB. Metal-containing polymers bearing pendant nickel(ii) complexes of Goedken's macrocycle. Polym Chem 2017. [DOI: 10.1039/c7py00259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design, synthesis, and characterization of polymers bearing pendant nickel(ii) complexes of Goedken's macrocycle are described.
Collapse
Affiliation(s)
- Joseph A. Paquette
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - Amir Rabiee Kenaree
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
5
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Chen CH, Satyanarayana K, Liu YH, Huang SL, Lim TS, Luh TY. Excimer formation in a confined space: photophysics of ladderphanes with tetraarylethylene linkers. Chemistry 2015; 21:800-7. [PMID: 25345595 DOI: 10.1002/chem.201403806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 11/09/2022]
Abstract
Communication between chromophores is vital for both natural and non-natural photophysical processes. Spatial confinements offer unique conditions to scrutinize such interactions. Polynorbornene- and polycyclobutene-based ladderphanes are ideal model compounds in which all tetraarylethylene (TAE) linkers are aligned coherently. The spans for each of the monomeric units in these ladderphanes are 4.5-5.5 Å. Monomers do not exhibit emission, because bond rotation in TAE can quench the excited-state energy. However, polymers emit at 493 nm (Φ=0.015) with large Stokes shift under ambient conditions and exhibit dual emission at 450 and 493 nm at 150 K. When the temperature is lowered, the emission intensity at 450 nm increases, whereas that at 493 nm decreases. At 100 K, both monomers and polymers emit only at 450 nm. This shorter-wavelength emission arises from the intrinsic emission of TAE chromophore, and the emission at 493 nm could be attributed to the excimer emission in the confined space of ladderphanes. The fast kinetics suggest diffusion-controlled formation of the excimer.
Collapse
Affiliation(s)
- Chih-Hsien Chen
- Department of Chemistry, National Taiwan University, Taipei, 106 (Taiwan); Department of Chemical Engineering, Feng Chia University, Taichung, 407 (Taiwan)
| | | | | | | | | | | |
Collapse
|
7
|
Paquette JA, Sauvé ER, Gilroy JB. Polymers containing nickel(II) complexes of Goedken's macrocycle: optimized synthesis and electrochemical characterization. Macromol Rapid Commun 2014; 36:621-6. [PMID: 25363338 DOI: 10.1002/marc.201400500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Indexed: 11/07/2022]
Abstract
The synthesis and characterization of a new class of nickel-containing polymers is described. The optimized copolymerization of alkyne-bearing nickel(II) complexes of Goedken's macrocycle (4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) and brominated 9,9-dihexylfluorene produced polymers with potential application as functional redox-active materials. The title polymers exhibit electrochemically reversible, ligand-centered oxidation events at 0.24 and 0.73 V versus the ferrocene/ferrocenium redox couple. They also display exceptional thermal stability and interesting absorption properties due to the presence of the macrocyclic nickel(II) complexes and π-conjugated units incorporated in their backbones.
Collapse
Affiliation(s)
- Joseph A Paquette
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond St. N., London, Ontario, Canada, N6A 5B7
| | | | | |
Collapse
|
8
|
Lin TW, Chou CM, Lin NT, Lin CL, Luh TY. End Group Modification of Polynorbornenes. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ting-Wei Lin
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Chih-Ming Chou
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Nai-Ti Lin
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Cheng-Lan Lin
- Department of Chemical and Materials Engineering; Tamkang University Taiwan; Tamshui Taipei Taiwan
| | - Tien-Yau Luh
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
9
|
Lin NT, Satyanarayana K, Chen CH, Tsai YF, Yu SSF, Chan SI, Luh TY. Controlling the Orientation of Pendants in Two-Dimensional Comb-Like Polymers by Varying Stiffness of Polymeric Backbones. Macromolecules 2014. [DOI: 10.1021/ma5007655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nai-Ti Lin
- Department
of Chemistry, National Taiwan University, Taipei, 106 Taiwan
| | | | - Chih-Hsien Chen
- Department
of Chemical Engineering, Feng Chia University, Taichung, 407 Taiwan
| | - Yi-Fang Tsai
- Institute
of Chemistry, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Steve Sheng-Fa Yu
- Institute
of Chemistry, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Sunney I. Chan
- Institute
of Chemistry, Academia Sinica, Nangang, Taipei, 115 Taiwan
| | - Tien-Yau Luh
- Department
of Chemistry, National Taiwan University, Taipei, 106 Taiwan
| |
Collapse
|
10
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2012. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Lin NT, Ke YZ, Satyanarayana K, Huang SL, Lan YK, Yang HC, Luh TY. On the Stereoselectivity of Ring-Opening Metathesis Polymerization (ROMP) of N-Arylpyrrolidine-Fused Cyclobutenes with Molybdenum– and Ruthenium–Alkylidene Catalyst. Macromolecules 2013. [DOI: 10.1021/ma401007b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nai-Ti Lin
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Yuan-Zhen Ke
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106
- Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 300024, China
| | | | - Shou-Ling Huang
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Yi-Kang Lan
- Department
of Chemistry, Fu Jen Catholic University, Xinzhuang, Taipei, Taiwan 242
