1
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024; 124:12305-12380. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Ni K, Dawe LN, Sarjeant AA, Kozak CM. Controlled synthesis of polycarbonate diols and their polylactide block copolymers using amino-bis(phenolate) chromium hydroxide complexes. Dalton Trans 2023; 52:17249-17257. [PMID: 37966801 DOI: 10.1039/d3dt03168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A diamine-bis(phenolate) chromium(III) complex, CrOH[L] ([L] = dimethylaminoethylamino-N,N-bis(2-methylene-4,6-tert-butylphenolate)), 2, in the presence of tetrabutylammonium hydroxide effectively copolymerizes CO2 and cyclohexene oxide (CHO) into a polycarbonate diol. The resultant low molar mass (6.3 kg mol-1) diol is used to initiate ring-opening polymerization of rac-lactide with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) giving ABA-type block copolymers with good molar mass control through varying rac-LA-to-diol loadings and with narrow dispersities. As the degree of rac-LA incorporation increases, the glass transition temperatures (Tg) are found to decrease, whereas decomposition temperatures (Td) increase. (Diphenylphosphonimido)triphenylphosphorane (Ph2P(O)NPPh3) was used as a neutral nucleophilic cocatalyst with 2, giving phosphorus-containing polycarbonates with an Mn value of 28.5 kg mol-1, a dispersity of 1.13, a Tg value of 110 °C and a Td value of over 300 °C. A related Cr(III) complex (4) having a methoxyethyl pendent group rather than a dimethylaminoethyl group was structurally characterized as a hydroxide-bridged dimer.
Collapse
Affiliation(s)
- Kaijie Ni
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5S7, Canada.
| | - Louise N Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, N2L 3C5, Canada
| | - Amy A Sarjeant
- Drug Product Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, USA
| | - Christopher M Kozak
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5S7, Canada.
| |
Collapse
|
3
|
Watanabe S, Nishio H, Oyaizu K. Facile synthesis of telechelic poly(phenylene sulfide)s by means of electron-deficient aromatic sulfonium electrophiles. RSC Adv 2023; 13:32363-32370. [PMID: 37928850 PMCID: PMC10623243 DOI: 10.1039/d3ra06262g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
We report the facile synthesis of telechelic poly(phenylene sulfide) (PPS) derivatives bearing functional groups at both termini. α,ω-Dihalogenated dimethyl-substituted PPS were obtained in high yield with a high degree of end-functionalization by using soluble poly(2,6-dimethyl-1,4-phenylenesulfide) (PMPS) and 4,4'-dihalogenated diphenyl disulfide (X-DPS, X = Cl, Br) as a precursor and an end-capping agent, respectively. Further end-functionalization is achieved through cross-coupling reactions; particularly, the Kumada-Tamao cross-coupling reaction of bromo-terminated telechelic PMPS and a vinylated Grignard reagent afforded end-vinylated PMPS with thermosetting properties. This synthetic approach can be applied to the preparation of various aromatic telechelic polymers with the desired structures and functionalities.
Collapse
Affiliation(s)
- Seigo Watanabe
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Hiromichi Nishio
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| |
Collapse
|
4
|
Martínez de Sarasa Buchaca M, de la Cruz-Martínez F, Sánchez-Barba LF, Tejeda J, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. One-pot terpolymerization of CHO, CO 2 and L-lactide using chloride indium catalysts. Dalton Trans 2023; 52:3482-3492. [PMID: 36843480 DOI: 10.1039/d3dt00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Ring-opening copolymerization reactions of epoxides, carbon dioxide and cyclic esters to produce copolymers is a promising strategy to prepare CO2-based polymeric materials. In this contribution, bimetallic chloride indium complexes have been developed as catalysts for the copolymerization processes of cyclohexene oxide, carbon dioxide and L-lactide under mild reaction conditions. The catalysts displayed good catalytic activity and excellent selectivity towards the preparation of poly(cyclohexene carbonate) (PCHC) at one bar CO2 pressure in the absence of a co-catalyst. Additionally, polyester-polycarbonate copolymers poly(lactide-co-cyclohexene carbonate) (PLA-co-PCHC) were obtained via an one-pot one-step route without the use of a co-catalyst. The degree of incorporation of carbon dioxide can be easily modulated by changing the CO2 pressure and the monomer feed, resulting in copolymers with different thermal properties.
Collapse
Affiliation(s)
- Marc Martínez de Sarasa Buchaca
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Felipe de la Cruz-Martínez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Juan Tejeda
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - José A Castro-Osma
- Universidad de Castilla-La Mancha, Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, 02071-Albacete, Spain.
