1
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Coimbra JTS, Neves RPP, Cunha AV, Ramos MJ, Fernandes PA. Different Enzyme Conformations Induce Different Mechanistic Traits in HIV‐1 Protease. Chemistry 2022; 28:e202201066. [DOI: 10.1002/chem.202201066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- João T. S. Coimbra
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Rui P. P. Neves
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ana V. Cunha
- Scientific Computing Group Oak Ridge National Laboratory 1 Bethel Valley Rd 37831-6373 Oak Ridge TN USA
- Presnt address: Department of Chemistry University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Maria J. Ramos
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A. Fernandes
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
3
|
Sohraby F, Aryapour H. Comparative analysis of the unbinding pathways of antiviral drug Indinavir from HIV and HTLV1 proteases by supervised molecular dynamics simulation. PLoS One 2021; 16:e0257916. [PMID: 34570822 PMCID: PMC8476009 DOI: 10.1371/journal.pone.0257916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the unbinding pathways of potential small molecule compounds from their target proteins is of great significance for designing efficacious treatment solutions. One of these potential compounds is the approved HIV-1 protease inhibitor, Indinavir, which has a weak effect on the HTLV-1 protease. In this work, by employing the SuMD method, we reconstructed the unbinding pathways of Indinavir from HIV and HTLV-1 proteases to compare and understand the mechanism of the unbinding and to discover the reasons for the lack of inhibitory activity of Indinavir against the HTLV-1 protease. We achieved multiple unbinding events from both HIV and HTLV-1 proteases in which the RMSD values of Indinavir reached over 40 Å. Also, we found that the mobility and fluctuations of the flap region are higher in the HTLV-1 protease, making the drug less stable. We realized that critically positioned aromatic residues such as Trp98/Trp98' and Phe67/Phe67' in the HTLV-1 protease could make strong π-Stacking interactions with Indinavir in the unbinding pathway, which are unfavorable for the stability of Indinavir in the active site. The details found in this study can make a reasonable explanation for the lack of inhibitory activity of this drug against HTLV-1 protease. We believe the details discovered in this work can help design more effective and selective inhibitors for the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
- * E-mail:
| |
Collapse
|
4
|
Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease. Molecules 2021; 26:molecules26133872. [PMID: 34202892 PMCID: PMC8270314 DOI: 10.3390/molecules26133872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Computational analysis of protein–ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions, such as in docking programs, all rely on equations that sum each type of protein–ligand interactions in order to predict the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions constitute one of the most important part of total interactions between macromolecules. Unlike dispersion forces, they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this study, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and darunavir) were analyzed by using charge densities from the transferable aspherical-atom University at Buffalo Databank (UBDB). Moreover, we analyzed the electrostatic interaction energy for an ensemble of structures, using molecular dynamic simulations to highlight the main features of electrostatic interactions important for binding affinity.
Collapse
|
5
|
The molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin. J Biol Chem 2021; 296:100718. [PMID: 33989634 PMCID: PMC8219899 DOI: 10.1016/j.jbc.2021.100718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
The C-type lectin receptor langerin plays a vital role in the mammalian defense against invading pathogens. Langerin requires a Ca2+ cofactor, the binding affinity of which is regulated by pH. Thus, Ca2+ is bound when langerin is on the membrane but released when langerin and its pathogen substrate traffic to the acidic endosome, allowing the substrate to be degraded. The change in pH is sensed by protonation of the allosteric pH sensor histidine H294. However, the mechanism by which Ca2+ is released from the buried binding site is not clear. We studied the structural consequences of protonating H294 by molecular dynamics simulations (total simulation time: about 120 μs) and Markov models. We discovered a relay mechanism in which a proton is moved into the vicinity of the Ca2+-binding site without transferring the initial proton from H294. Protonation of H294 unlocks a conformation in which a protonated lysine side chain forms a hydrogen bond with a Ca2+-coordinating aspartic acid. This destabilizes Ca2+ in the binding pocket, which we probed by steered molecular dynamics. After Ca2+ release, the proton is likely transferred to the aspartic acid and stabilized by a dyad with a nearby glutamic acid, triggering a conformational transition and thus preventing Ca2+ rebinding. These results show how pH regulation of a buried orthosteric binding site from a solvent-exposed allosteric pH sensor can be realized by information transfer through a specific chain of conformational arrangements.
