1
|
Whitaker W, Ghosh D, Malakar P, Karras G, Orr-Ewing AJ. Femtosecond to Microsecond Observation of Photochemical Pathways in Nitroaromatic Phototriggers Using Transient Absorption Spectroscopy. J Phys Chem A 2024; 128:5892-5905. [PMID: 38988292 DOI: 10.1021/acs.jpca.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The synthetic accessibility and tolerance to structural modification of phototriggered compounds (PTs) based on the ortho- nitrobenzene (ONB) protecting group have encouraged a myriad of applications including optimization of biological activity, and supramolecular polymerization. Here, a combination of ultrafast transient absorption spectroscopy techniques is used to study the multistep photochemistry of two nitroaromatic phototriggers based on the ONB chromophore, O-(4,5-dimethoxy-2-nitrobenzyl)-l-serine (DMNB-Ser) and O-[(2-nitrophenyl)methyl]-l-tyrosine hydrochloride (NB-Tyr), in DMSO solutions on femtosecond to microsecond time scales following the absorption of UV light. From a common nitro-S1 excited state, the PTs can either undergo excited state intramolecular hydrogen transfer (ESIHT) to an aci-S1 isomer within the singlet state manifold, leading to direct S1 → S0 internal conversion through a conical intersection, or competitive intersystem crossing (ISC) to access the triplet state manifold on time scales of (1.93 ± 0.03) ps and (13.9 ± 1.2) ps for DMNB-Ser and NB-Tyr, respectively. Deprotonation of aci-T1 species to yield triplet anions is proposed to occur in both PTs, with an illustrative time constant of (9.4 ± 0.7) ns for DMNB-Ser. More than 75% of the photoexcited molecules return to their electronic ground states within 8 μs, either by direct S1 → S0 relaxation or anion reprotonation. Hence, upper limits to the quantum yields of photoproduct formation are estimated to be in the range of 13-25%. Mixed DMSO/H2O solvents show the influence of the environment on the observed photochemistry, for example, revealing two nitro-S1 lifetimes for DMNB-Ser in a 10:1 DMSO/H2O mixture of 1.95 ps and (10.1 ± 1.2) ps, which are attributed to different microsolvation environments.
Collapse
Affiliation(s)
- William Whitaker
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Deborin Ghosh
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Partha Malakar
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Gabriel Karras
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
2
|
Development of novel porphyrin/combretastatin A-4 conjugates for bimodal chemo and photodynamic therapy: Synthesis, photophysical and TDDFT computational studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Zhang H, Wu J, Zhou J, Liu W, Liang L, Xia S, Yan J, Sun X. Photolysis study of two indene-fused coumarin-based photoremovable protecting groups for potential biological applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Yao W, Liu C, Wang N, Zhou H, Shafiq F, Yu S, Qiao W. O-nitrobenzyl liposomes with dual-responsive release capabilities for drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Truong VX. Break Up to Make Up: Utilization of Photocleavable Groups in Biolabeling of Hydrogel Scaffolds. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vinh X. Truong
- School of Chemistry and PhysicsQueensland University of Technology 2 George St. QLD 4000 Brisbane Australia
- Centre for Materials ScienceQueensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
7
|
Zhang X, Li X, Li JL, Wang QW, Zou WL, Liu YQ, Jia ZQ, Peng F, Han B. Regiodivergent construction of medium-sized heterocycles from vinylethylene carbonates and allylidenemalononitriles. Chem Sci 2020; 11:2888-2894. [PMID: 34122789 PMCID: PMC8157681 DOI: 10.1039/c9sc06377c] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Medium-sized heterocycles exist in a broad spectrum of biologically active natural products and medicinally important synthetic compounds. The construction of medium-sized rings remains challenging, particularly the assembly of different ring sizes from the same type of substrate. Here we report palladium-catalyzed, regiodivergent [5 + 4] and [5 + 2] annulations of vinylethylene carbonates and allylidenemalononitriles. We describe the production of over 50 examples of nine- and seven-membered heterocycles in high isolated yields and excellent regioselectivities. We demonstrate the synthetic utility of this approach by converting a nine-membered ring product to an interesting polycyclic caged molecule via a [2 + 2] transannulation. Mechanistic studies suggest that the [5 + 2] annulation proceeds through palladium-catalyzed ring-opening/re-cyclization from the [5 + 4] adducts. Here we report palladium-catalyzed, regiodivergent [5 + 4] and [5 + 2] annulations of vinylethylene carbonates and allylidenemalononitriles affording over 50 medium-sized heterocycles in high isolated yields with excellent regioselectivities.![]()
Collapse
Affiliation(s)
- Xiang Zhang
- West China School of Pharmacy, Sichuan University Chengdu 610041 China .,Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Qi-Wei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Wen-Lin Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Zhi-Qiang Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| |
Collapse
|
8
|
Chen H, Zhao Y. Applications of Light-Responsive Systems for Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21021-21034. [PMID: 29648777 DOI: 10.1021/acsami.8b01114] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Achieving controlled and targeted delivery of chemotherapeutic drugs and other therapeutic agents to tumor sites is challenging. Among many stimulus strategies, light as a mode of action shows various advantages such as high spatiotemporal selectivity, minimal invasiveness and easy operation. Thus, drug delivery systems (DDSs) have been designed with the incorporation of various functionalities responsive to light as an exogenous stimulus. Early development has focused on guiding chemotherapeutic drugs to designated location, followed by the utilization of UV irradiation for controlled drug release. Because of the disadvantages of UV light such as phototoxicity and limited tissue penetration depth, scientists have moved the research focus onto developing nanoparticle systems responsive to light in the visible region (400-700 nm), aiming to reduce the phototoxicity. In order to enhance the tissue penetration depth, near-infrared light triggered DDSs become increasingly important. In addition, light-based advanced systems for fluorescent and photoacoustic imaging, as well as photodynamic and photothermal therapy have also been reported. Herein, we highlight some of recent developments by applying light-responsive systems in cancer theranostics, including light activated drug release, photodynamic and photothermal therapy, and bioimaging techniques such as fluorescent and photoacoustic imaging. Future prospect of light-mediated cancer treatment is discussed at the end of the review. This Spotlights on Applications article aims to provide up-to-date information about the rapidly developing field of light-based cancer theranostics.