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| |
Collapse
|
5
|
Liu J, Jia M, Gnanou Y, Feng X. One-Pot Synthesis of CO 2-Based Polylactide- b-Poly(ether carbonate)- b-Polylactide Triblock Copolymers and Their Mechanical Properties. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Jingjing Liu
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Mingchen Jia
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
6
|
Wang XW, Hui JW, Li YT, Gu YR, Li ZB. Facile Synthesis of Polycarbonate Diol via Copolymerization of CO2 and Cyclohexene Oxide Catalysed by a Combination of One-Component Phosphonium Borane Lewis Pair and Water. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Zhou Y, Gao Z, Hu C, Meng S, Duan R, Sun Z, Pang X. Facile Synthesis of Gradient Polycarbonate–Polyester Terpolymers from Monomer Mixtures Mediated by an Asymmetric Chromium Complex. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zan Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Shuaiming Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Liu GL, Ko BT. Alternating copolymerization of carbon dioxide with alicyclic epoxides using bimetallic nickel(II) complex catalysts containing benzotriazole-based salen-type derivatives: Catalysis and kinetics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Liang ZZ, Li X, Hu CY, Duan RL, Wang XH, Pang X, Chen XS. Copolymerization of PO/CO2 and Lactide by a Dinuclear Salen-Cr(III) Complex: Gradient and Random Copolymers with Modificable Microstructure. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2727-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Preparation of carbon dioxide, propylene oxide, and norbornene dianhydride terpolymers catalyzed via dinuclear cobalt complexes: Effective improvement of thermal, mechanical, and degradation properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Li MJ, Su YC, Liu GL, Ko BT. Dinuclear Nickel Complexes Using Hexadentate Benzothiazole-Based Diamine-Bisphenolate Ligands: Highly Active Catalysts for Copolymerization of Carbon Dioxide with Epoxides. Inorg Chem 2022; 61:12835-12846. [PMID: 35925764 DOI: 10.1021/acs.inorgchem.2c01972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We reported for the first time the utilization of hexadentate benzothiazole-based diamine-bisphenolate ligands to synthesize structurally well-characterized dinickel dicarboxylate complexes and studied their catalysis for copolymerization of carbon dioxide with epoxides. Dinickel carboxylate complexes having a 1,3-diamine-bridged backbone were demonstrated to be high-performance catalysts for alternating copolymerization of CO2 and cyclohexene oxide (CHO) with high product selectivity. Particularly, acetate-supported nickel complex 2 enabled us to promote such CO2-copolymerization of this kind with a maximum turnover frequency of up to 2600 h-1 and gave good molecular weight controllability under high-pressure conditions. It is worth noting that bimetallic Ni catalyst 2 was also capable of mediating the catalytic CO2-polymerization of alicyclic epoxides at atmospheric pressure. Kinetic investigations of CO2/CHO copolymerization by 2 allowed us to determine the rate equation of -d[CHO]/dt = kp[2]1[CHO]1, and such catalysis exhibited a first-order dependence on both dinickel complex and CHO concentrations.
Collapse
Affiliation(s)
- Mu-Jia Li
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Patil N, Gnanou Y, Feng X. Orthogonally grown polycarbonate and polyvinyl block copolymers from mechanistically distinct (co)polymerizations. Polym Chem 2022. [DOI: 10.1039/d2py00442a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanistically distinct polymerization systems can afford unique block copolymers that would not be accessible by mere sequential polymerization.
Collapse
Affiliation(s)
- Naganatha Patil
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
13
|
Tsao WF, Liu GL, Su YC, Lin CC, Ko BT. Bimetallic Nickel Complexes Containing Benzotriazole-Derived Diamine-Bisphenolate Ligands as Highly Active Catalysts for the Copolymerization of Carbon Dioxide with Cyclohexene Oxide: Synthesis, Catalysis, and Kinetics. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Fang Tsao
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chu-Chieh Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
14
|
Chen Y, Wang W, Xie D, Wu L, Zhang C. Synthesis of
CO
2
‐based functional poly(carbonate‐co‐lactide). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yao Chen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Wenchuan Wang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Dong Xie
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Lili Wu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Chaocan Zhang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| |
Collapse
|
15
|
Xia X, Suzuki R, Takojima K, Jiang DH, Isono T, Satoh T. Smart Access to Sequentially and Architecturally Controlled Block Polymers via a Simple Catalytic Polymerization System. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00382] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaochao Xia