Collapse
|
6
|
Ahsan M, Pindi C, Senapati S. Electrostatics Plays a Crucial Role in HIV-1 Protease Substrate Binding, Drugs Fail to Take Advantage. Biochemistry 2020; 59:3316-3331. [PMID: 32822154 DOI: 10.1021/acs.biochem.0c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 protease (HIVPR) is an important drug target for combating AIDS. This enzyme is an aspartyl protease that is functionally active in its dimeric form. Nuclear magnetic resonance reports have convincingly shown that a pseudosymmetry exists at the HIVPR active site, where only one of the two aspartates remains protonated over the pH range of 2.5-7.0. To date, all HIVPR-targeted drug design strategies focused on maximizing the size-shape complementarity and van der Waals interactions of the small molecule drugs with the deprotonated, symmetric active site envelope of crystallized HIVPR. However, these strategies were ineffective with the emergence of drug resistant protease variants, primarily due to the steric clashes at the active site. In this study, we traced a specificity in the substrate binding motif that emerges primarily from the asymmetrical electrostatic potential present in the protease active site due to the uneven protonation. Our detailed results from atomistic molecular dynamics simulations show that while such a specific mode of substrate binding involves significant electrostatic interactions, none of the existing drugs or inhibitors could utilize this electrostatic hot spot. As the electrostatic is long-range interaction, it can provide sufficient binding strength without the necessity of increasing the bulkiness of the inhibitors. We propose that introducing the electrostatic component along with optimal fitting at the binding pocket could pave the way for promising designs that might be more effective against both wild type and HIVPR resistant variants.
Collapse
Affiliation(s)
- Mohd Ahsan
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Chinmai Pindi
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Kumar M, Mandal K, Blakeley MP, Wymore T, Kent SBH, Louis JM, Das A, Kovalevsky A. Visualizing Tetrahedral Oxyanion Bound in HIV-1 Protease Using Neutrons: Implications for the Catalytic Mechanism and Drug Design. ACS OMEGA 2020; 5:11605-11617. [PMID: 32478251 PMCID: PMC7254801 DOI: 10.1021/acsomega.0c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
HIV-1 protease is indispensable for virus propagation and an important therapeutic target for antiviral inhibitors to treat AIDS. As such inhibitors are transition-state mimics, a detailed understanding of the enzyme mechanism is crucial for the development of better anti-HIV drugs. Here, we used room-temperature joint X-ray/neutron crystallography to directly visualize hydrogen atoms and map hydrogen bonding interactions in a protease complex with peptidomimetic inhibitor KVS-1 containing a reactive nonhydrolyzable ketomethylene isostere, which, upon reacting with the catalytic water molecule, is converted into a tetrahedral intermediate state, KVS-1TI. We unambiguously determined that the resulting tetrahedral intermediate is an oxyanion, rather than the gem-diol, and both catalytic aspartic acid residues are protonated. The oxyanion tetrahedral intermediate appears to be unstable, even though the negative charge on the oxyanion is delocalized through a strong n → π* hyperconjugative interaction into the nearby peptidic carbonyl group of the inhibitor. To better understand the influence of the ketomethylene isostere as a protease inhibitor, we have also examined the protease structure and binding affinity with keto-darunavir (keto-DRV), which similar to KVS-1 includes the ketomethylene isostere. We show that keto-DRV is a significantly less potent protease inhibitor than DRV. These findings shed light on the reaction mechanism of peptide hydrolysis catalyzed by HIV-1 protease and provide valuable insights into further improvements in the design of protease inhibitors.
