1
|
Kost C, Scheffer U, Kalden E, Göbel MW. Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols. ChemistryOpen 2025; 14:e202400157. [PMID: 39460429 PMCID: PMC11808266 DOI: 10.1002/open.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 10/28/2024] Open
Abstract
In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pKa of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.
Collapse
Affiliation(s)
- Catharina Kost
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Elisabeth Kalden
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Michael Wilhelm Göbel
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| |
Collapse
|
2
|
Yang R, Suresh S, Velmurugan R. Synthesis of Quinoline-2-Carboxylic Acid Aryl Ester and Its Apoptotic Action on PC3 Prostate Cancer Cell Line. Appl Biochem Biotechnol 2023; 195:4818-4831. [PMID: 36445681 DOI: 10.1007/s12010-022-04258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
The aim of the present study is to synthesise an aryl ester compound from quinoline-2-carboxylic acid to evaluate its apoptotic, cell cycle blockade, and antiproliferative activity on the prostate cancer cell lines (PC3). Chromatographic and spectroscopic analysis was used to identify the synthesised carboxylic acid compound. The synthesised compound was treated with a PC3 cell line for 24 h with control. The cells were treated at various concentration ranges of 0, 3.91, 7.81, 15.63, 31.25, 62.5, 125, 250, 500, and 1000 µg/mL each. The cytotoxicity effect was studied by MTT assay, and their anticancer activity was further evaluated using cell cycle analysis, DNA fragmentation assay, acridine orange-ethidium bromide staining, and Western blot analysis. The end antiproliferative result showed that PC3 cell viability decreases in a concentration-dependent manner and the synthesised compound exhibited potent cytotoxicity against PC3 cells with an IC50 value of 26 µg/mL at the concentration of 125 µg. The increase in the number of apoptotic cells was observed after treating PC3 cells with the sample in double-staining methods. S phase of the cell cycle was significantly blocked by the test sample, and a typical ladder pattern of internucleosomal fragmentation was observed. A decrease in the live cells was observed with the sample in AO/ET-BR. A significant increase in the Bax expression and a decrease in Bcl-2 expression observed enhance the activity of caspases-7 and -9. The synthesised compound had shown to possess excellent cytotoxic effect through inducing apoptosis, especially causing cell cycle arrest at the S phase.
Collapse
Affiliation(s)
- Rongchen Yang
- Department of Urology, Qingdao West Coast New Area Central Hospital, No. 7, Huangpujiang Road, Huangdao District, Qingdao City, 266555, China
| | - Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chennai, Tamil Nadu, 603203, India
| | - Ramaiyan Velmurugan
- Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
3
|
Wang J, Gou Y, Zhang Z, Yu P, Qi J, Qin Q, Sun H, Wu X, Liang H, Yang F. Developing an Anticancer Copper(II) Multitarget Pro-Drug Based on the His146 Residue in the IB Subdomain of Modified Human Serum Albumin. Mol Pharm 2018; 15:2180-2193. [PMID: 29722993 DOI: 10.1021/acs.molpharmaceut.8b00045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Designing a multitarget anticancer drug with improved delivery and therapeutic efficiency in vivo presents a great challenge. Thus, we proposed to design an anticancer multitarget metal pro-drug derived from thiosemicarbazone based on the His146 residue in the IB subdomain of palmitic acid (PA)-modified human serum albumin (HSA-PA). The structure-activity relationship of six Cu(II) compounds with 6-methyl-2-formylpyridine-4N-substituted thiosemicarbazones were investigated, and then the multitarget capability of 4b was confirmed in cancer cell DNA and proteins. The structure of the HSA-PA-4b complex (HSA-PA-4b) revealed that 4b is bound to the IB subdomain of modified HSA, and that His146 replaces the nitrate ligand in 4b, coordinating with Cu2+, whereas PA is complexed with the IIA subdomain by its carboxyl forming hydrogen bonds with Lys199 and His242. In vivo data showed that 4b and the HSA-PA-4b complex inhibit lung tumor growth, and the targeting ability and therapeutic efficacy of the PA-modified HSA complex was stronger than 4b alone.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| | - Yi Gou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China.,School of Pharmacy , Nantong University , Nantong , Jiangsu 226000 , China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| | - Ping Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| | - Jinxu Qi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| | - Qipin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| | - Hongbin Sun
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research , University of Chicago , Chicago , Illinois 60637 , United States
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin , Guangxi 541003 , China
| |
Collapse
|
4
|
Mikkola S, Lönnberg T, Lönnberg H. Phosphodiester models for cleavage of nucleic acids. Beilstein J Org Chem 2018; 14:803-837. [PMID: 29719577 PMCID: PMC5905247 DOI: 10.3762/bjoc.14.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
5
|
Won AR, Kim R, Jung MJ, Kim SK, Lee YA. Dependence of the base sequence on the [Cu(2,2′-bipyridine)2(NO3)](NO3)-induced oxidative DNA cleavage probed by linear dichroism. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Lin YJ, Wu YC, Mani V, Huang ST, Huang CH, Hu YC, Peter Shan HC. Designing anthraquinone–pyrrole redox intercalating probes for electrochemical gene detection. Biosens Bioelectron 2016; 79:294-9. [DOI: 10.1016/j.bios.2015.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
7
|
Synthesis, DNA-cleaving activities and cytotoxicities of the copper(II) complexes of pyrrole-polyamide dimers tethered with carboxylate-containing linkers. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Chitrapriya N, Shin JH, Hwang IH, Kim Y, Kim C, Kim SK. Synthesis, DNA binding profile and DNA cleavage pathway of divalent metal complexes. RSC Adv 2015. [DOI: 10.1039/c5ra10695h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Divalent metal complexes of dipyridylamine ligand with an anthracene moiety induced considerable oxidative DNA cleavage in the presence hydrogen peroxide and dioxygen.