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kaoru Takojima
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Dai-Hua Jiang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Institute of Polymer Science and Engineering, National Taiwan University, 106 Taipei, Taiwan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
16
|
Chidara VK, Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X. Triethylborane-Assisted Synthesis of Random and Block Poly(ester-carbonate)s through One-Pot Terpolymerization of Epoxides, CO 2, and Cyclic Anhydrides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02825] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vamshi K. Chidara
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Senthil K. Boopathi
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
17
|
Su YC, Ko BT. Alternating Copolymerization of Carbon Dioxide with Epoxides Using Highly Active Dinuclear Nickel Complexes: Catalysis and Kinetics. Inorg Chem 2021; 60:852-865. [PMID: 33401910 DOI: 10.1021/acs.inorgchem.0c02902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel series of well-defined dicarboxylate dinuclear nickel complexes containing benzotriazole based 1,3-diamine-bisphenolate (1,3-DiBTP) ligands were readily synthesized through a one-pot procedure, which were highly active single-component catalysts for copolymerization of CO2 and epoxides. X-ray structural determination of dinickel complexes 1-11 indicates that the DiBTP ligand acted as a N,O,N,N,O,N-hexadentate framework to chelate two nickel atoms, and two carboxylates are nonequivalently coordinated. The best benzoate-bonded dinickel catalyst 6 displayed the effective activity for both high-pressure and 1 atm CO2-copolymerization of cyclohexene oxide (CHO) in a controllable manner. Noteworthily, a high turnover frequency up to 9600 h-1 could be reached at 140 °C and a CO2 pressure of 20.7 bar utilizing a low catalyst loading of 0.01 mol %, and the same copolymerization conditions were capable of producing narrowly dispersed poly(cyclohexene carbonate) (PCHC) having >99% polycarbonate selectivity. In addition to CO2/CHO copolymerization, 4-vinyl-1,2-cyclohexene oxide or cyclopentene oxide was also applied to efficiently copolymerize CO2 under conditions of 80 °C and 20.7 bar initial CO2 pressure. Kinetic studies of CO2/CHO copolymerization catalyzed by 6 were investigated. Such polymerization revealed first-order dependence for both catalyst 6 and CHO concentrations, and the activation energy for PCHC generation by 6 is 57.69 kJ mol-1. A possible polymerization mechanism for CO2-copolymerization of CHO was proposed based on kinetics and structural studies of the obtained polycarbonates.
Collapse
Affiliation(s)
- Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
18
|
Behl M, Balk M, Lützow K, Lendlein A. Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Polycarbonate-block-polycycloalkenes via epoxide/carbon dioxide copolymerization and ring-opening metathesis polymerization. Polym J 2020. [DOI: 10.1038/s41428-020-00423-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
|
21
|
Design and structure of catalysts: syntheses of carbon dioxide-based copolymers with cyclic anhydrides and/or cyclic esters. Polym J 2020. [DOI: 10.1038/s41428-020-0374-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Catalysis and kinetics for alternating copolymerization of carbon dioxide with epoxides using dinuclear nickel catalysts of pyrazolyl based diamine-bisphenolate ligands. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
de la Cruz-Martínez F, Martínez de Sarasa Buchaca M, Martínez J, Tejeda J, Fernández-Baeza J, Alonso-Moreno C, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorg Chem 2020; 59:8412-8423. [PMID: 32452688 DOI: 10.1021/acs.inorgchem.0c00835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel bimetallic zinc acetate complexes supported by heteroscorpionate ligands have been developed for the ring-opening copolymerization of cyclohexene oxide and CO2 and the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2. Heteroscorpionate ligands precursors L1-L3 were reacted with two equivalents of zinc acetate to afford the dinuclear zinc complexes [{Zn(κ3-bpzappe)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (1), [{Zn(κ3-bpzbdmape)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (2), and [{Zn(κ3-bpzbdeape)}(μ-O2CCH3)3{Zn(HO2CCH3)}] (3) in excellent yields. The molecular structure of these compounds was determined spectroscopically and confirmed by X-ray diffraction analysis. Zinc acetate complexes 1-3 were screened as catalysts for the copolymerization of cyclohexene oxide and CO2 to produce poly(cyclohexene)carbonate, and complex 3 was found to be the most active catalyst for this process in the absence of a cocatalyst. Furthermore, the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2 was studied using the combination of complex 3 and 4-dimethylaminopyridine as catalyst system yielding the corresponding polyester-polycarbonate materials.