Collapse
Affiliation(s)
- Mukesh Kumar
- Protein Crystallography
Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kalyaneswar Mandal
- Departments of Chemistry, and Biochemistry and Molecular Biology,
Institute for Biophysical Dynamics, University
of Chicago, Chicago, Illinois 60637, United States
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue−Langevin, 38000 Grenoble, France
| | - Troy Wymore
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen B. H. Kent
- Departments of Chemistry, and Biochemistry and Molecular Biology,
Institute for Biophysical Dynamics, University
of Chicago, Chicago, Illinois 60637, United States
| | - John M. Louis
- Laboratory of Chemical Physics, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - Amit Das
- Protein Crystallography
Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Andrey Kovalevsky
- Neutron Scattering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
8
|
Novel radial distribution function approach in the study of point mutations: the HIV-1 protease case study. Future Med Chem 2020; 12:1025-1036. [PMID: 32319305 DOI: 10.4155/fmc-2020-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Mutations are one of the engines of evolution. Under constant stress pressure, mutations can lead to the emergence of unwanted, drug-resistant entities. Methodology: The radial distribution function weighted by the number of valence shell electrons is used to design quantitative structure-activity relationship (QSAR) model relating descriptors with the inhibition constant for a series of wild-type HIV-1 protease inhibitor complexes. The residuals of complexes with mutant HIV-1 protease were correlated with the energy of the highest occupied molecular orbitals of the residues introduced to enzyme via point mutations. Conclusion: Successful identification of residues Ile3, Asp25, Val32 and Ile50 as the one whose substitution influences the inhibition constant the most, demonstrates the potential of the proposed methodology for the study of the effects of point mutations.
Collapse
|
9
|
Performance of radial distribution function-based descriptors in the chemoinformatic studies of HIV-1 protease. Future Med Chem 2020; 12:299-309. [DOI: 10.4155/fmc-2019-0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: This letter investigates the role of radial distribution function-based descriptors for in silico design of new drugs. Methodology: The multiple linear regression models for HIV-1 protease and its complexes with a series of inhibitors were constructed. A detailed analysis of major atomic contributions to the radial distribution function descriptor weighted by the number of valence shell electrons identified residues Arg8, Asp29 and residues of the catalytic triad as crucial for the correlation with the inhibition constant, together with residues Asp30 and Ile50, whose mutations are known to cause an emergence of drug resistant variants. Conclusion: This study demonstrates an easy and fast assessment of the activity of potential drugs and the derivation of structural information of their complexes with the receptor or enzyme.
Collapse
|
10
|
Kovalevsky A, Gerlits O, Beltran K, Weiss KL, Keen DA, Blakeley MP, Louis JM, Weber IT. Proton transfer and drug binding details revealed in neutron diffraction studies of wild-type and drug resistant HIV-1 protease. Methods Enzymol 2020; 634:257-279. [PMID: 32093836 PMCID: PMC11414022 DOI: 10.1016/bs.mie.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV-1 protease is an essential therapeutic target for the design and development of antiviral inhibitors to treat AIDS. We used room temperature neutron crystallography to accurately determine hydrogen atom positions in several protease complexes with clinical drugs, amprenavir and darunavir. Hydrogen bonding interactions were carefully mapped to provide an unprecedented picture of drug binding to the protease target. We demonstrate that hydrogen atom positions within the enzyme catalytic site can be altered by introducing drug resistant mutations and by protonating surface residues that trigger proton transfer reactions between the catalytic Asp residues and the hydroxyl group of darunavir. When protein perdeuteration is not feasible, we validate the use of initial H/D exchange with unfolded protein and partial deuteration in pure D2O with hydrogenous glycerol to maximize deuterium incorporation into the protein, with no detrimental effects on the growth of quality crystals suitable for neutron diffraction experiments.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, United States
| | - Kaira Beltran
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, United States
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | | | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, United States
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, United States; Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
11
|
Novak J, Grishina MA, Potemkin VA. The Influence of Hydrogen Atoms on the Performance of Radial Distribution Function-Based Descriptors in the Chemoinformatic Studies of HIV-1 Protease Complexes with Inhibitors. Curr Drug Discov Technol 2020; 18:414-422. [PMID: 31899678 DOI: 10.2174/1570163817666200102130415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