Collapse
Affiliation(s)
| | - Jong Heon Shin
- Department of Chemistry
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - In Hong Hwang
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Republic of Korea
| | - Youngmee Kim
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Republic of Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Republic of Korea
| | - Seog K. Kim
- Department of Chemistry
- Yeungnam University
- Gyeongsan
- Republic of Korea
| |
Collapse
|
9
|
Sun YG, Guo Y, Sun D, Zhu MC, Ding F, Liu YN, Gao EJ, Wang SJ, Xiong G, Dragutan I, Dragutan V. Palladium(II) and Platinum(II) Complexes Containing Six-Membered N-Heterocyclic Ligands: Synthesis, Characterization, Interaction with DNA, DFT Calculation, and Cytotoxicity. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Yang JW, Lin YL, Dong C, Zhou CQ, Chen JX, Wang B, Zhou ZZ, Sun B, Chen WH. Synthesis, hydrolytic DNA-cleaving activities and cytotoxicities of EDTA analogue-tethered pyrrole-polyamide dimer-based Ce(IV) complexes. Eur J Med Chem 2014; 87:168-74. [PMID: 25247773 DOI: 10.1016/j.ejmech.2014.09.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
Abstract
Two EDTA analogue-tethered C2-symmetrical dimeric monopyrrole-polyamide 5 and dipyrrole-polyamide 6, and their corresponding Ce(IV) complexes Ce-5 and Ce-6 were synthesized and fully characterized. Agarose gel electrophoresis studies on pBR322 DNA cleavage indicate that complexes Ce-5 and Ce-6 exhibited potent DNA-cleaving activities under physiological conditions. The maximal first-order rate constants (kmax's) were (0.42 ± 0.02) h(-1) for Ce-5 and (0.52 ± 0.02) h(-1) for Ce-6, respectively, suggesting that both complexes catalyzed the cleavage of supercoiled DNA by up to approximately 10(8)-fold. Complex Ce-6 exhibited ca 10-fold higher overall catalytic activity (kmax/KM) than Ce-5, which may be ascribed to its higher DNA-binding affinity. Inhibition experiments and a model study convincingly suggest that both complexes Ce-5 and Ce-6 functioned as hydrolytic DNA-cleavers. In addition, both complexes were found to display moderate inhibitory activity toward A549 and HepG-2 cells.
Collapse
Affiliation(s)
- Jian-Wei Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yan-Ling Lin
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Cheng Dong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Chun-Qiong Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Jin-Xiang Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhong-Zhen Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Bin Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Hua Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
11
|
Rescifina A, Zagni C, Varrica MG, Pistarà V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem 2014; 74:95-115. [PMID: 24448420 DOI: 10.1016/j.ejmech.2013.11.029] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/28/2022]
Abstract
The interaction of small molecules with DNA plays an essential role in many biological processes. As DNA is often the target for majority of anticancer and antibiotic drugs, study about the interaction of drug and DNA has a key role in pharmacology. Moreover, understanding the interactions of small molecules with DNA is of prime significance in the rational design of more powerful and selective anticancer agents. Two of the most important and promising targets in cancer chemotherapy include DNA alkylating agents and DNA intercalators. For these last the DNA recognition is a critical step in their anti-tumor action and the intercalation is not only one kind of the interactions in DNA recognition but also a pivotal step of several clinically used anti-tumor drugs such as anthracyclines, acridines and anthraquinones. To push clinical cancer therapy, the discovery of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. The intercalative binding properties of such molecules can also be harnessed as diagnostic probes for DNA structure in addition to DNA-directed therapeutics. Moreover, the problem of intercalation site formation in the undistorted B-DNA of different length and sequence is matter of tremendous importance in molecular modeling studies and, nowadays, three models of DNA intercalation targets have been proposed that account for the binding features of intercalators. Finally, despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. Therefore, a default protocol to identify DNA binding modes which uses a modified canonical DNA as receptor is needed.
Collapse
Affiliation(s)
- Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Chiara Zagni
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maria Giulia Varrica
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonino Corsaro
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
12
|
Marutheeswaran S, Pancharatna PD, Balakrishnarajan MM. Density functional studies on (NCH) n azagraphane: activated surface for organocatalysis. Phys Chem Chem Phys 2014; 16:19861-5. [DOI: 10.1039/c4cp03429e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactive surface of azagraphane formed by alternate nitrogen substitution on graphane contains the basic nitrogen as well as the activated C–H with hydridic nature owing to the anomeric effect.
Collapse
Affiliation(s)
- S. Marutheeswaran
- Chemical Information Sciences lab
- Department of chemistry
- Pondicherry university
- Puducherry, India
| | - Pattath D. Pancharatna
- Chemical Information Sciences lab
- Department of chemistry
- Pondicherry university
- Puducherry, India
| | | |
Collapse
|
13
|
Fang M, Wei L, Lin Z, Lu GY. Synthesis and DNA Cleavage Properties of Triazacrown Derivatives. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|