Collapse
Affiliation(s)
- Felipe de la Cruz-Martínez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Marc Martínez de Sarasa Buchaca
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Javier Martínez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain.,Laboratorio de Quı́mica Inorgánica, Facultad de Quı́mica, Universidad Católica de Chile Casilla 306, Santiago-22 6094411, Chile
| | - Juan Tejeda
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Juan Fernández-Baeza
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Carlos Alonso-Moreno
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071-Albacete, Spain
| | - Ana M Rodríguez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - José A Castro-Osma
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071-Albacete, Spain
| | - Agustín Lara-Sánchez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| |
Collapse
|
24
|
Gregory GL, Sulley GS, Carrodeguas LP, Chen TTD, Santmarti A, Terrill NJ, Lee KY, Williams CK. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization. Chem Sci 2020; 11:6567-6581. [PMID: 34094122 PMCID: PMC8159401 DOI: 10.1039/d0sc00463d] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Collapse
Affiliation(s)
- Georgina L Gregory
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Gregory S Sulley
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Thomas T D Chen
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alba Santmarti
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Nicholas J Terrill
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Harwell OX11 0DE UK
| | - Koon-Yang Lee
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Charlotte K Williams
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
25
|
Sulley G, Gregory GL, Chen TTD, Peña Carrodeguas L, Trott G, Santmarti A, Lee KY, Terrill NJ, Williams CK. Switchable Catalysis Improves the Properties of CO 2-Derived Polymers: Poly(cyclohexene carbonate- b-ε-decalactone- b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics. J Am Chem Soc 2020; 142:4367-4378. [PMID: 32078313 PMCID: PMC7146851 DOI: 10.1021/jacs.9b13106] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/03/2023]
Abstract
Carbon dioxide/epoxide copolymerization is an efficient way to add value to waste CO2 and to reduce pollution in polymer manufacturing. Using this process to make low molar mass polycarbonate polyols is a commercially relevant route to new thermosets and polyurethanes. In contrast, high molar mass polycarbonates, produced from CO2, generally under-deliver in terms of properties, and one of the most widely investigated, poly(cyclohexene carbonate), is limited by its low elongation at break and high brittleness. Here, a new catalytic polymerization process is reported that selectively and efficiently yields degradable ABA-block polymers, incorporating 6-23 wt % CO2. The polymers are synthesized using a new, highly active organometallic heterodinuclear Zn(II)/Mg(II) catalyst applied in a one-pot procedure together with biobased ε-decalactone, cyclohexene oxide, and carbon dioxide to make a series of poly(cyclohexene carbonate-b-decalactone-b-cyclohexene carbonate) [PCHC-PDL-PCHC]. The process is highly selective (CO2 selectivity >99% of theoretical value), allows for high monomer conversions (>90%), and yields polymers with predictable compositions, molar mass (from 38-71 kg mol-1), and forms dihydroxyl telechelic chains. These new materials improve upon the properties of poly(cyclohexene carbonate) and, specifically, they show good thermal stability (Td,5 ∼ 280 °C), high toughness (112 MJ m-3), and very high elongation at break (>900%). Materials properties are improved by precisely controlling both the quantity and location of carbon dioxide in the polymer chain. Preliminary studies show that polymers are stable in aqueous environments at room temperature over months, but they are rapidly degraded upon gentle heating in an acidic environment (60 °C, toluene, p-toluene sulfonic acid). The process is likely generally applicable to many other lactones, lactides, anhydrides, epoxides, and heterocumulenes and sets the scene for a host of new applications for CO2-derived polymers.
Collapse
Affiliation(s)
- Gregory
S. Sulley
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Thomas T. D. Chen
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Leticia Peña Carrodeguas
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gemma Trott
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Alba Santmarti
- Department
of Aeronautics, Imperial College London, London SW7 2AZ, U.K.
| | - Koon-Yang Lee
- Department
of Aeronautics, Imperial College London, London SW7 2AZ, U.K.
| | - Nicholas J. Terrill
- Beamline
I22, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Charlotte K. Williams
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
26
|
Huang J, Worch JC, Dove AP, Coulembier O. Update and Challenges in Carbon Dioxide-Based Polycarbonate Synthesis. CHEMSUSCHEM 2020; 13:469-487. [PMID: 31769174 DOI: 10.1002/cssc.201902719] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The utilization of carbon dioxide as a comonomer to produce polycarbonates has attracted a great deal of attention from both industrial and academic communities because it promises to replace petroleum-derived plastics and supports a sustainable environment. Significant progress in the copolymerization of cyclic ethers (e.g., epoxide, oxetane) and carbon dioxide has been made in recent decades, owing to the rapid development of catalysts. In this Review, the focus is to summarize and discuss recent advances in the development of homogeneous catalysts, including metal- and organo-based complexes, as well as the preparation of carbon dioxide-based block copolymer and functional polycarbonates.
Collapse
Affiliation(s)
- Jin Huang
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, 7000, Mons, Belgium
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, 7000, Mons, Belgium
| |
Collapse
|
27
|
Su YC, Tsui CH, Tsai CY, Ko BT. Highly active bimetallic nickel catalysts for alternating copolymerization of carbon dioxide with epoxides. Polym Chem 2020. [DOI: 10.1039/d0py00174k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catalyst 1 was reported for the first time to be effective for nickel-catalyzed CO2/CHO copolymerization at 1 atm CO2 pressure.