AIMS The aim of this letter is to explore the influence of adding hydrogen atoms to the crystallographic structures of HIV-1 protease complexes with a series of inhibitors on the performance of radial distribution function based descriptors recently introduced in chemoinformatic studies. BACKGROUND Quite recently the successful application of molecular descriptors based on a radial distribution function to correlate it with biologically interesting properties of a ligand - enzyme complex was demonstrated. Except its predictive power, the analysis of atoms with dominant contributions to the RDFs can be used to identify relevant atoms and interactions. Since original paper was published on dataset consisting of the X-ray structures of complexes without hydrogen atoms, we wonder weather addition of light atoms can provide us new piece of information. OBJECTIVE The primarily objective is to create the model correlating the RDF based descriptors and physicochemical properties of the HIV-1 protease complexes with inhibitors with hydrogen atoms. Then, we will compare the performance of new model with previous one, where the hydrogen atoms were discarded. Information about interactions between the enzyme and the inhibitors will be extracted from the analysis of the RDF. METHODS The radial distribution function descriptor weighted by the number of valence shell electrons has proven to be sensitive to the changes in the structure of the enzyme and enzyme-ligand complexes. For each structure in our data set, RDF will be calculated and using multiple linear regression method the mathematical model will be designed correlating RDF based descriptors and the physicochemical properties. Statistical analysis of the atom's contribution to the total RDF will reveal relevant interactions. RESULTS The applicability of RDF based descriptor for the correlation with pKi and EC50 values is demonstrated, while simple models containing only two or three parameters are able to explain 78 and 86 % of the variance, respectively. The models with explicitly included hydrogens are of comparable quality with the previous models without hydrogens. The analysis of the atom's dominant contributions highlighted the importance of the hydroxyl groups of the inhibitor near the Asp25 and Asp25' residues when it is bounded to the protease. CONCLUSION Models based on the RDF weighted by the number of valence shell electrons for correlating small number of molecular descriptors and physicocehmical properties for structures with and without hydrogens are of comparable quality and both can be used for identification of relevant functional groups and interactions. Other: Our approach can be integrated to the next generation virtual screening methods, because is fast, reliable with high predictability potential.
Collapse
Affiliation(s)
- Jurica Novak
- South Ural State University, 20-A, Tchaikovsky Str., Chelyabinsk 454080, Russian Federation
| | - Maria A Grishina
- South Ural State University, 20-A, Tchaikovsky Str., Chelyabinsk 454080, Russian Federation
| | - Vladimir A Potemkin
- South Ural State University, 20-A, Tchaikovsky Str., Chelyabinsk 454080, Russian Federation
| |
Collapse
|
12
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
13
|
Mann KS, Chisholm J, Sanfaçon H. Strawberry Mottle Virus (Family Secoviridae, Order Picornavirales) Encodes a Novel Glutamic Protease To Process the RNA2 Polyprotein at Two Cleavage Sites. J Virol 2019; 93:e01679-18. [PMID: 30541838 PMCID: PMC6384087 DOI: 10.1128/jvi.01679-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2.IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.
Collapse
Affiliation(s)
- Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Joan Chisholm
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| |
Collapse
|
14
|
Kent SBH. Novel protein science enabled by total chemical synthesis. Protein Sci 2018; 28:313-328. [PMID: 30345579 DOI: 10.1002/pro.3533] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
Chemical synthesis is a well-established method for the preparation in the research laboratory of multiple-tens-of-milligram amounts of correctly folded, high purity protein molecules. Chemically synthesized proteins enable a broad spectrum of novel protein science. Racemic mixtures consisting of d-protein and l-protein enantiomers facilitate crystallization and determination of protein structures by X-ray diffraction. d-Proteins enable the systematic development of unnatural mirror image protein molecules that bind with high affinity to natural protein targets. The d-protein form of a therapeutic target can also be used to screen natural product libraries to identify novel small molecule leads for drug development. Proteins with novel polypeptide chain topologies including branched, circular, linear-loop, and interpenetrating polypeptide chains can be constructed by chemical synthesis. Medicinal chemistry can be applied to optimize the properties of therapeutic protein molecules. Chemical synthesis has been used to redesign glycoproteins and for the a priori design and construction of covalently constrained novel protein scaffolds not found in nature. Versatile and precise labeling of protein molecules by chemical synthesis facilitates effective application of advanced physical methods including multidimensional nuclear magnetic resonance and time-resolved FTIR for the elucidation of protein structure-activity relationships. The chemistries used for total synthesis of proteins have been adapted to making artificial molecular devices and protein-inspired nanomolecular constructs. Research to develop mirror image life in the laboratory is in its very earliest stages, based on the total chemical synthesis of d-protein forms of polymerase enzymes.