Collapse
Affiliation(s)
- Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| |
Collapse
|
9
|
Anstaett P, Pierroz V, Ferrari S, Gasser G. Two-photon uncageable enzyme inhibitors bearing targeting vectors. Photochem Photobiol Sci 2016; 14:1821-5. [PMID: 26314377 DOI: 10.1039/c5pp00245a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The activity of two cyclooxygenase-2 enzyme inhibitors, Celecoxib and Lumiracoxib, could be suppressed by coupling to photo-labile protecting groups, so-called photocages. These groups could be further functionalized with a peptide targeting vector for specific cellular delivery. The enzyme inhibition potential of the cyclooxygenase-2 inhibitors could be regained upon two-photon excitation with tissue-transparent near-IR light at 800 nm.
Collapse
Affiliation(s)
- Philipp Anstaett
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
10
|
Mo S, Wen Y, Xue F, Lan H, Mao Y, Lv G, Yi T. A novel o -nitrobenzyl-based photocleavable antitumor prodrug with the capability of releasing 5-fluorourail. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1010-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Liu W, Liang L, Lo PK, Gou XJ, Sun XH. A double branched photosensitive prodrug: synthesis and characterization of light triggered drug release. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Olejniczak J, Carling CJ, Almutairi A. Photocontrolled release using one-photon absorption of visible or NIR light. J Control Release 2015; 219:18-30. [PMID: 26394063 DOI: 10.1016/j.jconrel.2015.09.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 11/26/2022]
Abstract
Light is an excellent means to externally control the properties of materials and small molecules for many applications. Light's ability to initiate chemistries largely independent of a material's local environment makes it particularly useful as a bio-orthogonal and on-demand trigger in living systems. Materials responsive to UV light are widely reported in the literature; however, UV light has substantial limitations for in vitro and in vivo applications. Many biological molecules absorb these energetic wavelengths directly, not only preventing substantial tissue penetration but also causing detrimental photochemical reactions. The more innocuous nature of long-wavelength light (>400nm) and its ability at longer wavelengths (600-950nm) to effectively penetrate tissues is ideal for biological applications. Multi-photon processes (e.g. two-photon excitation and upconversion) using longer wavelength light, often in the near-infrared (NIR) range, have been proposed as a means of avoiding the negative characteristics of UV light. However, high-power focused laser light and long irradiation times are often required to initiate photorelease using these inefficient non-linear optical methods, limiting their in vivo use in mammalian tissues where NIR light is readily scattered. The development of materials that efficiently convert a single photon of long-wavelength light to chemical change is a viable solution to achieve in vivo photorelease. However, to date only a few such materials have been reported. Here we review current technologies for photo-regulated release using photoactive organic materials that directly absorb visible and NIR light.
Collapse
Affiliation(s)
- Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Carl-Johan Carling
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Materials Science and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Wu H, Xie F, Wang Y, Zhao X, Liu D, Zhang W. Pd-catalyzed asymmetric allylic amination using easily accessible metallocenyl P,N-ligands. Org Biomol Chem 2015; 13:4248-54. [PMID: 25744710 DOI: 10.1039/c5ob00032g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compared to their C1-symmetric counterparts, planar chiral C2-symmetric metallocenyl P,N-ligands are efficient chiral ligands for Pd-catalyzed asymmetric allylic aminations, providing a number of amination products with high enantioselectivities. A non-C2-symmetric ferrocenyl P,N-ligand (a by-product obtained during the synthesis of the above C2-symmetric species) was also found to be an efficient ligand for asymmetric allylic aminations. A mixed ligand system consisting of both C2- and non-C2-symmetric ferrocene complexes was examined and showed high catalytic activity with the amination products being obtained with excellent enantioselectivities.