Collapse
Affiliation(s)
- Yu-Chia Su
- Department of Chemistry
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Chih-Hsiang Tsui
- Department of Chemistry
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Chen-Yen Tsai
- Department of Chemistry
- Chinese Culture University
- Taipei 111
- Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry
- National Chung Hsing University
- Taichung 402
- Taiwan
| |
Collapse
|
28
|
Li MH, Liu GL, Su YC, Ko BT. Nickel-catalyzed copolymerization of carbon dioxide with internal epoxides by di-nuclear bis(benzotriazole iminophenolate) complexes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Su YC, Tsai CY, Huang LS, Lin CH, Ko BT. Synthesis and characterization of di-nuclear bis(benzotriazole iminophenolate) cobalt complexes: catalysis for the copolymerization of carbon dioxide with epoxides. Dalton Trans 2019; 48:12239-12249. [PMID: 31339119 DOI: 10.1039/c9dt02174d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of di-nuclear bis(benzotriazole iminophenolate) (BiIBTP) cobalt complexes containing diverse ancillary carboxylate derivatives have been synthesized and structurally characterized. The one-pot synthesis of the BiIBTP ligand precursor with cobalt perchlorate salt (2.0 equiv.) and carboxylic acid derivatives (2.0 or 5.0 equiv.) in the presence of triethylamine (5.0 equiv.) under refluxing methanolic solution generated bimetallic di-carboxylate Co(ii)/Co(ii) complexes [(C83CBiIBTP)Co2(O2CR)2] (R = C6H5 (1), C6F5 (2), 4-CF3-C6H4 (3), 4-OMe-C6H4 (4), CF3 (5)) in ≧65% yields. Interestingly, the Co(ii)/Co(iii) mixed-valence complex 6 resulted from the treatment of 1 with silver perchlorate (1.0 equiv.) as the oxidizing agent under an O2-atmosphere in 50% yield. The crystal structure of 6 reveals an ionic and di-nuclear benzoate species composed of a cationic moiety formulated as [(C83CBiIBTP)Co2(O2CC6H5)2]+ and a counterbalanced perchlorate anion, and both metal atoms are attributed to hexa-coordinated cobalt ions with varied coordination environments. Catalysis results of CO2/epoxide copolymerization indicated that complex 1 was more efficient than 2-6 where compound 6 was shown to be the least active. Co complex 1 incorporating benzoate coligands was demonstrated to effectively catalyze the CO2-copolymerization of cyclohexene oxide (CHO), 4-vinyl-1,2-cyclohexene oxide or cyclopentene oxide, producing the associated CO2-based polycarbonates with >99% carbonate repeated units under optimal conditions. Not only the controllable character of complex 1 for CO2/CHO copolymerization is enabled, but also 1 has been shown to catalyze such a copolymerization in the "immortal" manner. Using the same di-cobalt catalyst in combination with excess ratios of neopentyl glycol (up to 150 equiv.) as the chain transfer agent could give low molecular weight poly(cyclohexene carbonate) polyols with monomodal molecular weight distributions. This work offers the facilely prepared di-nuclear cobalt complexes as catalysts for the efficient catalysis of CO2-copolymerization.
Collapse
Affiliation(s)
- Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chen-Yen Tsai
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Li-Shin Huang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chia-Her Lin
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
30
|
Folsom TM, Bhat GA, Rashad AZ, Darensbourg DJ. Approach for Introducing a Single Metal Complex into a Polymer Chain: Metallo-Chain Transfer Agents in CO2 or COS/Epoxide Copolymerization Processes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tucker M. Folsom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gulzar A. Bhat
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ahmed Z. Rashad
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
31
|
Trott G, Garden JA, Williams CK. Heterodinuclear zinc and magnesium catalysts for epoxide/CO 2 ring opening copolymerizations. Chem Sci 2019; 10:4618-4627. [PMID: 31123572 PMCID: PMC6492632 DOI: 10.1039/c9sc00385a] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The ring-opening copolymerization of carbon dioxide and epoxides is a useful means to make aliphatic polycarbonates and to add-value to CO2. Recently, the first heterodinuclear Zn(ii)/Mg(ii) catalyst showed greater activity than either homodinuclear analogue (J. Am. Chem. Soc. 2015, 137, 15078-15081). Building from this preliminary finding, here, eight new Zn(ii)/Mg(ii) heterodinuclear catalysts featuring carboxylate co-ligands are prepared and characterized. The best catalysts show very high activities for copolymerization using cyclohexene oxide (TOF = 8880 h-1, 20 bar CO2, 120 °C, 0.01 mol% catalyst loading) or cyclopentene oxide. All the catalysts are highly active in the low pressure regime and specifically at 1 bar pressure CO2. The polymerization kinetics are analysed using in situ spectroscopy and aliquot techniques: the rate law is overall second order with a first order dependence in both catalyst and epoxide concentrations and a zero order in carbon dioxide pressure. The pseudo first order rate coefficient values are compared for the catalyst series and differences are primarily attributed to effects on initiation rates. The data are consistent with a chain shuttling mechanistic hypothesis with heterodinuclear complexes showing particular rate enhancements by optimizing distinct roles in the catalytic cycles. The mechanistic hypothesis should underpin future heterodinuclear catalyst design for use both in other (co)polymerization and carbon dioxide utilization reactions.