Collapse
Affiliation(s)
- Stephen B H Kent
- Department of Chemistry and Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
15
|
Gerlits O, Keen DA, Blakeley MP, Louis JM, Weber IT, Kovalevsky A. Room Temperature Neutron Crystallography of Drug Resistant HIV-1 Protease Uncovers Limitations of X-ray Structural Analysis at 100 K. J Med Chem 2017; 60:2018-2025. [PMID: 28195728 DOI: 10.1021/acs.jmedchem.6b01767] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 protease inhibitors are crucial for treatment of HIV-1/AIDS, but their effectiveness is thwarted by rapid emergence of drug resistance. To better understand binding of clinical inhibitors to resistant HIV-1 protease, we used room-temperature joint X-ray/neutron (XN) crystallography to obtain an atomic-resolution structure of the protease triple mutant (V32I/I47V/V82I) in complex with amprenavir. The XN structure reveals a D+ ion located midway between the inner Oδ1 oxygen atoms of the catalytic aspartic acid residues. Comparison of the current XN structure with our previous XN structure of the wild-type HIV-1 protease-amprenavir complex suggests that the three mutations do not significantly alter the drug-enzyme interactions. This is in contrast to the observations in previous 100 K X-ray structures of these complexes that indicated loss of interactions by the drug with the triple mutant protease. These findings, thus, uncover limitations of structural analysis of drug binding using X-ray structures obtained at 100 K.
Collapse
Affiliation(s)
- Oksana Gerlits
- UT/ORNL Joint Institute of Biological Sciences, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory , Harwell Campus, Didcot, OX11 0QX, U.K
| | - Matthew P Blakeley
- Large-Scale Structures Group, Institut Laue Langevin , 71 avenue des Martyrs, 38000 Grenoble, France
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , DHHS, Bethesda, Maryland 20892-0520, United States
| | - Irene T Weber
- Departments of Chemistry and Biology, Georgia State University , Atlanta, Georgia 30302, United States
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
16
|
Bondalapati S, Jbara M, Brik A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat Chem 2016; 8:407-18. [DOI: 10.1038/nchem.2476] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/04/2016] [Indexed: 12/18/2022]
|
17
|
Jbara M, Maity SK, Seenaiah M, Brik A. Palladium Mediated Rapid Deprotection of N-Terminal Cysteine under Native Chemical Ligation Conditions for the Efficient Preparation of Synthetically Challenging Proteins. J Am Chem Soc 2016; 138:5069-75. [DOI: 10.1021/jacs.5b13580] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Mallikanti Seenaiah
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
18
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016; 55:4924-7. [PMID: 26958828 DOI: 10.1002/anie.201509989] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/27/2016] [Indexed: 11/11/2022]
Abstract
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.