| | - Hsiao-Ching Yang
- Department
of Chemistry, Fu Jen Catholic University, Xinzhuang, Taipei, Taiwan 242
| | - Tien-Yau Luh
- Department
of Chemistry, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|
12
|
Abstract
A polymeric ladderphane is a step-like structure comprising multiple layers of linkers covalently connected to two or more polymeric backbones. The linkers can be planar aromatic, macrocyclic metal complexes, or three-dimensional organic or organometallic moieties. Structurally, a DNA molecule is a special kind of ladderphane, where the cofacially aligned base-pair pendants are linked through hydrogen bonding. A greater understanding of this class of molecules could help researchers develop new synthetic molecules capable of a similar transfer of chemical information. In this Account, we summarize our studies of the strategy, design, synthesis, characterization, replications, chemical and photophysical properties, and assembly of a range of double-stranded ladderphanes with many fascinating structures. We employed two norbornene moieties fused with N-arylpyrrolidine to connect covalently with a range of relatively rigid linkers. Ring opening metathesis polymerizations (ROMP) of these bis-norbornenes using the first-generation Grubbs ruthenium-benzylidene catalyst produced the corresponding symmetrical double-stranded ladderphanes. The N-arylpyrrolidene moiety in the linker controls the isotactic selectivity and the trans configuration for all double bonds in both single- and double-stranded polynorbornenes. The π-π interactions between these aryl pendants may contribute to the high stereoselectivity in the ROMP of these substrates. We synthesized chiral helical ladderphanes by incorporating asymmetric center(s) in the linkers. Replication protocols and sequential polymerization of a monomer that includes two different polymerizable groups offer methods for producing unsymmetical ladderphanes. These routes furnish template synthesis of daughter polymers with well-controlled chain lengths and polydispersities. The linkers in these ladderphanes are well aligned in the center along the longitudinal axis of the polymer. Fluorescence quenching, excimer formation, or Soret band splitting experiments suggest that strong interactions take place between the linkers. The antiferromagnetism of the oxidized ferrocene-based ladderphanes further indicates strong coupling between linkers in these ladderphanes. These polynorbornene-based ladderphanes can easily aggregate to form a two-dimensional, highly ordered array on the graphite surface with areas that can reach the submicrometer range. These morphological patterns result from interactions between vinyl and styryl end groups via π-π stacking along the longitudinal axis of the polymer and van der Waals interaction between backbones of polymers. Such assembly orients planar arene moieties cofacially, and polynorbornene backbones insulate each linear array of arenes from the adjacent arrays. Dihydroxylation converts the double bonds in polynorbornene backbones of ladderphanes into more hydrophilic polyols. Hydrogen bonding between these polyol molecules leads to self-assembly and produces structures with longitudinally staggered morphologies on the graphite surface.
Collapse
Affiliation(s)
- Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
13
|
Zhu L, Lin NT, Xie ZY, Lee SL, Huang SL, Yang JH, Lee YD, Chen CH, Chen CH, Luh TY. Ruthenium-Catalyzed Cascade Metathetical Cyclopolymerization of Bisnorbornenes with Flexible Linkers. Macromolecules 2013. [DOI: 10.1021/ma302293q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Zhu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
- Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Lu, Shanghai, China 200032
| | - Nai-Ti Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Zhen-Yu Xie
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
- Genomic Research Center, Academia Sinica, Nangang, Taipei, Taiwan 115
| | - Shern-Long Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Jian-He, Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 300
| | - Yu-Der, Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 300
| | - Chun-hsien Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Chung-Hsuan Chen
- Genomic Research Center, Academia Sinica, Nangang, Taipei, Taiwan 115
| | - Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|
14
|
Meng QH, Zhou P, Song F, Wang YB, Liu GL, Li H. Controlled fluorescent properties of Zn(ii) salen-type complex based on ligand design. CrystEngComm 2013. [DOI: 10.1039/c3ce26935c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Zhu L, Flook MM, Lee SL, Chan LW, Huang SL, Chiu CW, Chen CH, Schrock RR, Luh TY. Cis, Isotactic Selective ROMP of Norbornenes Fused with N-Arylpyrrolidines. Double Stranded Polynorbornene-Based Ladderphanes with Z-Double Bonds. Macromolecules 2012. [DOI: 10.1021/ma301686f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lei Zhu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
- Shanghai
Institute of Organic
Chemistry, Chinese Academy of Sciences,
Lingling Lu, Shanghai, China 200032
| | - Margaret M. Flook
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Shern-Long Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Li-Wei Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Ching-Wen Chiu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Chun-Hsien Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| | - Richard R. Schrock
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|