1
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
2
|
Oh XY, Nguyen TM, Ye E, Luo HK, Singh PND, Loh XJ, Truong VX. Visible Light Degradable Acridine-Containing Polyurethanes in an Aqueous Environment. ACS Macro Lett 2023:690-696. [PMID: 37172115 DOI: 10.1021/acsmacrolett.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Light degradable polymers hold significant promise in a wide range of applications including the fabrication of optically recyclable materials, responsive coatings and adhesives, and controlled drug delivery. Here, we report the synthesis of polyurethanes that can be degraded under irradiation of visible light (≤450 nm) from commercial LED (3-15 W) light sources. The photolysis occurs in an aqueous environment via photocleavage of an acridine moiety incorporated within the backbone of the polymer chains. Analysis of the quantum yield as a function of wavelength reveals highly efficient photoreactivity at up to 440 nm activation, which is red-shifted compared to the UV-vis absorbance of the chromophore. The potential of our chemical system in biomaterials is demonstrated by the fabrication of an in situ forming hydrogel that can be degraded by visible light.
Collapse
Affiliation(s)
- Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pradeep N D Singh
- Department of Chemistry, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Vinh Xuan Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
3
|
A Review on the Synthesis of Fluorescent Five- and Six-Membered Ring Azaheterocycles. Molecules 2022; 27:molecules27196321. [PMID: 36234858 PMCID: PMC9570872 DOI: 10.3390/molecules27196321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Azaheterocycles rings with five and six members are important tools for the obtaining of fluorescent materials and fluorescent sensors. The relevant advances in the synthesis of azaheterocyclic derivatives and their optical properties investigation, particularly in the last ten years, was our main objective on this review. The review is organized according to the size of the azaheterocycle ring, 5-, 6-membered and fused ring azaheterocycles, as well as our recent contribution on this research field. In each case, the reaction pathways with reaction condition and obtained yield, and evaluation of the optical properties of the obtained products were briefly presented.
Collapse
|
4
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Palm WU. Photochemistry of 9-acridinecarboxaldehyde in aqueous media. Photochem Photobiol Sci 2018; 17:964-974. [PMID: 29915836 DOI: 10.1039/c8pp00185e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dark and photolysis reactions in solution were investigated for 9-acridinecarboxaldehyde (ACL). ACL reacts in the dark at T = 20 °C and pH = 7.0 in an air saturated solution to the main product 9-acridinecarboxylic acid (ACA) and to the minor product 9-acridinemethanol (ACM) with a lifetime of τ = 4.3 days. The dissociation constant of the base ACLH+ was determined to be pKa ± σ = 4.38 ± 0.04. The photolysis of ACL was investigated using a polychromatic Xe-light source. The quantum yield in aqueous solution at T = 20 °C in a concentration range of c0(ACL) = 0.18-16.6 μM for pH > pKa and for nitrogen, air and oxygen aerated solutions was found to be Φ ± σ = (0.015 ± 0.003) mol/mol, independent from concentration. The quantum yield of ACLH+, i.e. for pH ≪ pKa, is by a factor of 2 higher (Φ = 0.029 mol/mol). Quantum yields in methanol and isopropanol are slightly lower compared to water and in acetone lower by about a factor of 20. In acetonitrile ACL was found to be practically photostable. Minimum lifetimes in sunlight for a measurement on September 5, 2017 were in the range of τ = 5-10 minutes. The diurnal photolysis of ACL in sunlight was satisfactory explained using the mean quantum yield, the absorption spectrum and photon fluxes with suitable corrections for cloudiness and the dimensions of the setup. For low concentrations ACR is formed with a yield of practically 100% in the photolysis reaction. However, with increasing concentration of ACL yields of ACR decrease and yields of ACA increase. 9(10H)-Acridinone and ACM were always detected as minor products with yields below 2%. 9-Methylacridine was never detected in any reaction of ACL. Strong indications are presented of a photolysis reaction of ACL in a river located in Lower Saxony (Germany) with a corresponding equimolar formation of ACR. ACL is therefore a direct precursor of ACR in natural surface water.
Collapse
Affiliation(s)
- Wolf-Ulrich Palm
- Institute of Sustainable Chemistry and Environmental Chemistry, Leuphana University, Universitätsallee 1, 21335 Lüneburg, Germany.
| |
Collapse
|
6
|
Fonseca ASC, Soares AMS, Gonçalves MST, Costa SPG. Photolabile protection for amino acids: studies on the release from novel benzoquinolone cages. Amino Acids 2015. [PMID: 26202592 DOI: 10.1007/s00726-015-2048-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a novel fused nitrogen heterocycle, benzoquinolone, for evaluation as a photocleavable protecting group is described for the first time by coupling to model amino acids (alanine, phenylalanine and glutamic acid). Conversion of the phenylalanine ester conjugate to the thionated derivative was accomplished by reaction with Lawesson's reagent. Photocleavage studies of the carbonyl and thiocarbonyl benzoquinolone conjugates in various solvents and at different wavelengths (300, 350 and 419 nm) showed that the most interesting result was obtained at 419 nm for the thioconjugate, revealing that the presence of the thiocarbonyl group clearly improved the photolysis rates, giving practicable irradiations times for the release of the amino acids (less than 1 min).
Collapse
Affiliation(s)
- Andrea S C Fonseca
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana M S Soares
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Sameiro T Gonçalves
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Susana P G Costa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
7
|
Piloto AM, Hungerford G, Sutter JU, Soares AM, Costa SP, Gonçalves MST. Photoactivable heterocyclic cages in a comparative release study of butyric acid as a model drug. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Piloto AM, Costa SP, Gonçalves MST. Wavelength-selective cleavage of o-nitrobenzyl and polyheteroaromatic benzyl protecting groups. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Jana A, Saha B, Banerjee DR, Ghosh SK, Nguyen KT, Ma X, Qu Q, Zhao Y, Singh NDP. Photocontrolled Nuclear-Targeted Drug Delivery by Single Component Photoresponsive Fluorescent Organic Nanoparticles of Acridin-9-Methanol. Bioconjug Chem 2013; 24:1828-39. [DOI: 10.1021/bc400170r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Avijit Jana
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | | | | | | | - Kim Truc Nguyen
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xing Ma
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Qiuyu Qu
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | | |
Collapse
|
10
|
Piloto AM, Hungerford G, Costa SPG, Gonçalves MST. Photoinduced Release of Neurotransmitter Amino Acids from Coumarin-Fused Julolidine Ester Cages. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Jana A, Saha B, Karthik S, Barman S, Ikbal M, Ghosh SK, Pradeep Singh ND. Fluorescent photoremovable precursor (acridin-9-ylmethyl)ester: synthesis, photophysical, photochemical and biological applications. Photochem Photobiol Sci 2013; 12:1041-52. [DOI: 10.1039/c3pp25362g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Fernandes MJG, Costa SPG, Gonçalves MST. Synthesis and light triggered release of catecholamines from pyrenylmethyl carbamate cages. NEW J CHEM 2013. [DOI: 10.1039/c3nj00247k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|