Collapse
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Amit Das
- Solid State Physics Division, BARC, Trombay, Mumbai, 400085, India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin L Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Matthew P Blakeley
- Large-Scale Structures Group, Institut Laue Langevin, 71 avenue des Martyrs - CS 20156, 38042, Grenoble Cedex 9, France
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Irene T Weber
- Departments of Chemistry and Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
19
|
Gerlits O, Wymore T, Das A, Shen CH, Parks JM, Smith JC, Weiss KL, Keen DA, Blakeley MP, Louis JM, Langan P, Weber IT, Kovalevsky A. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Troy Wymore
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Amit Das
- Solid State Physics Division; BARC; Trombay Mumbai 400085 India
| | - Chen-Hsiang Shen
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - David A. Keen
- ISIS Facility; Rutherford Appleton Laboratory; Harwell Oxford Didcot OX11 0QX UK
| | - Matthew P. Blakeley
- Large-Scale Structures Group; Institut Laue Langevin; 71 avenue des Martyrs - CS 20156 38042 Grenoble Cedex 9 France
| | - John M. Louis
- Laboratory of Chemical Physics; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health, DHHS; Bethesda MD 20892-0520 USA
| | - Paul Langan
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Irene T. Weber
- Departments of Chemistry and Biology; Georgia State University; Atlanta GA 30302 USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| |
Collapse
|
20
|
Appadurai R, Senapati S. Dynamical Network of HIV-1 Protease Mutants Reveals the Mechanism of Drug Resistance and Unhindered Activity. Biochemistry 2016; 55:1529-40. [PMID: 26892689 DOI: 10.1021/acs.biochem.5b00946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 protease variants resist drugs by active and non-active-site mutations. The active-site mutations, which are the primary or first set of mutations, hamper the stability of the enzyme and resist the drugs minimally. As a result, secondary mutations that not only increase protein stability for unhindered catalytic activity but also resist drugs very effectively arise. While the mechanism of drug resistance of the active-site mutations is through modulating the active-site pocket volume, the mechanism of drug resistance of the non-active-site mutations is unclear. Moreover, how these allosteric mutations, which are 8-21 Å distant, communicate to the active site for drug efflux is completely unexplored. Results from molecular dynamics simulations suggest that the primary mechanism of drug resistance of the secondary mutations involves opening of the flexible protease flaps. Results from both residue- and community-based network analyses reveal that this precise action of protease is accomplished by the presence of robust communication paths between the mutational sites and the functionally relevant regions: active site and flaps. While the communication is more direct in the wild type, it traverses across multiple intermediate residues in mutants, leading to weak signaling and unregulated motions of flaps. The global integrity of the protease network is, however, maintained through the neighboring residues, which exhibit high degrees of conservation, consistent with clinical data and mutagenesis studies.
Collapse
Affiliation(s)
- Rajeswari Appadurai
- BJM School of Biosciences and Department of Biotechnology, Indian Institution of Technology Madras , Chennai 600 036, India
| | - Sanjib Senapati
- BJM School of Biosciences and Department of Biotechnology, Indian Institution of Technology Madras , Chennai 600 036, India
| |
Collapse
|
21
|
Characterizing the protonation states of the catalytic residues in apo and substrate-bound human T-cell leukemia virus type 1 protease. Comput Biol Chem 2015; 56:61-70. [PMID: 25889320 DOI: 10.1016/j.compbiolchem.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/22/2015] [Accepted: 04/03/2015] [Indexed: 11/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) protease is an attractive target when developing inhibitors to treat HTLV-1 associated diseases. To study the catalytic mechanism and design novel HTLV-1 protease inhibitors, the protonation states of the two catalytic aspartic acid residues must be determined. Free energy simulations have been conducted to study the proton transfer reaction between the catalytic residues of HTLV-1 protease using a combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulation. The free energy profiles for the reaction in the apo-enzyme and in an enzyme - substrate complex have been obtained. In the apo-enzyme, the two catalytic residues are chemically equivalent and are expected to be both unprotonated. Upon substrate binding, the catalytic residues of HTLV-1 protease evolve to a singly protonated state, in which the OD1 of Asp32 is protonated and forms a hydrogen bond with the OD1 of Asp32', which is unprotonated. The HTLV-1 protease-substrate complex structure obtained from this simulation can serve as the Michaelis complex structure for further mechanistic studies of HTLV-1 protease while providing a receptor structure with the correct protonation states for the active site residues toward the design of novel HTLV-1 protease inhibitors through virtual screening.
Collapse
|
22
|
Mechanistic insights into N- or P-centered nucleophile promoted thiol–vinylsulfone Michael addition. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Li Y, Pan M, Li Y, Huang Y, Guo Q. Thiol–yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-l-lysine analogue. Org Biomol Chem 2013; 11:2624-9. [DOI: 10.1039/c3ob27116a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|