Collapse
Affiliation(s)
- Hongwei Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | | | | | | | | | | |
Collapse
|
14
|
Bao C, Zhu L, Lin Q, Tian H. Building biomedical materials using photochemical bond cleavage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1647-62. [PMID: 25655424 DOI: 10.1002/adma.201403783] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/02/2014] [Indexed: 05/06/2023]
Abstract
Light can be used as an external trigger to precisely determine where and when a process is initiated as well as how much of the process is being consumed. Phototriggers are a type of photoresponsive functional group that undergo an irreversible photolysis reaction by selectively breaking a chemical bond, enabling three fundamental functions: the photoactivation of fluorescent and bioactive molecules; the photocleavable degradation of macromolecular materials; and the photorelease of drugs, active groups, or surface charges from carriers and interfaces. With the expanded applications of light-controlled technology, particularly in living systems, new challenges and improvements of phototriggers are required to fulfill the demands for better sensitivity, faster kinetics, and more-demanding biomedical applications. Here, improvements to several conventional phototriggers are highlighted, and their notable, representative biomedical applications and their challenges are discussed.
Collapse
Affiliation(s)
- Chunyan Bao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| | | | | | | |
Collapse
|
15
|
Piloto AM, Hungerford G, Sutter JU, Soares AM, Costa SP, Gonçalves MST. Photoactivable heterocyclic cages in a comparative release study of butyric acid as a model drug. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Mahire RR, Agrawal DS, Patil DK, More DH. Fabrication of organogels achieved by prodrug-based organogelators of ketoprofen. RSC Adv 2014. [DOI: 10.1039/c4ra03688c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Jin M, Xu H, Hong H, Bao C, Pu H, Wan D, Zhu L. Micropatterning of polymethacrylates by single- or two-photon irradiation using π-conjugatedo-nitrobenzyl ester phototrigger as side chains. J Appl Polym Sci 2013. [DOI: 10.1002/app.39683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ming Jin
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Haoran Xu
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Hong Hong
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Chunyan Bao
- East China University of Science and Technology; Shanghai; 200237; China
| | - Hongting Pu
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Decheng Wan
- Institute of Functional Polymer Materials, School of Materials Science & Engineering, Tongji University; Shanghai; 201804; China
| | - Linyong Zhu
- East China University of Science and Technology; Shanghai; 200237; China
| |
Collapse
|
18
|
Bio M, Rajaputra P, Nkepang G, Awuah SG, Hossion AML, You Y. Site-Specific and Far-Red-Light-Activatable Prodrug of Combretastatin A-4 Using Photo-Unclick Chemistry. J Med Chem 2013; 56:3936-42. [DOI: 10.1021/jm400139w] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Moses Bio
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma City,
Oklahoma 73117, United States
| | - Pallavi Rajaputra
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma City,
Oklahoma 73117, United States
| | - Gregory Nkepang
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma City,
Oklahoma 73117, United States
| | - Samuel G. Awuah
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma City,
Oklahoma 73117, United States
| | - Abugafar M. L. Hossion
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma City,
Oklahoma 73117, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences and ‡Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma City,
Oklahoma 73117, United States
| |
Collapse
|
19
|
Hossion AML, Bio M, Nkepang G, Awuah SG, You Y. Visible Light Controlled Release of Anticancer Drug through Double Activation of Prodrug. ACS Med Chem Lett 2013; 4:124-7. [PMID: 24900573 DOI: 10.1021/ml3003617] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022] Open
Abstract
We designed and synthesized a novel double activatable prodrug system (drug-linker-deactivated photosensitizer), containing a photocleavable aminoacrylate-linker and a deactivated photosensitizer, to achieve the spatiotemporally controlled release of parent drugs using visible light. Three prodrugs of CA-4, SN-38, and coumarin were prepared to demonstrate the activation of deactivated photosensitizer by cellular esterase and the release of parent drugs by visible light (540 nm) via photounclick chemistry. Among these prodrugs, nontoxic coumarin prodrug was used to quantify the release of parent drug in live cells. About 99% coumarin was released from the coumarin prodrug after 24 h of incubation with MCF-7 cells followed by irradiation with low intensity visible light (8 mW/cm(2)) for 30 min. Less toxic prodrugs of CA-4 and SN-38 killed cancer cells as effectively as free drugs after the double activation.
Collapse
Affiliation(s)
- Abugafar M. L. Hossion
- Department of Pharmaceutical
Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Moses Bio
- Department of Pharmaceutical
Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman,
Oklahoma 73019, United States
| | - Gregory Nkepang
- Department of Pharmaceutical
Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman,
Oklahoma 73019, United States
| | - Samuel G. Awuah
- Department of Pharmaceutical
Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman,
Oklahoma 73019, United States
| | - Youngjae You
- Department of Pharmaceutical
Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman,
Oklahoma 73019, United States
| |
Collapse
|