Collapse
Affiliation(s)
- Gemma Trott
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | | | - Charlotte K Williams
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
32
|
Kunze L, Tseng SY, Schweins R, Sottmann T, Frey H. Nonionic Aliphatic Polycarbonate Diblock Copolymers Based on CO 2, 1,2-Butylene Oxide, and mPEG: Synthesis, Micellization, and Solubilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5221-5231. [PMID: 30883120 DOI: 10.1021/acs.langmuir.8b04265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon dioxide (CO2) is a renewable carbon source that is easily available in high purity and is utilized as a co-monomer in the direct ring-opening polymerization of epoxides to obtain aliphatic polycarbonates. In this work, degradable aliphatic polycarbonate diblock copolymers (mPEG- b-PBC) are synthesized via catalytic copolymerization of CO2 and 1,2-butylene oxide, starting from monomethoxy poly(ethylene glycol) (mPEG) as a chain transfer reagent. The polymerization proceeds at low temperatures and high CO2 pressure, utilizing the established binary catalytic system ( R, R)-Co(salen)Cl/[PPN]Cl. Amphiphilic nonionic diblock copolymers with varying PBC block lengths and hydrophilic-lipophilic balance values between 9 and 16 are synthesized. The polymers are characterized via NMR and Fourier transform infrared spectroscopies as well as size exclusion chromatography, exhibiting molecular weights ranging from 2400 to 4100 g mol-1 with narrow dispersities ( Đ = Mw/ Mn) from 1.07 to 1.18. Furthermore, the thermal properties, i.e., Tg, Tm, and Td, are determined. Surface tension measurements prove that the amphiphilic polymers form micelles above the critical micelle concentration, whereas small-angle neutron scattering shows that they are of nearly spherical shape. Adding small amounts of the synthesized mPEG- b-PBC polymers to different microemulsion systems, we found that the polymers were able to strongly increase the efficiency of medium-chain surfactants to solubilize polar oils.
Collapse
Affiliation(s)
- Lena Kunze
- Institute of Organic Chemistry , Johannes Gutenberg University of Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Shih-Yu Tseng
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Ralf Schweins
- Institute Laue-Langevin , DS/LS, 71 Avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9, France
| | - Thomas Sottmann
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Holger Frey
- Institute of Organic Chemistry , Johannes Gutenberg University of Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
33
|
Raman SK, Raja R, Arnold PL, Davidson MG, Williams CK. Waste not, want not: CO 2 (re)cycling into block polymers. Chem Commun (Camb) 2019; 55:7315-7318. [PMID: 31172996 DOI: 10.1039/c9cc02459j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A new way to combine two different polymerisation reactions, using a single catalyst, results in efficient block polymer synthesis. The selective polymerisation of mixtures of l-lactide-O-carboxyanhydride and cyclohexene oxide, using a di-zinc catalyst in a one-pot procedure, allows the preparation of poly(l-lactide-b-cyclohexene carbonate). The catalysis near quantitatively recycles the carbon dioxide released during polyester formation into the subsequent polycarbonate block, with an atom economy of up to of 91%.
Collapse
Affiliation(s)
- Sumesh K Raman
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK.
| | | | | | | | | |
Collapse
|
34
|
Hua X, Liu X, Cui D. Sequence controlled copolymerization of lactide and a functional cyclic carbonate using stereoselective aluminum catalysts. Polym Chem 2019. [DOI: 10.1039/c9py00424f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stereoselective aluminum complexes were applied for the ROP of LA and MAC producing functional copolyesters with quasi-diblock, tapered, gradient and random sequence distributions.
Collapse
Affiliation(s)
- Xiufang Hua
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
35
|
Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Advances in the use of CO 2 as a renewable feedstock for the synthesis of polymers. Chem Soc Rev 2019; 48:4466-4514. [PMID: 31276137 DOI: 10.1039/c9cs00047j] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon dioxide offers an accessible, cheap and renewable carbon feedstock for synthesis. Current interest in the area of carbon dioxide valorisation aims at new, emerging technologies that are able to provide new opportunities to turn a waste into value. Polymers are among the most widely produced chemicals in the world greatly affecting the quality of life. However, there are growing concerns about the lack of reuse of the majority of the consumer plastics and their after-life disposal resulting in an increasing demand for sustainable alternatives. New monomers and polymers that can address these issues are therefore warranted, and merging polymer synthesis with the recycling of carbon dioxide offers a tangible route to transition towards a circular economy. Here, an overview of the most relevant and recent approaches to CO2-based monomers and polymers are highlighted with particular emphasis on the transformation routes used and their involved manifolds.
Collapse
Affiliation(s)
- Bruno Grignard
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium.
| | | | | | | | | |
Collapse
|
36
|
Deacy AC, Durr CB, Garden JA, White AJP, Williams CK. Groups 1, 2 and Zn(II) Heterodinuclear Catalysts for Epoxide/CO2 Ring-Opening Copolymerization. Inorg Chem 2018; 57:15575-15583. [DOI: 10.1021/acs.inorgchem.8b02923] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Arron C. Deacy
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher B. Durr
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jennifer A. Garden
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte K. Williams
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
37
|
Huang Z, Wang Y, Zhang N, Zhang L, Darensbourg DJ. One-Pot Synthesis of Ion-Containing CO2-Based Polycarbonates Using Protic Ionic Liquids as Chain Transfer Agents. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhaohe Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yanyan Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Na Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Wang Y, Darensbourg DJ. Carbon dioxide-based functional polycarbonates: Metal catalyzed copolymerization of CO2 and epoxides. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.06.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Li Y, Zhang YY, Hu LF, Zhang XH, Du BY, Xu JT. Carbon dioxide-based copolymers with various architectures. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Thevenon A, Cyriac A, Myers D, White AJP, Durr CB, Williams CK. Indium Catalysts for Low-Pressure CO 2/Epoxide Ring-Opening Copolymerization: Evidence for a Mononuclear Mechanism? J Am Chem Soc 2018; 140:6893-6903. [PMID: 29782169 DOI: 10.1021/jacs.8b01920] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alternating copolymerization of CO2/epoxides is a useful means to incorporate high levels of carbon dioxide into polymers. The reaction is generally proposed to occur by bimetallic or bicomponent pathways. Here, the first indium catalysts are presented, which are proposed to operate by a distinct mononuclear pathway. The most active and selective catalysts are phosphasalen complexes, which feature ligands comprising two iminophosphoranes linked to sterically hindered ortho-phenolates. The catalysts are active at 1 bar pressure of carbon dioxide and are most effective without any cocatalyst. They show low-pressure activity (1 bar pressure) and yield polymer with high carbonate linkage selectivity (>99%) and isoselectivity ( Pm > 70%). Using these complexes, it is also possible to isolate and characterize key catalytic intermediates, including the propagating indium alkoxide and carbonate complexes that are rarely studied. The catalysts are mononuclear under polymerization conditions, and the key intermediates show different coordination geometries: the alkoxide complex is pentacoordinate, while the carbonate is hexacoordinate. Kinetic analyses reveal a first-order dependence on catalyst concentration and are zero-order in carbon dioxide pressure; these findings together with in situ spectroscopic studies underpin the mononuclear pathway. More generally, this research highlights the future opportunity for other homogeneous catalysts, featuring larger ionic radius metals and new ligands, to operate by mononuclear mechanisms.
Collapse
Affiliation(s)
- Arnaud Thevenon
- Department of Chemistry , University of Oxford , 13 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Anish Cyriac
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | - Dominic Myers
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | - Andrew J P White
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | - Christopher B Durr
- Department of Chemistry , University of Oxford , 13 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Charlotte K Williams
- Department of Chemistry , University of Oxford , 13 Mansfield Road , Oxford OX1 3TA , United Kingdom
| |
Collapse
|
41
|
Zhang YY, Yang GW, Wu GP. A Bifunctional β-Diiminate Zinc Catalyst with CO2/Epoxides Copolymerization and RAFT Polymerization Capacities for Versatile Block Copolymers Construction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00576] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Morris LS, Childers MI, Coates GW. Bimetallic Chromium Catalysts with Chain Transfer Agents: A Route to Isotactic Poly(propylene oxide)s with Narrow Dispersities. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lilliana S. Morris
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca NY 14853-1301 USA
| | - M. Ian Childers
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca NY 14853-1301 USA
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca NY 14853-1301 USA
| |
Collapse
|
44
|
Morris LS, Childers MI, Coates GW. Bimetallic Chromium Catalysts with Chain Transfer Agents: A Route to Isotactic Poly(propylene oxide)s with Narrow Dispersities. Angew Chem Int Ed Engl 2018. [PMID: 29520932 DOI: 10.1002/anie.201801380] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bimetallic chromium catalysts are investigated for the enantioselective polymerization of propylene oxide. The catalyst is composed of two salen chromium species linked by an alkyl chain, the length of which significantly impacts the rate of polymerization. While the use of a chloride initiator on the catalyst resulted in bimodal molecular weight distributions, switching to a trifluoroacetate initiating group and adding a diol chain transfer agent afforded polymers of controllable molecular weight with low, unimodal dispersities.
Collapse
Affiliation(s)
- Lilliana S Morris
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853-1301, USA
| | - M Ian Childers
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853-1301, USA
| |
Collapse
|
45
|
Mizuno Y, Nakano K. Block Copolymers of Aliphatic Polycarbonates: Combination of Immortal Epoxide/Carbon-dioxide Copolymerization and Atom Transfer Radical Polymerization of Vinyl Monomers. CHEM LETT 2018. [DOI: 10.1246/cl.180045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yuri Mizuno
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Nakano
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
46
|
Wang Y, Zhao Y, Ye Y, Peng H, Zhou X, Xie X, Wang X, Wang F. A One-Step Route to CO2
-Based Block Copolymers by Simultaneous ROCOP of CO2
/Epoxides and RAFT Polymerization of Vinyl Monomers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yong Wang
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, CAS; Changchun 130022 P. R. China
| | - Yajun Zhao
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Yunsheng Ye
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Haiyan Peng
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, CAS; Changchun 130022 P. R. China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, CAS; Changchun 130022 P. R. China
| |
Collapse
|
47
|
Wang Y, Zhao Y, Ye Y, Peng H, Zhou X, Xie X, Wang X, Wang F. A One-Step Route to CO 2 -Based Block Copolymers by Simultaneous ROCOP of CO 2 /Epoxides and RAFT Polymerization of Vinyl Monomers. Angew Chem Int Ed Engl 2018; 57:3593-3597. [PMID: 29392807 DOI: 10.1002/anie.201710734] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/30/2018] [Indexed: 01/21/2023]
Abstract
The one-step synthesis of well-defined CO2 -based diblock copolymers was achieved by simultaneous ring-opening copolymerization (ROCOP) of CO2 /epoxides and RAFT polymerization of vinyl monomers using a trithiocarbonate compound bearing a carboxylic group (TTC-COOH) as the bifunctional chain transfer agent (CTA). The double chain-transfer effect allows for independent and precise control over the molecular weight of the two blocks and ensures narrow polydispersities of the resultant block copolymers (1.09-1.14). Notably, an unusual axial group exchange reaction between the aluminum porphyrin catalyst and TTC-COOH impedes the formation of homopolycarbonates. By taking advantage of the RAFT technique, it is able to meet the stringent demand for functionality control to well expand the application scopes of CO2 -based polycarbonates.
Collapse
Affiliation(s)
- Yong Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
| | - Yajun Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunsheng Ye
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haiyan Peng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, P. R. China
| |
Collapse
|
48
|
Yang GW, Zhang YY, Wang Y, Wu GP, Xu ZK, Darensbourg DJ. Construction of Autonomic Self-Healing CO2-Based Polycarbonates via One-Pot Tandem Synthetic Strategy. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02715] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guan-Wen Yang
- MOE
Laboratory of Macromolecular Synthesis and Functionalization, Adsorption
and Separation Materials and Technologies of Zhejiang Province, Department
of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yao-Yao Zhang
- MOE
Laboratory of Macromolecular Synthesis and Functionalization, Adsorption
and Separation Materials and Technologies of Zhejiang Province, Department
of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yanyan Wang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Guang-Peng Wu
- MOE
Laboratory of Macromolecular Synthesis and Functionalization, Adsorption
and Separation Materials and Technologies of Zhejiang Province, Department
of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE
Laboratory of Macromolecular Synthesis and Functionalization, Adsorption
and Separation Materials and Technologies of Zhejiang Province, Department
of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
49
|
Zhang YY, Yang GW, Wang Y, Lu XY, Wu GP, Zhang ZS, Wang K, Zhang RY, Nealey PF, Darensbourg DJ, Xu ZK. Synthesis of CO2-Based Block Copolymers via Chain Transfer Polymerization Using Macroinitiators: Activity, Blocking Efficiency, and Nanostructure. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02231] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yanyan Wang
- Department of Chemistry, Texas A&M University 3255 TAMU, College Station, Texas 77843, United States
| | - Xin-Yu Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze-Sheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ruo-Yu Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Paul F. Nealey
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Donald J. Darensbourg
- Department of Chemistry, Texas A&M University 3255 TAMU, College Station, Texas 77843, United States
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
50
|
Nagae H, Aoki R, Akutagawa SN, Kleemann J, Tagawa R, Schindler T, Choi G, Spaniol TP, Tsurugi H, Okuda J, Mashima K. Lanthanoidkomplexe mit Trizink-Kronenether als Katalysatoren für die alternierende Copolymerisation von Epoxid und CO2
: eine durch Carboxylat-Anionen kontrollierte Telomerisierung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haruki Nagae
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Ryota Aoki
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Shin-nosuke Akutagawa
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Julian Kleemann
- Institut für Anorganische Chemie; RWTH Aachen; Landoltweg 1 52062 Aachen Deutschland
| | - Risa Tagawa
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Tobias Schindler
- Institut für Anorganische Chemie; RWTH Aachen; Landoltweg 1 52062 Aachen Deutschland
| | - Gyeongshin Choi
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Thomas P. Spaniol
- Institut für Anorganische Chemie; RWTH Aachen; Landoltweg 1 52062 Aachen Deutschland
| | - Hayato Tsurugi
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Jun Okuda
- Institut für Anorganische Chemie; RWTH Aachen; Landoltweg 1 52062 Aachen Deutschland
| | - Kazushi Mashima
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| |
Collapse
|